Skip to main content

Abstract

Image processing is often very difficult due to the large amounts of data used to represent an image. Technology permits ever-increasing image resolution (spatially and in grey levels), and increasing numbers of spectral bands, and there is a consequent need to limit the resulting data volume. Consider an example from the remote sensing domain where image data compression is a very serious problem. A Landsat D satellite broadcasts 85 × 106 bits of data every second and a typical image from one pass consists of 6100 × 6100 pixels in 7 spectral bands — in other words 260 megabytes of image data. A Japanese Advanced Earth Observing Satellite (ADEOS) will be launched in 1994 with the capability of observing the Earth’s surface with a spatial resolution of 8 metres for the polychromatic band and 16 metres for the multispectral bands. The transmitted data rate is expected to be 120 Mbps [Arai 90]. Thus the amount of storage media needed for archiving of such remotely sensed data is enormous. One possible way how to decrease the necessary amount of storage is to work with compressed image data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A Abdel-Malek and J Bloomer. Visually optimized image reconstruction. In Proceedings of the SPIE Conference on Human Vision and Electronic Imaging, Santa Clara, Ca, pages 330–335, SPIE, Bellingham, Wa, 1990.

    Google Scholar 

  2. G B Anderson and T S Huang. Piecewise Fourier transformation for picture bandwidth compression. IEEE Transactions on Communications Technology, 19: 133–140, 1971.

    Article  Google Scholar 

  3. K Arai. Preliminary study on information lossy and loss-less coding data compression for the archiving of ADEOS data. IEEE Transactions on Geoscience and Remote Sensing, 28 (4): 732–734, 1990.

    Article  Google Scholar 

  4. R Aravind, G L Cash, and J P Worth. On implementing the JPEG still-picture compression algorithm. In Proceedings of SPIE Conference Visual Communications and Image Processing IV, Philadelphia, Pa, pages 799–808, SPIE, Bellingham, Wa, 1989.

    Google Scholar 

  5. F Azadegan. Discrete cosine transform encoding of two-dimensional processes. In Proceedings of the 1990 International Conference on Acoustics, Speech, and Signal Processing–ICASSP 90, Abuquerque, NM, pages 2237–2240, IEEE, Piscataway, NJ, 1990.

    Google Scholar 

  6. G Benelli. Image data compression by using the Laplacian pyramid technique with adaptive Huffman codes. In V Cappellini and R Marconi, editors, Advances in Image Processing and Pattern Recognition, pages 229–233. North Holland, Amsterdam, 1986.

    Google Scholar 

  7. J L Boxerman and H J Lee. Variable block-sized vector quantization of grayscale images with unconstrained tiling. In Visual Communications and Image Processing ‘80, Lausanne, Switzerland, pages 847–858, SPIE, Bellingham, Wa, 1990.

    Chapter  Google Scholar 

  8. P J Burt. Multiresolution techniques for image representation, analysis, and `smart’ transmission. In Visual Communications and Image Processing IV, Philadelphia, Pa, pages 2–15, SPIE, Bellingham, Wa, 1989.

    Chapter  Google Scholar 

  9. C Y Chang, R Kwok, and J C Curlander. Spatial compression of Seasat SAR images. IEEE Transactions on Geoscience and Remote Sensing, 26 (5): 673–685, 1988.

    Article  Google Scholar 

  10. D Chen and A C Bovik. Fast image coding using simple image patterns. In Visual Communications and Image Processing IV, Philadelphia, Pa, pages 1461–1471, SPIE, Bellingham, Wa, 1989.

    Chapter  Google Scholar 

  11. B Chitprasert and K R Rao. Discrete cosine transform filtering. Signal Processing, 19 (3): 233–245, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  12. R J Clarke. Transform Coding of Images. Academic Press, London, 1985.

    Google Scholar 

  13. D G Daut and D Zhao. Improved DPCM algorithm for image data compression. In Image Processing Algorithms and Techniques, Santa Clara, Ca, pages 199–210, SPIE, Bellingham, Wa, 1990.

    Chapter  Google Scholar 

  14. J De Lameillieure and I Bruyland. Single stage 280 Mbps coding of HDTV using HDPCM with a vector quantizer based on masking functions. Signal Processing: Image Communication, 2 (3): 279–289, 1990.

    Article  Google Scholar 

  15. E J Delp and O R Mitchell. Image truncation using block truncation coding. IEEE Transactions on Communications, 27: 1335–1342, 1979.

    Article  Google Scholar 

  16. L J DiMento and S Y Berkovich. The compression effects of the binary tree overlapping method on digital imagery. IEEE Transactions on Communications, 38 (8): 1260–1265, 1990.

    Article  Google Scholar 

  17. T Ebrahimi, T R Reed, and M Kunt. Video coding using a pyramidal Gabor expansion. In Visual Communications and Image Processing ‘80, Lausanne, Switzerland, pages 489–502, SPIE, Bellingham, Wa, 1990.

    Chapter  Google Scholar 

  18. P M Farelle. Recursive Block Coding for Image Data Compression. Springer Verlag, New York, 1990.

    Book  Google Scholar 

  19. A Gersho and R M Gray. Vector Quantization and Signal Compression. Kluwer Academic Publishers, Norwell, Ma, 1992.

    Book  MATH  Google Scholar 

  20. G Giunta, T R Reed, and M Kunt. Image sequence coding using oriented edges. Signal Processing: Image Communication, 2 (4): 429–439, 1990.

    Article  Google Scholar 

  21. C A Gonzalez, K L Anderson, and W B Pennebaker. DCT based video compression using arithmetic coding. In Image Processing Algorithms and Techniques, Santa Clara, Ca, pages 305311, SPIE, Bellingham, Wa, 1990.

    Google Scholar 

  22. D N Graham. Image transmission by two-dimensional contour coding. Proceedings IEEE, 55: 336–346, 1967.

    Article  Google Scholar 

  23. R M Gray. Vector quantization. IEEE ASSP Magazine, 1 (2): 4–29, 1984.

    Article  Google Scholar 

  24. R K Guha, A F Dickinson, and G Ray. Non-transform methods of picture compression applied to medical images. In Proceedings–Twelfth Annual Symposium on Computer Applications in Medical Care, Washington, DC, pages 483–487, IEEE, Piscataway, NJ, 1988.

    Google Scholar 

  25. A Habibi. Comparison of nth order DPCM encoder with linear transformations and block quantization techniques. IEEE Transactions on Communications Technology, 19 (6): 948–956, 1971.

    Article  Google Scholar 

  26. A Habibi. Hybrid coding of pictorial data. IEEE Transactions on Communications Technology, 22 (4): 614–623, 1974.

    Article  Google Scholar 

  27. A Habibi and G S Robinson. A survey of digital picture coding. Computer, 7 (5): 22–34, 1974.

    Article  Google Scholar 

  28. V K Heer and H E Reinfelder. Comparison of reversible methods for data compression. In Medical Imaging IV: Image Processing, Newport Beach, Ca, pages 354–365, SPIE, Bellingham, Wa, 1990.

    Chapter  Google Scholar 

  29. D A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of IRE, 40 (9): 1098–1101, 1952.

    Article  Google Scholar 

  30. Jain 89] A K Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs, NJ, 1989.

    Google Scholar 

  31. M Y Jaisimha, H Potlapalli, H Barad, and A B Martinez. Data compression techniques for maps. In Energy and Information Technologies in the Southeast, Columbia, SC, pages 878–883, IEEE, Piscataway, NJ, 1989.

    Chapter  Google Scholar 

  32. D E Knuth. Dynamic Huffman coding. Journal of Algorithms, 6: 163–180, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  33. A Kruger. Block truncation compression. Dr Dobb’s J Software Tools, 17 (4): 48–55, 1992.

    Google Scholar 

  34. B K Lovewell and J P Basart. Survey of image compression techniques. Review of Progress in Quantitative Nondestructive Evaluation, 7A: 731–738, 1988.

    Google Scholar 

  35. Moik 80] J G Moik. Digital Processing of Remotely Sensed Images. NASA SP-431, Washington DC, 1980.

    Google Scholar 

  36. A N Netravali. Digital Pictures: Representation and Compression. Plenum Press, New York, 1988.

    Book  Google Scholar 

  37. S H Park and S U Lee. Pyramid image coder using classified transform vector quantization. Signal Processing, 22 (1): 25–42, 1991.

    Article  Google Scholar 

  38. Pratt 91] W K Pratt. Digital Image Processing. John Wiley and Sons, New York, 2nd edition, 1991.

    Google Scholar 

  39. M Rabbani. Digital Image Compression. SPIE Optical Engineering Press, Bellingham, Wa, 1991.

    Book  Google Scholar 

  40. Rao and Pearlman 91] R P Rao and W A Pearlman. On entropy of pyramid structures. IEEE Transactions on Information Theory,37(2):407413, 1991.

    Google Scholar 

  41. Rosenfeld and Kak 82] A Rosenfeld and A C Kak. Digital Picture Processing. Academic Press, New York, 2nd edition, 1982.

    Google Scholar 

  42. M H Savoji and R E Burge. On different methods based on the Karhunen—Loeve expansion and used in image analysis. Computer Vision, Graphics, and Image Processing, 29: 259–269, 1985.

    Google Scholar 

  43. P Silsbee, A C Bovik, and D Chen. Visual pattern image sequencing coding. In Visual Communications and Image Processing ‘80, Lausanne, Switzerland, pages 532–543, SPIE, Bellingham, Wa, 1991.

    Google Scholar 

  44. P Strobach. Tree-structured scene adaptive coder. IEEE Transactions on Communications, 38 (4): 477–486, 1990.

    Article  Google Scholar 

  45. K S Thyagarajan and H Sanchez. Image sequence coding using interframe VDPCM and motion compensation. In International Conference on Acoustics, Speech, and Signal Processing - 1989, Glasgow, Scotland, pages 1858–1861, IEEE, Piscataway, NJ, 1989.

    Chapter  Google Scholar 

  46. J S Vitter. Design and analysis of dynamic Huffman codes. Journal of the ACM, 34 (4): 825–845, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  47. G K Wallace. Overview of the JPEG (ISO/CCITT) still image compression standard. In Proceedings of SPIE Conference Image Processing Algorithms and Techniques, Santa Clara, Ca, pages 220–233, SPIE, Bellingham, Wa, 1990.

    Google Scholar 

  48. L Wang and M Goldberg. Reduced-difference pyramid: a data structure for progressive image transmission. Optical Engineering, 28 (7): 708–716, 1989.

    Article  Google Scholar 

  49. L Wang and M Goldberg. Reduced-difference pyramid. A data structure for progressive image transmission. In Image Processing Algorithms and Techniques, Santa Clara, Ca, pages 171181, SPIE, Bellingham, Wa, 1990.

    Google Scholar 

  50. T A Welch. A technique for high performance data compression. Computer, 17 (6): 8–19, 1984.

    Article  Google Scholar 

  51. R G White. Compressing image data with quadtrees. Dr Dobb’s J Software Tools, 12 (3): 16–45, 1987.

    Google Scholar 

  52. L C Wilkins and P A Wintz. Bibliography on data compression, picture properties and picture coding. IEEE Transactions on Information Theory, 17: 180–199, 1971.

    Article  MATH  Google Scholar 

  53. P A Wintz. Transform picture coding. Proceedings IEEE, 60: 809820, 1972.

    Google Scholar 

  54. H Zailu and W Taxiao. MDPCM picture coding. In 1990 IEEE International Symposium on Circuits and Systems, New Orleans, LA, pages 3253–3255, IEEE, Piscataway, NJ, 1990.

    Chapter  Google Scholar 

  55. W R Zettler, J Huffman, and D C P Linden. Application of compactly supported wavelets to image compression. In Image Processing Algorithms and Techniques, Santa Clara, Ca, pages 150160, SPIE, Bellingham, Wa, 1990.

    Google Scholar 

  56. J Ziv and A Lempel. Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, 24 (5): 530–536, 1978.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Milan Sonka, Vaclav Hlavac and Roger Boyle

About this chapter

Cite this chapter

Sonka, M., Hlavac, V., Boyle, R. (1993). Image data compression. In: Image Processing, Analysis and Machine Vision. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3216-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3216-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-45570-4

  • Online ISBN: 978-1-4899-3216-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics