Skip to main content

Mechanics of Erythrocytes, Leukocytes, and Other Cells

  • Chapter
Biomechanics

Abstract

In the previous chapter, we studied the flow properties of blood. In this chapter, we turn our attention to the blood cells. We give most of the space to the red blood cells, but treat the white blood cells and other cells toward the end of the chpater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Erythrocytes

  • Bennett, V. and Branton, D. (1977) Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32 p) spectrin. J. Biol. Chem. 252, 2753–2763.

    PubMed  CAS  Google Scholar 

  • Bessis, M. (1956) Cytology of the Blood and Blood-Forming Organs. Grune and Stratton, New York.

    Google Scholar 

  • Blackshear, P. L., Jr. (1972) Mechanical hemolysis in flowing blood. In Bio-mechanics: Its Foundations and Objectives. Fung, Perrone, and Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Bo, L. and Waugh, R. E. (1989) Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys. J. 55, 509–517.

    Article  PubMed  CAS  Google Scholar 

  • Braasch, D. and Jennett, W. (1968) Erythrozyten flexibilität, Hämokonzentration and Reibungswiderstand in Glascapillaren mid Durchmessern zwischen 6 bis 50, u. Pflügers Arch. Physiol. 302, 245–254.

    Article  CAS  Google Scholar 

  • Bränemark, P.-I. (1971) Intravascular Anatomy of Blood Cells in Man. Monograph. Karger, Basel.

    Google Scholar 

  • Brailsford, J. D. and Bull, B. S. (1973) The red cell—A macromodel simulating the hypotonic-sphere isotonic disk transformation. J. Theor. Biol. 39, 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Bull, B. S. and Brailsford, J. D. (1975) The relative importance of bending and shear in stabilizing the shape of the red blood cell. Blood Cells 1, 323–331.

    Google Scholar 

  • Canham, P. B. (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26, 61–81.

    Article  PubMed  CAS  Google Scholar 

  • Canham, P. B. and Burton, A. C. (1968) Distribution of size and shape in populations of normal human red cells. Circulation Res. 22, 405–422.

    Article  PubMed  CAS  Google Scholar 

  • Chen, P. and Fung, Y. C. (1973) Extreme-value statistics of human red blood cells. Microvasc. Res. 6, 32–43.

    Article  PubMed  CAS  Google Scholar 

  • Chien, S. (1972) Present state of blood rheology. In Hemodilution: Theoretical Basis and Clinical Application, K. Messmer and H. Schmid-Schoenbein (eds.) Karger, Basel.

    Google Scholar 

  • Chien, S., Usami, S., Dellenback, R. T., and Gregersen, M. I. (1967) Blood viscosity: Influence of erythrocyte deformation. Science 157, 827–829.

    Article  PubMed  CAS  Google Scholar 

  • Chien, S., Usami, S., Dellenback, R. J., and Bryant, C. A. (1971) Comparative homeorheology—Hematological implications of species differences in blood viscosity. Biorheology 8, 35–57.

    PubMed  CAS  Google Scholar 

  • Chien, S., Sung, K. L. P., Skalak, R., Usami, S., and Tözeren, A. (1978) Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys. J. 24, 463–487.

    Article  PubMed  CAS  Google Scholar 

  • Chien, S. and Sung, L. A. (1990a) Molecular basis of red cell membrane rheology. Biorheology 27, 327–344.

    PubMed  CAS  Google Scholar 

  • Chien, S., Feng, S.-S., Vayo, M., Sung, L. A., Usami, S., and Skalak, R. (1990b) The dynamics of shear disaggregation of red blood cells in a flow channel. Biorheology 27, 135–147.

    PubMed  CAS  Google Scholar 

  • Cohen, W. D. (1978) Observations on the marginal band system of nucleated erythrocytes. J. Cell Biol. 78, 260–273.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, W. D., Bartlet, D., Jaeger, R., Langford, G., and Nemhauser, I. (1982) The cytoskeletal system of nucleated erythrocytes. I. Composition and function of major elements. J. Cell Biol. 93, 828–838.

    Article  PubMed  CAS  Google Scholar 

  • Cokelet, G. R. and Meiselman, H. J. (1968) Rheological comparison of hemoglobin solutions and erythrocyte suspensions. Science 162, 275–277.

    Article  PubMed  CAS  Google Scholar 

  • Cokelet, G. R., Meiselman, J. H., and Brooks, D. E. (eds.) (1980) Erythrocyte Mechanics and Blood Flow. Alan Liss, New York.

    Google Scholar 

  • Dick, D. A. T. and Lowenstein, L. M. (1958) Osmotic equilibria in human erythrocytes by immersion refractometry. Proc. Roy. Soc. London B 148, 241–256.

    Article  CAS  Google Scholar 

  • Dintenfass, L. (1968) Internal viscosity of the red cell and a blood viscosity equation. Nature 219, 956–958.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E. A. (1983) Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43, 27–30.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E. and Fung, Y. C. (1972) Improved measurements of the erythrocyte geometry. Microvasc. Res. 4, 335–347.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E. A. and Hochmuth, R. M. (1976) Membrane viscoelastocity. Biophys. J. 16, 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E. A., Waugh, R., and Melnik, L. (1976) Elastic area compressibility modulus of red cell membrane. Biophys. J. 16, 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E. A. and Skalak, R. (1979) Mechanics and Thermodynamics of Biomembranes. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Evans, E. A. and Rawicz, W. (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett. 64, 2094–2097.

    Article  PubMed  CAS  Google Scholar 

  • Flügge, W. (1960) Stresses in Shells. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Fry D. L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circulation Res. 22, 165–197.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y. C. (1966) Theoretical considerations of the elasticity of red cells and small blood vessels. Fed. Proc. Symp. Microcirc. 25, Part I, 1761–1772.

    Google Scholar 

  • Fung Y. C. (1968) Microcirculation dynamics. In: Biomedical Sciences Instrumentation. Instrument Society of America. Plenum Press, New York, Vol. 4, pp. 310–320.

    Google Scholar 

  • Fung, Y. C. and Tong, P. (1968) Theory of the sphering of red blood cells. J. Biophys. 8, 175–198.

    Article  CAS  Google Scholar 

  • Graustein, W. C. (1935) Differential Geometry. Macmillan, New York.

    Google Scholar 

  • Gregersen, M. I., Bryant, C. A., Hammerle, W. E., Usami, S., and Chien, S. (1967) Flow characteristics of human erythrocytes through polycarbonate sieves. Science 157, 825–827.

    Google Scholar 

  • Gumbel, E. J. (1954) Statistical Theory of Extreme Value and Somne Practical Applications. National Bureau of Standards, Applied Math. Ser. 33. Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., pp. 1–51.

    Google Scholar 

  • Gumbel, E. J. (1958) Statistics of Extremes. Columbia University Press, New York.

    Google Scholar 

  • Hochmuth, R. M. (1987) Properties of red blood cells. In Handbook of Bioengineering, R. Skalak and S. Chien (eds.) McGraw-Hill, New York, Chapter 12.

    Google Scholar 

  • Hochmuth, R. M., Marple, R. N., and Sutera, S. P. (1970) Capillary blood flow. I. Erythrocyte deformation in glass capillaries. Microvasc. Res. 2, 409–419.

    Article  PubMed  CAS  Google Scholar 

  • Hochmuth, R. M. and Mohandas, N. (1972) Uniaxial loading of the red cell membrane. J. Biomech. 5, 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Hochmuth, R. M., Mohandas, N., and Blackshear, Jr., P. L. (1973) Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys. J. 13, 747–762.

    Article  PubMed  CAS  Google Scholar 

  • Hochmuth, R. M., Worthy, P. R., and Evans, E. A. (1979) Red cell extensional recovery and the determination of membrane viscosity. Biophys. J. 26, 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Hochmuth, R. M., Evans, E. A., Wiles, H. C., and McCown, J. T. (1983) Mechanical measurement of red cell membrane thickness. Science 220, 101–102.

    Article  PubMed  CAS  Google Scholar 

  • Hoeber, T. W. and Hochmuth, R. M. (1970) Measurement of red blood cell modulus of elasticity by in vitro and model cell experiments. Trans. ASME Ser. D, 92, 604.

    Article  Google Scholar 

  • Houchin, D. W., Munn, J. I., and Parnell, B. L. (1958) A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area. Blood 13, 1185–1191.

    PubMed  CAS  Google Scholar 

  • Kage, H. S., Engelhardt, H., and Sackman, E. (1990) A precision method to measure average viscoelastic parameters of erythrocyte populations. Biorheology 27, 67–78.

    PubMed  CAS  Google Scholar 

  • Katchalsky, A., Kedem, D., Klibansky, C., and DeVries, A. (1960) Rheological considerations of the haemolysing red blood cell. In Flow Properties of Blood and Other Biological Systems, A. L. Copley and G. Stainsby (eds.) Pergamon, New York, pp. 155–171.

    Google Scholar 

  • King, J. R. (1971) Probability Chart for Decision Making. Industrial Press, New York.

    Google Scholar 

  • Lingard, P. S. (1974 et seq) Capillary pore rheology of erythrocytes.

    Google Scholar 

  • I. Hydroelastic behavior of human erythrocytes. Microvasc. Res. 8, 53–63.

    Google Scholar 

  • II. Preparation of leucocyte-poor suspension. ibid, 8, 181–191 (1974).

    Google Scholar 

  • III. Behavior in narrow capillary pores. ibid., 13, 29–58 (1977).

    Google Scholar 

  • IV. Effect of pore diameter and hematocrit. ibid., 13, 59–77 (1977).

    Google Scholar 

  • V. Glass capillary array. ibid., 17, 272–289 (1979).

    Google Scholar 

  • Lingard, P. S. and Whitmore, R. L. (1974) The deformation of disk-shaped particles by a shearing fluid with application to the red blood cell. J. Colloid Interface Sci. 49, 119–127.

    Article  Google Scholar 

  • Lipowsky, R. (1991) The conformation of membranes. Nature 349, 475–481.

    Article  PubMed  CAS  Google Scholar 

  • Lux, S. E. and Becker, P. S. (1989) Disorders of the red cell membrane skeleton: Hereditary spherocytosis and hereditary elliptocytosis. In The Metabolic Basis of Inherited Disease, 6th ed., C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, McGraw—Hill, New York, Vol. 2, pp. 2367–2408.

    Google Scholar 

  • Marchesi, V. T., Steers, E., Tillack, T. W., and Marchesi, S. L. (1969) Properties of spectrin: A fibrous protein isolated from red cell membranes. In Red Cell Membrane, G. A. Jamieson and T. J. Greenwalt (eds.) Lippincott, Philadelphia, p. 117.

    Google Scholar 

  • Marchesi, S. L., Steers, E., Marchesi, V. T., and Tillack, T. W. (1970) Physical and chemical properties of a protein isolated from red cell membranes. Biochemistry 9, 50–57.

    Article  PubMed  CAS  Google Scholar 

  • Needham, D. and Nunn, R. S. (1990) Elastic deformation and failure of lipid bilayer membranes containing cholesteral. Biophys. J. 58, 997–1009.

    Article  PubMed  CAS  Google Scholar 

  • Norris, C. H. (1939) The tension at the surface and other physical properties of the nucleated erythrocyte. J. Cell. Comp. Physiol. 14, 117–133.

    Article  CAS  Google Scholar 

  • Op den Kamp, J. A. F. (1979) Lipid asymmetry in membranes. Ann. Rev. Biochem. 48, 47–71.

    Article  Google Scholar 

  • Ponder, E. (1948) Hemolysis and Related Phenomena. Grune and Stratton, New York.

    Google Scholar 

  • Rand, R. H. and Burton, A. C. (1964) Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. II. Viscoelastic breakdown of the membrane. Biophys. J. 4, 115–135; 303–316.

    Google Scholar 

  • Sabbah, H. N. and Stein, P. D. (1976) Effect of erythrocytic deformability upon turbulent blood flow. Biorheology 13 309–314.

    Google Scholar 

  • Schmid-Schoenbein, H. and Wells, R. E. (1969) Fluid drop-like transition of erythrocytes under shear. Science 165, 288–291.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen, K. and Taylor, C. R. (1968) Red blood cells: Why or why not? Science 162, 274–275.

    PubMed  CAS  Google Scholar 

  • Secomb, T. W., Skalak, R., Özkaya, N., and Gross, J. F. (1986) Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405–423.

    Article  Google Scholar 

  • Seifriz, W. (1927) The physical properties of erythrocytes. Protoplasma 1, 345–365.

    Article  Google Scholar 

  • Singer, S. J. (1974) The molecular organization of membranes. Ann. Rev. Biochem. 43, 805–833.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S. J. and Nicolson, G. L. (1972) The fluid mosaic model of the structure of cell membranes. Science 175, 720–731.

    Article  PubMed  CAS  Google Scholar 

  • Skalak, R. (1973) Modeling the mechanical behavior of red blood cells. Biorheology 10, 229–238.

    PubMed  CAS  Google Scholar 

  • Skalak, R., Chen, P. H., and Chien, S. (1972) Effect of hematocrit and rouleaux on apparent viscosity in capillaries. Biorheology 9, 67–82.

    PubMed  CAS  Google Scholar 

  • Skalak, R., Tözeren, A., Zarda, R. P., and Chien, S. (1973) Strain energy function of red blood cell membranes. Biophys. J. 13, 245–264.

    Article  PubMed  CAS  Google Scholar 

  • Skalak, R. and Zhu, C. (1990) Rheological aspects of red blood cell aggregation. Biorheology 27, 309–325.

    PubMed  CAS  Google Scholar 

  • Steck, T. L. (1974) The organization of proteins in the human red cell membrane. J. Cell. Biol. 62, 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Stein, P. D. and Sabbah, H. N. (1974) Measured turbulence and its effect on thrombus formation. Circulation Res. 35, 608–614.

    Article  PubMed  CAS  Google Scholar 

  • Stein, P. D., Sabbah, H. N., and Blick, E. F. (1975) Contribution of erythrocytes to turbulent blood flow. Biorheology 12, 293–299.

    PubMed  CAS  Google Scholar 

  • Stokke, B. T. (1984) The role of spectrin in determining mechanical properties, shapes, and shape transformations of human erythrocytes. Ph.D. Thesis. University of Trandheim, Norway.

    Google Scholar 

  • Struik, D. J. (1950) Lectures on Classical Differential Geometry. Addison-Wesley, Cambridge, MA.

    Google Scholar 

  • Sugihara-Seki, M. and Skalak, R. (1988) Numerical study of asymmetric flows of red blood cells in capillaries. Microvasc. Res. 36, 64–74.

    Article  PubMed  CAS  Google Scholar 

  • Sugihara-Seki, M. and Skalak, R. (1989) Stability of particle motions in a narrow channel flow. Biorheology 26, 261–277.

    PubMed  CAS  Google Scholar 

  • Tözeren, H. and Skalak, R. (1979) Flow of elastic compressible spheres in tubes. J. Fluid Mech. 95, 743–760.

    Article  Google Scholar 

  • Tözeren, A., Skalak, R., Fedorciw, B., Sung, K. L. P., and Chien, S. (1984) Constitutive equations of erythrocyte membrane incorporating evolving preferred configuration. Biophys. J. 45, 541–549.

    Article  PubMed  Google Scholar 

  • Tözeren, A., Sung, K. L. P., and Chien, S. (1989) Theoretical and experimental studies on cross-bridge migration during cell disaggregation. Biophys. J. 50, 479–487.

    Article  Google Scholar 

  • Tsang, W. C. O. (1975) The size and shape of human red blood cells. M. S. Thesis. University of California, San Diego, La Jolla, California.

    Google Scholar 

  • Wang, H. and Skalak, R. (1969) Viscous flow in a cylindrical tube containing a line of spherical particles. J. Fluid Mech. 38, 75–96.

    Article  Google Scholar 

  • Waugh, R. and Evans, E. A. (1979) Temperature dependence of the elastic moduli of red blood cell membrane. Biophys. J. 26, 115–132.

    Article  PubMed  CAS  Google Scholar 

  • Waugh, R. E., Erwin, G., and Bouzid, A. (1986) Measurement of the extensional and flexural rigidities of a subcellular structure: Marginal bands isolated from erythrocytes of the newt. J. Biomech. Eng. 108, 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Zarda, P. R., Chien, S., and Skalak, R. (1977) Elastic deformations of red blood cells. J. Biomech. 10, 211–221.

    Article  PubMed  CAS  Google Scholar 

References to Leukocytes and Other Cells

  • Atherton, A. and Born, G. V. R. (1972) Quantitative investigations of the adhesiveness of circulating polymorphonuclear leukocytes to blood vessel walls. J. Physiol. (London) 222, 447–474.

    CAS  Google Scholar 

  • Bray, C. (1984) Axonal growth in response to experimentally applied tension. Dev. Biol. 102, 379–389.

    Article  PubMed  CAS  Google Scholar 

  • Chien, S., Schmid-Schönbein, G. W., Sung, K. L. P., Schmalzer, E. A., and Skalak, R. (1984) Viscoelastic properties of leukocytes. In White Blood Cell Mechanics: Basic Science and Clinical Aspects. H. L. Meiselman and M. A. Lichtman (eds.) Plenum Press, New York, pp. 19–51.

    Google Scholar 

  • Curtis, A. S. G. and Seehar, G. M. (1978) The control of cell division by tension or diffusion. Nature (London) 274, 52–53.

    Google Scholar 

  • DeWitt, M. T., Handley, C. J., Oakes, B. W., and Lowther, D. A. (1984) In vitro response of chondrocytes to mechanical loading. The effects of short term mechanical tension. Connective Tissue Res. 12, 97–109.

    Article  CAS  Google Scholar 

  • Dong, C., Skalak, R., Sung, K.-L. P., Schmid-Schönbein, G. W., and Chien, S. (1988) Passive deformation analysis of human leukocytes. J. Biomech. Eng. 110, 27–36.

    Google Scholar 

  • Dong. C., Skalak, R., and Sung, K.-L. P. (1991) Cytoplasmic rheology of passive neutrophils. Biorheology 28, 557–567.

    Google Scholar 

  • Evans, E. A. (1984) Structural model for passive granulocyte behavior based on mechanical deformation and recovery after deformation tests. In White Cell Mechanics ( H. J. Meiselman, M. A. Lichtman, and P. L. LaCelle (eds.) Alan Liss, New York.

    Google Scholar 

  • Evans, E. A. and Yeung, A. (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 43, 27–30.

    Article  Google Scholar 

  • Fenton, B. M., Wilson, D. W., and Cokelet, G. R. (1985) Analysis of the effects of measured white blood cell entrance times on hemodynamics in a computer model of a microvascular bed. Pflügers Arch. 403, 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. and Handenschild, C. (1980) Angiogenesis in vitro. Nature (London) 288, 551–556.

    Google Scholar 

  • Holberton, D. V. (1977) Locomotion of protozoa and single cells. In Mechanics and Energetics of Animal Locomotion. R. McN. Alexander and G. Goldspink (eds.), Chapman and Hall, London, Chapter 11, pp. 279–326.

    Google Scholar 

  • Hurley, J. V. (1963) An electron microscopic study of leukocytic emigration and vascular permeability in rat skin. Austral. J. Exp. Biol. 41, 171–186.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E., Bray, D., and Weeds, A. G. (eds.) (1982) Molecular biology of cell locomotion. Phil. Trans. Roy. Soc. London B.299, 145–327.

    Google Scholar 

  • Ingber, D. E. and Folkman, J. (1989) How does extracellular matrix control capillary morphogenesis? Cell 58, 803–805.

    Google Scholar 

  • Jones, D. B., Nolte, H., Scholübbers, J.-G., Turner, E., and Veltel, D. (1991) Biochemical signal transduction of mechanical strain in osteoblastlike cells. Biomaterials, 12; 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Khouri, R. K., Koudsi, B., and Reddi, H. (1991) Tissue transformation into bone in vivo, a potential practical application. JAMA 266, 1953–1955.

    Google Scholar 

  • Klein-Nulend, J., Veldhuijzen, J. P., van de Stadt, R. J., Jos van Kampen, G. P., Keujer, R., and Burger, E. H. (1987) Influence of intermittent compressive force on proteoglycan content in calcifying growth plate cartilage in vitro. J. Biol. Chem. 262, 15, 490–15, 495.

    Google Scholar 

  • Lanyon, L. E., Goodship, A. E., Pye, C. J., and MacFie, J. H. (1982) Mechanically Adaptive bone remodeling. J. Biomechanics 15, 141–154.

    Google Scholar 

  • Leung, D. Y. M., Glagov, S., and Mathews, M. B. (1976) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191, 475–477.

    Google Scholar 

  • Lichtman, M. A. (1970) Cellular deformability during maturation of the myeloblast: Possible role of marrow egress. New England J. Med. 283, 943–948.

    Article  CAS  Google Scholar 

  • Lipowsky, R. (1991) The conformation of membrane. Nature 349, 475–481.

    Google Scholar 

  • Lanyon, L. E. (1984) Functional strain as a determinant for bone remodeling. Calcif. Tiss. Res. 36, 556–561.

    Article  Google Scholar 

  • Morgan, H. E., Gorden, E. E., Kira, Y., Chua, B. H. L., Russo, L. A., Peterson, C. L., McDermott, P. J., and Watson, P. A. (1987) Biochemical mechanisms of cardiac hypertrophy. Annu. Rev. Physiol. 49, 533–543.

    Article  PubMed  CAS  Google Scholar 

  • Needham, D. and Hochmuth, R. M. (1990) Rapid flow of passive neutrophils into a 4 pm pipet and measurement of cytoplasmic viscosity. J. Biomech. Eng. 112, 269276

    Google Scholar 

  • Odell, G. M., Oster, G., Alberch, P., and Burnside, B. (1981) The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Devel. Biol. 85, 446–462.

    Article  CAS  Google Scholar 

  • Op den Kamp, J. A. F. (1979) Lipid asymmetry in membranes. Ann. Rev. Biochem. 48, 47–71.

    Article  Google Scholar 

  • Pipkin, A. C. (1964) Small finite deformations of viscoelastic solids. Rev. Mod. Phys. 36, 1034–1041.

    Article  Google Scholar 

  • Rannels, D. E. (1989) Role of physical forces in compensatory growth of the lung. Am. J. Physiol. 257, L179 — L189.

    PubMed  CAS  Google Scholar 

  • Rubin, C. T. and Lanyon, L. E. (1985) Regulation of bone mass by mechanical strain magnitude. Calcif. Tiss. Res. 37, 411–417.

    Article  CAS  Google Scholar 

  • Sachs, F. (1990) Mechanical transduction in biological systems. In CRC Critical Reviews in Biomedical Engineering. CRC Press, Orlando, FL.

    Google Scholar 

  • Schmid-Schönbein, G. W., Fung, Y. C., and Zweifach, B. W. (1975) Vascular endothelium—leukocyte interaction. Circulation Res. 36, 173–184.

    Article  Google Scholar 

  • Schmidt-Schönbein, G. W., Sung, K.-L. P., Tözeren, H., Skalak, R., and Chien, S. (1981) Passive mechanical properties of human leukocytes. Biophys. J. 36, 243–256.

    Google Scholar 

  • Schmid-Schönbein, G. W., Skalak, R., Sung, K. L.-P., and Chien, S. (1983) Human leukocytes in the active state. In White Blood Cells, Morphology and Rheology as Related to Function, U. Bagge, G. B. R. Bom, and P. Gaehtgens (eds.) Martinus Mijhoff, The Hague, pp. 21–31.

    Google Scholar 

  • Schmid-Schönbein, G. W. (1987) Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Fed. Proc. 46, 2397–2401.

    PubMed  Google Scholar 

  • Schultz, S. G. (1989) Volume preservation: Then and now. News in Physiol. Sci. 4, 169–172.

    Google Scholar 

  • Stewart, D. M. (1972) The role of tension in muscle growth. In Regulation of Organ and Tissue Growth, R. J. Goss (ed.) Academic Press, New York, pp. 77–100.

    Google Scholar 

  • Stossel, T. P. (1982) The structure of cortical cytoplasm. Phil. Trans. Roy. Soc. London B 299, 275–289.

    CAS  Google Scholar 

  • Strohman, R. C., Byne, E., Spector, D., Obinata, T., Micou-Eastwood, J., and Maniotis, A. (1990) Myogenesis and histogeneis of skeletal muscle on flexible membranes in vitro. In Vitro Cell Der. Biol. 26, 201–208.

    Article  CAS  Google Scholar 

  • Sung, K.-L. P., Schmid-Schönbein, G. W., Skalak, R., Schuessler, G. B., Usami, S., and Chien, S. (1982) Influence of physicochemical factors on rheology of human neutrophils. Biophys. J. 39, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Sung, K.-L. P., Sung, L. A., Crimmins, M., Burakoff, S. J., and Chien, S. (1986) Determination of junction avidity of cytolytic T cell and target cell. Science 234, 1405–1408.

    Article  PubMed  CAS  Google Scholar 

  • Sung, K.-L. P., Dong, C., Schmid-Schönbein, G. W., Chien, S., and Skalak, R. (1988a) Leukocyte relaxation properties. Biophys. J. 54, 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Sung, K.-L. P., Sung, L. A., Crimmins, M., Burakoff, S. J., and Chien, S. (1988b) Biophysical basis of cell killing by cytotoxic T Lymphocytes. J. Cell Sci. 91, 179–189.

    PubMed  Google Scholar 

  • Vandenburgh, H. H. (1988) A computerized mechanical cell stimulator for tissue culture: Effects on skeletal muscle organogenesis. In Vitro Cell Der. Biol. 24, 609–619.

    Article  CAS  Google Scholar 

  • Vandenburgh, H. H. and Karlisch, P. (1989) Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dey. Biol. 25, 607–616.

    CAS  Google Scholar 

  • Vandenburgh, H. H., Swasdison, S., and Karlisch, P. (1991) Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB J. 5, 2860–2867.

    CAS  Google Scholar 

  • Zhu, C. and Skalak, R. (1988) A continuum model of protrusion of pseudopod in leukocytes. Biophys. J. 54, 1115–1137.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, C., Skalak, R., and Schmid-Schönbein, G. W. (1989) One-dimensional steady continuum model of retraction of pseudopod in leukocytes. J. Biomech. Eng. 111, 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Zwaal, R. F. A. (1978) Membrane and lipid involvement in blood coagulation. Biochim. Biophys. Acta 515, 163–205.

    CAS  Google Scholar 

  • Zwaal, R. F. A. (1988) Scrambling membrane phospholipids and local control of blood clotting. News in Physiol. Sci. 3, 57–61.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, YC. (1993). Mechanics of Erythrocytes, Leukocytes, and Other Cells. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2257-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2257-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3104-7

  • Online ISBN: 978-1-4757-2257-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics