Skip to main content

Part of the book series: Nato Advanced Study Institutes Series ((NSSA,volume 34))

  • 114 Accesses

Abstract

Optical fibers are by far the most attractive elements with which to create optical systems in the medical or biological applications of light. They are usually made up of long, thin glass rods that turn out to be very easy to handle. Moreover, their thinness and flexibility allow reaching inaccessible regions in the body without pain and discomfort to the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. S. Kapany, “Fiber Optics: Principles and Applications,” Academic Press, New York (1967).

    Google Scholar 

  2. R. Drougard and R. J. Potter, “Fiber Optics” in: “Advanced Optical Techniques,” (Ed. A. C.S. Van Heel), 401, North Holland Publishing Company, Amsterdam (1967).

    Google Scholar 

  3. H. G. Unger, “Planar Optical Waveguides and Fibres,” Clarendon Press, Oxford (1978).

    Google Scholar 

  4. D. Marcuse, “Light Transmission Optics,” Van Nostrand Reinhold Company, New York (1972).

    Google Scholar 

  5. D. Gloge, “Weakly Guiding Fibers,” Appl. Opt., 10, 2252 (1971).

    Article  Google Scholar 

  6. T. Uchida, M. Furukawa, I. Kitano, K. Koizumi and H. Matsumura, “Optical Characteristics of a Light Focusing Fiber Guide and its Applications,” IEEE J. Quant. Elect., QU-6, no. 10, 606 (1970).

    Google Scholar 

  7. c.f. “Infrarouge Purposil” and “Ultraviolette Tetrasil,” Quartz and Silice, Nemours, France.

    Google Scholar 

  8. P. F. Checcacci, A. M. Scheggi, M. Brenci, “R. F. Induction Furnace for Silica — Fibre Drawing,” Electr. Lett., 12, 11 (1976).

    Article  Google Scholar 

  9. P. Kaiser, “Contamination of Furnace Drawn Silica Fibers,” Appl. Opt., 16, 701 (1977).

    Article  MathSciNet  Google Scholar 

  10. M. Brenci, P. F. Checcacci, R. Falciai and A. M. Scheggi, “Contamination of Furnace Drawn Silica Fibers,” Comment: Appl. Opt., 16, no. 12, 3084 (1977).

    Article  Google Scholar 

  11. G. Maniré, “Telecommunications Optical Fibers Manufacturizing Methods,” Atti XXIII Congr. Int. per l’Elettrom., Roma, 283 Rome (1978).

    Google Scholar 

  12. K. Koizumi, Y. Ikeda, I. Kitano, M. Furukawa and T. Sumimoto, “New Light-Focusing Fibres Made by a Continuous Process,” Appl. Opt., 13, 255–260 (1974).

    Article  Google Scholar 

  13. M. Epstein, “Fiber Optics in Medicine,” Proc. SPIE 77 (1976).

    Google Scholar 

  14. J. D. Archer, “Fiber Optics: Glass vs. Plastic,” Opt. Spectra, 31 (1973).

    Google Scholar 

  15. Fibers of this kind are fabricated by LUMATEC GmbH, Munich.

    Google Scholar 

  16. D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper and L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett., 33, 28 (1978).

    Article  Google Scholar 

  17. H. Nishihara, T. Inoue and J. Koyama, “Low Loss Parallel-Plate Waveguide at 10.6 μm,” Appl. Phys. Lett., 25, no. 7, 391 (1974).

    Article  Google Scholar 

  18. E. Garmire, T. McMahon and M. Bass, “Low-loss Propagation and Polarization Rotation in Twisted Infrared Metal Waveguides,” Appl. Phys. Lett., 34, 35 (1979).

    Article  Google Scholar 

  19. H. Krammer, “Light Waves Guided by a Single Curved Metallic Surface,” Appl. Opt., 17, no. 2, 316 (1978).

    Article  Google Scholar 

  20. M. E. Marhic, L. I. Kwan and M. Epstein, “Optical Surface Waves Along a Toroidal Metallic Guide,” Appl. Phys. Lett., 33, 609 (1978).

    Article  Google Scholar 

  21. H. Ohzu, T. Sawatari and K. Sayanagi, “Image Transmission Characteristics of Fiber Bundles,” Japan J. Appl. Phys., 4, Suppl. I, 323 (1965).

    Google Scholar 

  22. N. S. Kapany and T. Sawatari, “Fiber Optics, XIV. Statistical Evaluation of Fiber Optics Imagery,” J.O.S.A., 61, 314 (1971).

    Article  Google Scholar 

  23. C. J. Koester, “Wavelength Multiplexing in Fiber Optics,” J.O.S.A., 58, no. 1, 63 (1968).

    Article  Google Scholar 

  24. S. E. Schacham, M. E. Marhic, C. Kot and M. Epstein, “Coupling of Rigid to Flexible Imaging Multifibers,” Appl. Opt., 17, no. 23, 3818 (1978).

    Article  Google Scholar 

  25. M. K. Barnoski, “Coupling Components for Optical Fiber Waveguides,” in: “Fundamentals of Optical Fiber Communications,” (Ed. M. K. Barnoski), Academic Press, New York (1976).

    Google Scholar 

  26. R. M. Dwyer and M. Bass, “Lasers in Medicine,” in: “Laser Applications,” (Ed. Monte Ross), Vol. 3, Academic Press, New York (1977).

    Google Scholar 

  27. P. Kiefhaber, G. Nath and K. Moritz, “Endoscopical Control of Massive Gastrointestinal Hemorrhage by Irradiation with a High-Power Neodymium YAG Laser,” Progr. in Surg., 15, 140–155 (1977).

    Google Scholar 

  28. K. Haverkampf, private communication.

    Google Scholar 

  29. W. Mautner, “High Energy Waveguides,” in: “Endoscopy,” (Ed. Berci), Appleton Century Crofts (1976).

    Google Scholar 

  30. N. C. Paek and A. L. Weaver, “Formation of a Spherical Lens at Optical Fiber Ends with a CO2 Laser,” Appl. Opt., 14, no. 2, 294 (1975).

    Article  Google Scholar 

  31. M. Sottini, S. Briani, G. C. Righini, V. Russo and S. Sottini, “Laser Application in Experimental Neurosurgery by Means of Optical Fibres Ended with a Focusing System,” Proc. X European Congress of Intern. College of Surgeons, Milan (1977).

    Google Scholar 

  32. G. C. Righini, V. Russo and S. Sottini, “Le Fibre Ottiche in Medicina,” Alta Frequenza, 47, no. 3, 165 (1978).

    Google Scholar 

  33. C. T. Chang and D. C. Auth, “Radiation Characteristics of a Tapered Cylindrical Optical Fiber,” J.O.S.A., 68, no. 9, 1191 (1978).

    Article  Google Scholar 

  34. D. C. Auth, P. I. Doty, D. Neal, D. Heimbach, R. Wentworth, J. Colocousis and P. W. Curreri, “The Laser Blade: A New Laser Scalpel,” in: Proc. 2nd Int. Symp. on Laser Surgery, Dallas (1977).

    Google Scholar 

  35. S. A. Robrish, A. F. LeRoy, B. M. Chassy, J. J. Wilson and M. I. Krichevsky, “Use of a Fiber Optic Probe for Spectral Measurements and the Continuous Recording of the Turbidity of Growing Microbial Cultures,” Appl. Microbiol., 21, no. 2, 278–287 (February 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Sottini, S. (1980). Optics and Fibers. In: Hillenkamp, F., Pratesi, R., Sacchi, C.A. (eds) Lasers in Biology and Medicine. Nato Advanced Study Institutes Series, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8550-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8550-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8552-3

  • Online ISBN: 978-1-4684-8550-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics