Skip to main content

The Heart

  • Chapter
Biomechanics
  • 1124 Accesses

Abstract

The heart is the prime mover of blood. By periodic stimulation of its muscles it contracts periodically and pumps blood throughout the body. How the pump works is the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arts, T., and Reneman, R.S. (1980). Measurements of deformation of canine epicardium in vivo during cardiac cycle. Am. J. Physiol. 239: H432–H437.

    PubMed  CAS  Google Scholar 

  • Arts, T., Reneman, R.S., and Veenstra, P.C. (1982). Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am. J. Physiol. 243: H379–H390.

    PubMed  CAS  Google Scholar 

  • Bellhouse, B.J., and Bellhouse, F.H. (1969). Fluid mechanics of model normal and stenosed aortic valves. Circ. Res. 25: 693–704.

    PubMed  CAS  Google Scholar 

  • Bellhouse, B.J., and Bellhouse, F.H. (1972). Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc. Res. 6:199–210.

    Article  PubMed  CAS  Google Scholar 

  • Berne, R.M., and Sperelakis, N. (eds.) (1979). Handbook of Physiology. Sec. 2. The Cardiovascular System, Vol. 1. The Heart. American Physiological Society, Bethesda, MD.

    Google Scholar 

  • Blum, W.F., McCulloch, A.D., and Lew, W.Y.W. (1995). Active force in rabbit ventricular myocytes. J. Biomech. 28: 1119–1122.

    Article  Google Scholar 

  • Brady, A.J. (1984). Passive stiffness of rat cardiac myocytes. J. Biomech. Eng. 106: 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Braunwald, E. (ed.) (1988). Heart Disease. 3rd Edition, Saunders Co., Philadelphia, PA.

    Google Scholar 

  • Costa, K.D., Hunter, P.J., Rogers, J.M., Guccione, J.M., Waldman, L.K., and McCulloch, A.D. (1996). A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part 1 cylindrical and spherical polar coordinates. J. Biomech. Eng. Submitted.

    Google Scholar 

  • Daniels, M., Noble, M.I.M., ter Keurs, H.E.D.J., and Wohlfart, B. (1984). Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time. J. Physiol. 355: 367–381.

    PubMed  CAS  Google Scholar 

  • Debes, J.C., and Fung, Y.C. (1995). Biaxial mechanics of excised canine pulmonary arteries, Am. J. Physiol. 269: H433–H442.

    PubMed  CAS  Google Scholar 

  • Deng, S.X., Tomioka, J., Debes, J.C., and Fung, Y.C. (1994). New experiments on shear modulus of elasticity of arteries. Am. J. Physiol. 266: H1–H10.

    PubMed  CAS  Google Scholar 

  • Dieudonné, J.M. (1969). La determination experimentale des contraintes myocardiques. J. Physiol. (Paris) 61: 199–218.

    Google Scholar 

  • Edman, K.A.P., and Nilsson, E. (1972). Relationship between force and velocity of shortening in rabbit papillary muscle. Acta Physiol. Scand. 85: 488–500.

    Article  PubMed  CAS  Google Scholar 

  • Frank, O. (1899). Die grundform des arteriellen pulses. Erste Abhandlung, Mathematische Analyse. Z. Biol. 37: 483–526.

    Google Scholar 

  • Fung, Y.C. (1965). Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fung, Y.C. (1970). Mathematical representation of the mechanical properties of the heart muscle. J. Biomech. 3: 381–404.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C. (1971). Stress-strain-history relation of soft tissues in simple elongation, In Biomechanics: Its Foundation and Objectives. (Fung, Y.C, Perrone, N, and Anliker, M., eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 181–208.

    Google Scholar 

  • Fung, Y.C. (1973). Biorheology of soft tissues, Biorheology, 19: 139–155.

    Google Scholar 

  • Fung, Y.C. (1979). Inversion of a class of nonlinear stress-strain relationships of biological soft tissues. J. Biomech. Eng, 101: 23–27.

    Article  Google Scholar 

  • Fung, Y.C. (1983). What principle governs the stress distribution in living organisms, In Biomechanics in China, Japan, and USA. (Fung, Y.C, Fukada, E., and Wang, J.J., eds.), Science Press, Beijing, pp. 1–13.

    Google Scholar 

  • Fung, Y.C (1988). Cellular growth in soft tissues affected by the stress level in service, In Tissue Engineering. (Skalak, R., and Fox, C.F., eds.), Alan Liss, Inc., New York, pp. 45–50.

    Google Scholar 

  • Fung, Y.C. (1990). Biomechanics: Motion, Flow, Stress and Growth, Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y.C. (1993a). A First Course in Continuum Mechanics, 3rd Edition, Prentice-Hall, Englewood Cliffs, NJ, pp. 165–180.

    Google Scholar 

  • Fung, Y.C. (1993b). Biomechanics: Mechanical Properties of Living Tissues, 2nd Edition, Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y.C, and Liu., S.Q. (1995). Determination of the mechanical properties of the different layers of blood vessels in vivo. Proc. U.S. Natl. Acad. Sci. 92: 2169–2173.

    Article  CAS  Google Scholar 

  • Fung, Y.C., Fronek, K., and Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol. 237, H620–H631.

    PubMed  CAS  Google Scholar 

  • Fung, Y.C, Liu, S.Q., and Zhou, J. (1993). Remodeling of the constitutive equation while a blood vessel remodels itself under stress, J. Biomech. Eng. 115: 453–459.

    Article  PubMed  CAS  Google Scholar 

  • Gorlin, R., and Gorlin, S.G. (1951). Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. Am. Heart J. 41: 1–29.

    Article  PubMed  CAS  Google Scholar 

  • Green, A.E., and Adkins, J.E. (1960). Large Elastic Deformations and Non-linear Continuum Mechanics. Oxford Univ. Press, London.

    Google Scholar 

  • Guccione, J.M., and McCulloch, A.D. (1991). Finite element modeling of ventricular mechanics. In Theory of Heart, pp. 124-144, see Glass et al. (1991).

    Google Scholar 

  • Guccione, J.M., and McCulloch, A.D. (1993). Mechanics of active contraction in cardiac muscle: Part 1—constitutive relations for fiber stress that describe deactivation. J. Biomech Eng. 115: 72–81.

    Article  PubMed  CAS  Google Scholar 

  • Guccione, J.M., Costa, K.D., and McCulloch, A.D. (1995). Finite element stress analysis of left ventricular mechanics in the beating heart. J. Biomech. 28: 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  • Guccione, J.M., McCulloch, A.D., and Waldman, L.K. (1991). Passive material properties of intact ventricular myocardium determined for a cylindrical model. J. Biomech Eng. 113: 42–55.

    Article  PubMed  CAS  Google Scholar 

  • Hales, S. (1733). Statical Essays: II. Haemostaticks. Innays and Manby, London. Reprinted by Hafner, New York.

    Google Scholar 

  • Hashima, A.R., Young, A.A., McCulloch, A.D., and Waldman, L.K. (1993). Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J. Biomech. 26: 19–35.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, Y, and Johnson, F.E. (1912). Two modes of closure of the heart valves. Heart 4: 69–82.

    Google Scholar 

  • Hill, A.V. (1939). The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. London (Biol.) B 126: 136–195.

    Article  Google Scholar 

  • Holmes, J.W., Yamashita, H., Waldman, L.K., and Covell, J.W. (1994). Scar remodeling and transmural deformation after infarction in the pig. Circulation 90: 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Horowitz, A. (1991). Structural considerations in formulating material laws for the myocardium. In Theory of Heart, pp. 31-58, see Glass et al. (1991).

    Google Scholar 

  • Hort, W. (1960). Makroskopische und mikrometrische Untersuchungen am Myokard verschieden stark gefullter linker kammern. Virchows Arch. Path. Anat. 333: 523–564.

    CAS  Google Scholar 

  • Humphrey, J.D., and Yin, F.C.P. (1989a). Biomechanical experiments on excised myocardium: theoretical considerations. Am. J. Physiol. 22: 377–383.

    CAS  Google Scholar 

  • Humphrey, J.D., and Yin, F.C.P. (1989b). Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle. Circ. Res. 65: 805–817.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, J.D., Strumpf, R.K., and Yin, F.C.P. (1990). Biaxial mechanical behavior of excised ventricular epicardium. Am. J. Physiol. 259: H101–H108.

    PubMed  CAS  Google Scholar 

  • Humphrey, J.D., Strumpf, R.K., Halperine, H., and Yin, E (1991). Toward a stress analysis in the heart. In Theory of Heart, pp. 59-75, see Glass et al. (1991).

    Google Scholar 

  • Hunter, W.C., Janicki, J.S., Weber, K.T., and Noordergraaf, A. (1983). Systolic mechanical properties of the left ventricle: effects of volume and contractile state. Circ. Res. 52: 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Huntsman, L.L., Rondinone, J.F., and Martyn, D.A. (1983). Force-length relations in cardiac muscle segments. Am. J. Physiol. 244: H701–H707.

    PubMed  CAS  Google Scholar 

  • Janz, R.F., and Grimm, A.F. (1973). Deformation of the diastolic left ventricle. I. Nonlinear elastic effects. Biophys. J. 13: 689–704.

    Article  PubMed  CAS  Google Scholar 

  • Janz, R.F., and Waldron, R.J. (1976). Some implications of a constant fiber stress hypothesis in the diastolic left ventricle. Bull. Math. Biol 38: 401–413.

    PubMed  CAS  Google Scholar 

  • Janz, R.F., Grimm, A.F, Kubert, B.R., and Moriarty, T.F. (1974). Deformation of the diastolic left ventricle. II. Nonlinear geometric effects. J. Biomech. 7: 509–516.

    Article  PubMed  CAS  Google Scholar 

  • Jones, R.T. (1969). Blood flow. In Annual Review of Fluid Mechanics. (Sears, W.R., and van Dyke, M., eds.), Annual Reviews, Palo Alto, CA.

    Google Scholar 

  • Jones, R.T. (1972). Fluid dynamics of heart assist devices. In Biomechanics: Its Foundations and Objectives. (Fung, Y.C., Perrone, N, and Anliker, M, eds.), Prentice-Hall, Englewood Cliffs, NJ, Chapter 1, pp. 549–565.

    Google Scholar 

  • Krueger, J.W., Tsujioka, K., Okada, T., Peskin, C.S., and Lacker, H.M. (1988). A “give” in tension and sarcomere dynamics in cardiac muscle relaxation. Adv. Exp. Med. Biol. 226: 567–580.

    PubMed  CAS  Google Scholar 

  • Lacker, H.M., and Peskin, C.S. (1986). A mathematical method for unique determination of crossbridge properties from steady-state mechanical and energetic experiments on macroscopic muscle. In Some Mathematical Questions in Biology—Muscle Physiology. (Miura, R.M., ed.), American Mathematics Society, Providence, RI, pp. 121–153.

    Google Scholar 

  • Lamé, E. (1852). Leçons sur la Théorie de l’Elasticité. Paris.

    Google Scholar 

  • Lanir, Y. (1983). Constitutive equation for fibrous connective tissue. J. Biomech. 16: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.S.F., and Talbot, L. (1979). A fluid mechanical study on the closure of heart valves. J. Fluid Mech. 91: 41–63.

    Article  Google Scholar 

  • LeGrice, I.J., Smail, B.H., Chai, L.Z., Edgar, S.G., Gavin, J. B., and Hunter, P.J. (1995). Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269: H571–H582.

    PubMed  CAS  Google Scholar 

  • MacKenna, D.A., Omens, J.H., McCulloch, A.D., and Covell, J.W. (1994). Contribution of collagen matrix to passive left ventricular mechanics in isolated rat hearts. Am. J. Physiol. 266: H1007–H1018.

    PubMed  CAS  Google Scholar 

  • McCulloch, A.D. (1995). Cardiac mechanics. In Biomedical Engineering Handbook. (Bronzino, J.D., ed.), Chapter 31, pp. 418–439. CRC Press, Inc. Boca Raton, FL.

    Google Scholar 

  • McCulloch, A.D., and Omens, J.H. (1991). Factors affecting the regional mechanics of the diastolic heart. In Theory of Heart, pp. 87-119, see Glass et al. (1991).

    Google Scholar 

  • McCulloch, A.D., and Omens, J.H. (1991). Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium. J. Biomech. 24: 539–548.

    Article  PubMed  CAS  Google Scholar 

  • McCulloch, A.D., Smail, B.H., and Hunter, P.J. (1987). Left ventricular epicardial deformation in isolated arrested dog heart. Am. J. Physiol. 252: H233–H241.

    PubMed  CAS  Google Scholar 

  • McDonald, D.A. (1974). Blood Flow in Arteries. Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • Meier, G.D., Bove, A.A., Santamore, W.P., and Lynch, P.R. (1980). Contractile function in canine right ventricle. Am. J. Physiol. 239: H794–H804.

    PubMed  CAS  Google Scholar 

  • Mirsky, I. (1973). Ventricular and arterial wall stresses based on large deformation analysis. Biophys. J. 13: 1141–1159.

    Article  PubMed  CAS  Google Scholar 

  • Mirsky, I. (1979). Elastic properties of the myocardium: A quantitative approach with physiological and clinical applications. In Handbook of Physiology, Sec. 2, Vol. 1. The Heart. (Berne, R.M., and Sperelakis, N., eds.), American Physiological Society, Bethesda, MD., pp. 497–531.

    Google Scholar 

  • Netter, F. (1969). The Ciba Collection of Medical Illustrations, Vol. 5, Heart, CIBA Publications Dept., Summit, NJ.

    Google Scholar 

  • Omens, J.H., and Covell, J.W. (1991). Transmural distribution of myocardial tissue growth induced by volume-overload hypertrophy in the dog. Circulation 84: 1235–1245.

    Article  PubMed  CAS  Google Scholar 

  • Omens, J.H., and Fung, Y.C. (1989). Residual strain in the rat left ventricle. Circ. Res. 66: 37–45.

    Article  Google Scholar 

  • Omens, J.H., Mac Kenna, D.A., and McCulloch, A.D. (1993). Measurement of strain and analysis of stress in resting rat left ventricular myocardium. J. Biomech. 26: 665–676.

    Article  PubMed  CAS  Google Scholar 

  • Omens, J.H., May, K.D., and McCulloch, A.D. (1991). Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am. J. Physiol. 261: H918–H928.

    PubMed  CAS  Google Scholar 

  • Omens, J.H., Rockman, H.A., and Covell, J.W. (1994). Passive ventricular mechanics in tight-skin mice. Am. J. Physiol. 266: H1169–H1176.

    PubMed  CAS  Google Scholar 

  • Ono, S., Waldman, L.K., Yamashita, H., Covell, J.W, and Ross, Jr., J. (1995). Effect of coronary artery reperfusion on transmural mycoardial remodeling in dogs. Circulation 91: 1143–1153.

    Article  PubMed  CAS  Google Scholar 

  • Parmley, W.W., and Sonnenblick, E.H. (1967). Series elasticity of heart muscle: Its relation to contractile element velocity and proposed muscle models. Circ. Res. 20: 112–123.

    Article  PubMed  CAS  Google Scholar 

  • Parmley, W, and Talbot, L. (1979). Heart as a pump. In Handbook of Physiology. Sec. 2. The Cardiovascular System, Vol. 1, The Heart. (Berne, R.M., and Sperelakis, N., eds.), American Physiological Society, Bethesda, MD, pp. 429–460.

    Google Scholar 

  • Parmley, W.W., Brutsaert, D.L., and Sonnenblick, E.H. (1969). The effects of altered loading on contractile events in isolated cat papillary muscle. Circ. Res. 24: 521–532.

    Article  PubMed  CAS  Google Scholar 

  • Panerai, R.B. (1980). A model of cardiac muscle mechanics and energetics. J. Biomech. 13: 929–940.

    Article  PubMed  CAS  Google Scholar 

  • Peskin, C.S. (1977). Numerical analysis of blood flow in the heart. J. Comput. Phys. 25: 220–252.

    Article  Google Scholar 

  • Peskin, C.S., and Wolfe, A.W. (1978). The aortic sinus vortex. Fed. Proc. 37: 2784–2792.

    PubMed  CAS  Google Scholar 

  • Pinto, J.G., and Fung, Y.C. (1973a). Mechanical properties of the heart muscle in the passive state. J. Biomech. 6: 597–616.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, J.G., and Fung, Y.C. (1973b). Mechanical properties of stimulated papillary muscle in quick-release experiments. J. Biomech. 6: 617–630.

    Article  PubMed  CAS  Google Scholar 

  • Prinzen, F.W, Arts, T., Van der Vusse, G.J., Comans, W.A., and Reneman, R.S. (1986). Gradients in fiber shortening and metabolism across the left ventricler wall. Am. J. Physiol. 250: H255–H264.

    PubMed  CAS  Google Scholar 

  • Rodriquez, E.K., Hoger, A., and McCulloch, A.D. (1994). Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27: 455–467.

    Article  Google Scholar 

  • Rodriquez, E.K., Omens, J.H., Waldman, L.K., and McCulloch, A.D. (1993). Effect of residual stress on transmural sarcome length distributions in rat left ventricle. Am. J. Physiol. 264: H1048–H1056.

    Google Scholar 

  • Rogers, J.M., and McCulloch, A.D. (1994). A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41: 743–757.

    Article  PubMed  CAS  Google Scholar 

  • Scher, A.M. and Spach, M.S. (1979). Cardiac depolarization and repolarization and the electrocardiogram. In Handbook of Physiology, Sec. 2, Vol. 1, The Heart. (Berne, R.M., and Sperelakis, N., eds.), American Physiological Society, Bethesda, MD, pp. 357–392.

    Google Scholar 

  • Smail, B.H., and Hunter, P.J. (1991). Structure and function of the diastolic heart. In Theory of Heart, pp. 1-30, see Glass et al. (1991).

    Google Scholar 

  • Sonnenblick, E.H. (1964). Series elastic and contractile elements in heart muscle: Changes in muscle length. Am. J. Physiol. 207: 1330–1338.

    PubMed  CAS  Google Scholar 

  • Sonnenblick, E.H., Ross, Jr., Covell, J.W., Spontnitz, H.M., and Spiro, D. (1967). Ultrastructure of the heart in systole and diastole: Changes in sarcomere length. Circ. Res. 21: 423–431.

    Article  PubMed  CAS  Google Scholar 

  • Streeter, Jr., D. (1979). Gross morphology and fiber geometry of the heart. In Handbook of Physiology, Sec. 2, Cardiovascular System. Vol. 1. The Heart. (Berne, R.M., and Sperelakis, N., eds.), American Physiology Society, Bethesda, MD, pp. 61–112.

    Google Scholar 

  • Streeter, Jr., D., and Hanna, W.T. (1973). Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and wall geometry. II. Fiber angle and sarcomere length. Circ. Res. 33: 639–655(I), 656-664(II).

    Article  PubMed  Google Scholar 

  • Streeter, D., Jr., Spotnitz, H.M., Patel, D.J., Ross, Jr., J., and Sonnenblick, E.H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24: 339–347.

    Article  PubMed  Google Scholar 

  • Suga, H., Sagawa, K., and Shoukas, A.A. (1973). Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32: 314–322.

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa, K., and Hayshi, K. (1987). Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20: 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa, K., and Matsuda, T. (1990). Kinematics for bodies undergoing residual stress and its applications to the left ventricle. J. Appl. Mech. 57: 321–329.

    Article  Google Scholar 

  • ter Keurs, H.E.D.J. (1983). Calcium in contractility. In Cardiac Metabolism, (Drake-Holland, A.J., and Noble, M.I.M., eds.), Wiley, New York, pp. 73–99.

    Google Scholar 

  • ter Keurs, H.E.D.J., Rijnsburger, W.H., Van Heuningen, R., and Nagelsmit, M.J. (1980). Tension development and sarcomere length in rat cardiac trabeculate: evidence of length-dependent activation. Circ. Res. 46: 703–713.

    Article  PubMed  CAS  Google Scholar 

  • Tong, P., and Fung, Y.C. (1976). The Stress-Strain Relationship for the Skin. J. Biomech. 9: 649–657.

    Article  PubMed  CAS  Google Scholar 

  • Tözeren, A. (1985). Continuum rheology of muscle contraction and its application to cardiac contractillity. Biophys. J., 47: 303–309.

    Article  PubMed  Google Scholar 

  • Vaishnav, R.N., and Vossoughi, J. (1983). Estimation of the residual strains in aortic segments. In Biomedical Engineering, II, Recent Developments. (Hall, C.W., ed.), Pergamon Press, New York, pp. 330–333.

    Google Scholar 

  • Van Leuven, S.L., Waldman, L.K., McCulloch, A.D., and Covell, J.W. (1994). Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. Am. J. Physiol. 267: H2348–H2362.

    PubMed  Google Scholar 

  • Villarreal, F.J., Waldman, L.K., and Lew, W.Y.W. (1988). A technique for measuring regional two-dimensional finite strains in canine left ventricle. Circ. Res. 62: 711–721.

    Article  PubMed  CAS  Google Scholar 

  • Villarreal, F.J., Lew, W.Y.W., Waldman, L.K., and Covell, J.W. (1991). Transmural myocardial deformation in the ischemic canine left ventricle. Circ. Res. 68: 368–381.

    Article  PubMed  CAS  Google Scholar 

  • Waldman, L.K. (1983). On the Mechanical Coupling of the Heart to the Circulation. Ph.D. thesis. University of California, San Diego, CA.

    Google Scholar 

  • Waldman, L.K. (1991). Multidimensional measurements of regional strains in the intact heart. In Theory of Heart, pp. 145-174, see Glass et al. (1991).

    Google Scholar 

  • Waldman, L.K., and Covell, J.W (1987). Effects of ventricular pacing on finite deformation in canine left ventricle. Am. J. Physiol. 252: H1023–H1030.

    PubMed  CAS  Google Scholar 

  • Waldman, L.K., and McCulloch, A.D. (1993). Nonhomogeneous ventricular wall strain: Analysis of errors and accuracy. J. Biomech. Eng. 115: 497–502.

    Article  PubMed  CAS  Google Scholar 

  • Waldman, L.K., Fung, Y.C., Covell, J.W. (1985). Transmural myocardial deformation in the canine left ventricle: normal in vivo three-dimensional finite strains. Circ. Res. 57: 152–163.

    Article  PubMed  CAS  Google Scholar 

  • Waldman, L.K., Nosan, D., Villarreal, F.J., and Covell, J.W. (1988). Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res. 63: 550–562.

    Article  PubMed  CAS  Google Scholar 

  • Wetterer, E., and Kenner, T. (1968). Die Dynamik des Arterien-Pulses. Springer-Verlag, Berlin.

    Google Scholar 

  • Whittaker, P., Kloner, R.A., Boughner, D.R., and Pickering, J.G. (1994). Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res. in Cardiol 89: 397–410.

    Article  CAS  Google Scholar 

  • Wong, A.Y.K., and Rautaharju, P.M. (1968). Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am. Heart J. 75: 649–662.

    Article  PubMed  CAS  Google Scholar 

  • Xie, J.P., Zhou, J., and Fung, Y.C. (1995). Bending of blood vessel wall: Stress-strain laws of the intima-media and adventitial layers. J. Biomech. Eng. 117: 136–145.

    Article  PubMed  CAS  Google Scholar 

  • Yoran C, Covell, J.W, and Ross, Jr., J. (1973). Structural basis for the ascending limb of left ventricular function. Circ. Res. 32: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Young, A. (1991). Epicardial deformation from coronary cinéangiogranis. In Theory of Heart, pp. 175-207, see Glass et al. (1991).

    Google Scholar 

  • Yu, Q., Zhou, J.B., and Fung, Y.C. (1993). Neutral axis location in Bending and Young’s modulus of different layers of arterial wall. Am. J. Physiol. 265: H52–H60.

    PubMed  CAS  Google Scholar 

  • Zhou, J. (1992). Theoretical Analysis of Bending Experiments on Aorta and Determination of Constitutive Equations of materials in Different Layers of Arterial Walls. Doctoral Dissertation, University of California, San Diego, CA.

    Google Scholar 

  • Zienkiewicz, O.C., and Morgan, K. (1982). Finite Elements and Approximation. Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1997). The Heart. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2696-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2696-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2842-9

  • Online ISBN: 978-1-4757-2696-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics