Skip to main content

Abstract

In recent years, interest in motion processing has increased with advances in motion analysis methodology and processing capabilities. The usual input to a motion analysis system is an image sequence, with a corresponding increase in the amount of processed data. Motion analysis is often connected with real-time analysis, for example, for robot navigation. Another common motion analysis problem is to obtain comprehensive information about objects present in the scene, including moving and static objects. Detecting 3D shape and relative depth from motion are also fast-developing fields — these issues are considered in Chapter 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A Abdel-Malek, O Hasekioglu, and J Bloomer. Image segmentation via motion vector estimates. In Medical Imaging IV: Image Processing, Newport Beach, Ca, pages 366–371, SPIE, Bellingham, Wa, 1990.

    Chapter  Google Scholar 

  2. G Adiv. Inherent ambiguities in recovering 3D motion and structure from a noisy flow field. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (5): 477–489, 1989.

    Article  Google Scholar 

  3. J K Aggarwal and W Martin. Motion Understanding. Kluwer Academic Publishers, Boston, Ma, 1988.

    Google Scholar 

  4. J K Aggarwal and N Nandhakumar. On the computation of motion from sequences of images–a review. Proceedings of the IEEE, 76 (8): 917–935, 1988.

    Article  Google Scholar 

  5. J S Albus and T H Hong. Motion, depth, and image flow. In Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Cincinnati, Oh, pages 1161–1170, IEEE, Los Alamitos, Ca, 1990.

    Chapter  Google Scholar 

  6. P Anandan. A unified perspective on computational techniques for the measurement of visual motion. In Proceedings, First International Conference on Computer Vision, pages 219–230, London, England, 1987.

    Google Scholar 

  7. P Anandan. Motion detection and analysis. State of the art and some requirements from robotics. In Robot Control 1988 (SYROCO ‘88)–Selected Papers from the 2nd IFAC Symposium, pages 347–352, Pergamon Press Inc, Karlsruhe, FRG, 1988.

    Google Scholar 

  8. S T Barnard. The Image Correspondence Problem. PhD thesis, University of Minnesota, 1979.

    Google Scholar 

  9. S T Barnard and W B Thompson. Disparity analysis of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2 (4): 333–340, 1980.

    Article  Google Scholar 

  10. J L Barron, D J Fleet, S S Beauchemin, and T A Burkitt. Performance of optical flow techniques. In Proceedings, 1992 Computer Vision and Pattern Recognition, Champaign, II, pages 236–242, IEEE, Los Alamitos, Ca, 1992.

    Chapter  Google Scholar 

  11. J L Barron, D J Fleet, S S Beauchemin, and T A Burkitt. Performance of optical flow techniques. Technical Report TR 299, Dept. of Computer Science, University of Western Ontario, Canada, 1992.

    Google Scholar 

  12. J M Brady. Seeds of perception. In Proceedings of the Third Alvey Vision Conference, pages 259–267, University of Cambridge, Cambridge, England, 1987.

    Google Scholar 

  13. P J Burt, C Yen, and X Xu. Multi-resolution flow through motion analysis. In Proceedings of IEEE CVPR Conference, pages 246–252, IEEE, Washington, DC, 1983.

    Google Scholar 

  14. C Cafforio and F Rocca. The differential method for image motion estimation. In T S Huang, editor, Image Sequence Processing and Dynamic Scene Analysis, pages 104–124, Springer Verlag, Berlin, 1983.

    Chapter  Google Scholar 

  15. W F Clocksin. Perception of surface slant and edge labels from optical flow–a computational approach. Perception, 9: 253–269, 1980.

    Article  Google Scholar 

  16. M F Costabile, C Guerra, and G G Pieroni. Matching shapes: A case study in time-varying images. Computer Vision, Graphics, and Image Processing, 29: 296–310, 1985.

    Google Scholar 

  17. L S Davis, Z Wu, and H Sun. Contour based motion estimation. Computer Vision, Graphics, and Image Processing, 23: 246–252, 1983.

    Google Scholar 

  18. L S Dreschler and H H Nagel. Volumetric model and 3D trajectory of a moving car derived from monocular TV frame sequences. Computer Graphics and Image Processing, 20: 199–228, 1982.

    Article  Google Scholar 

  19. W Enkelmann Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences. Computer Vision, Graphics, and Image Processing, 43: 150–177, 1988.

    Article  Google Scholar 

  20. W Enkelmann. Obstacle detection by evaluation of optical flow fields from image sequences. Image and Vision Computing, 9 (3): 160–168, 1991.

    Article  Google Scholar 

  21. D J Fisher. Automatic Tracking of Cardiac Wall Motion Using Magnetic Resonance Markers. PhD thesis, University of Iowa, Iowa City, IA, 1990.

    Google Scholar 

  22. D J Fisher, J C Ehrhardt, and S M Collins. Automated detection of noninvasive magnetic resonance markers. In Computers in Cardiology, Chicago, Il, pages 493–496, IEEE, Los Alamitos, Ca, 1991.

    Google Scholar 

  23. D J Fleet. Measurement of Image Velocity. Kluwer Academic Publishers, Norwell, Ma, 1992.

    Book  MATH  Google Scholar 

  24. D J Fleet and A D Jepson. Computation of component image velocity from local phase information. International Journal of Computer Vision, 5: 77–105, 1990.

    Article  Google Scholar 

  25. S V Fogel. A nonlinear approach to the motion correspondence problem. In Proceedings of the Second International Conference on Computer Vision, Tarpon Springs, Fl, pages 619–628, IEEE, Piscataway, NJ, 1988.

    Chapter  Google Scholar 

  26. S V Fogel. Implementation of a nonlinear approach to the motion correspondence problem. In Proceedings, Workshop on Visual Motion, pages 87–98, IEEE, Irvine, Ca, 1989.

    Chapter  Google Scholar 

  27. F Girosi, A Verri, and V Torre. Constraints for the computation of optical flow. In Proceedings: Workshop on Visual Motion, Washington, DC, pages 116–124. IEEE, 1989.

    Chapter  Google Scholar 

  28. F Glazer. Multilevel relaxation in low level computer vision. In Rosenfeld A, editor, Multiresolution Image Processing and Analysis, pages 312–330. Springer Verlag, Berlin, 1984.

    Chapter  Google Scholar 

  29. S G Gong. Parallel Computation of Visual Motion. Master’s thesis, Oxford University, England, 1987.

    Google Scholar 

  30. S G Gong. Improved local flow. In Proceedings of the Fourth Alvey Vision Conference, pages 129–134, University of Manchester, Manchester, England, 1988.

    Google Scholar 

  31. S G Gong. Curve motion constraint equation and its application. In Proceedings, Workshop on Visual Motion, pages 73–80, IEEE, Irvine, Ca, 1989.

    Chapter  Google Scholar 

  32. M A Guttmann and J L Prince. Image analysis methods for tagged MRI cardiac studies. In Medical Imaging IV: Image Processing, Newport Beach, Ca, pages 168–175, SPIE, Bellingham, Wa, 1990.

    Chapter  Google Scholar 

  33. R M Haralick and L Watson. A facet model for image data. Computer Graphics and Image Processing, 15: 113–129, 1981.

    Article  Google Scholar 

  34. J Heel. Dynamic motion vision. Robotics, 6 (3): 297–314, 1990.

    Google Scholar 

  35. E C Hildreth. Computations underlining the measurement of visual motion. Artificial Intelligence, 23 (3): 309–354, 1983.

    Article  MathSciNet  Google Scholar 

  36. B K P Horn. Robot Vision. MIT Press, Cambridge, Ma, 1986.

    Google Scholar 

  37. B K P Horn and B Schunk. Determining optical flow. Artificial Intelligence, 17: 185–204, 1981.

    Article  Google Scholar 

  38. T S Huang, editor. Image Sequence Processing and Dynamic Scene Analysis. Springer Verlag, Berlin, 1983.

    Google Scholar 

  39. R Jain. Dynamic scene analysis using pixel—based processes. Computer, 14 (8): 12–18, 1981.

    Article  Google Scholar 

  40. R Jain. Direct computation of the focus of expansion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5 (1): 58–64, 1983.

    Article  Google Scholar 

  41. R Jain. Difference and accumulative difference pictures in dynamic scene analysis. Image and Vision Computing, 2 (2): 99–108, 1984.

    Article  Google Scholar 

  42. R Jain, S L Bartlett, and N O’Brien. Motion stereo using ego—motion complex logarithmic mapping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9 (3): 356–369, 1987.

    Article  Google Scholar 

  43. C Kambhamettu and D B Goldgof. Point correspondence recovery in non-rigid motion. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, Champaign, Il, pages 222–227, IEEE, Los Alamitos, Ca, 1992.

    Google Scholar 

  44. K I Kanatani. Detecting the motion of a planar surface by line and surface integrals. Computer Vision, Graphics, and Image Processing, 29: 13–22, 1985.

    MATH  Google Scholar 

  45. J K Kearney and W B Thompson. Bounding constraint propagation for optical flow estimation. In J K Aggarwal and W Martin, editors, Motion Understanding. Kluwer Academic Publishers, Boston, Ma, 1988.

    Google Scholar 

  46. J K Kearney, W B Thompson, and D L Boley. Optical flow estimation — an error analysis of gradient based methods with local optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9 (2): 229–244, 1987.

    Article  Google Scholar 

  47. J J Koenderink. Optic flow. Vision Research, 26 (1): 161–180, 1986.

    Article  Google Scholar 

  48. J J Koenderink and A J Doom. Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Optica Acta, 22 (9): 773–791, 1975.

    Article  Google Scholar 

  49. D Lee, A Papageorgiou, and G W Wasilkowski. Computing optical flow. In Proceedings, Workshop on Visual Motion, pages 99106, IEEE, Irvine, Ca, 1989.

    Google Scholar 

  50. B Lucas and T Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings, DARPA Image Understanding Workshop, Washington, D.C., pages 121–130, 1981.

    Google Scholar 

  51. D Marr. Vision — A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman and Co., San Francisco, 1982.

    Google Scholar 

  52. R Mehrotra and S Nichani. Corner detection. Pattern Recognition Letters, 23 (11): 1223–1233, 1990.

    Article  Google Scholar 

  53. D W Murray and B F Buxton. Scene segmentation from visual motion using global optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9 (2): 200–228, 1989.

    Google Scholar 

  54. D W Murray and B F Buxton. Experiments in the Machine Interpretation of Visual Motion. MIT Press, Cambridge, Ma, 1990.

    Google Scholar 

  55. K M Mutch and W B Thompson. Hierarchical estimation of spatial properties from motion. In A Rosenfeld, editor, Multiresolution Image Processing and Analysis, pages 343–354, Springer Verlag, Berlin, 1984.

    Chapter  Google Scholar 

  56. K M Mutch and W B Thomson. Analysis of accretion and deletion at boundaries in dynamic scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7 (2): 133–137, 1985.

    Article  Google Scholar 

  57. H H Nagel. Displacement vectors derived from second order intensity variations. Computer Vision, Graphics, and Image Processing, 21: 85–117, 1983.

    Google Scholar 

  58. H H Nagel. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8 (5): 565–593, 1986.

    Article  Google Scholar 

  59. H H Nagel. On the estimation of optical flow: relations between different approaches and some new results. Artificial Intelligence, 33: 299–324, 1987.

    Article  Google Scholar 

  60. H H Nagel and W Enkelmann. Towards the estimation of displacement vector fields by oriented smoothness constraint. In Proceedings of the 7th International Conference on Pattern Recognition, pages 6–8, Montreal, Canada, 1984.

    Google Scholar 

  61. S Negandaripour and V Ganesan. Simple direct computation of the FOE with confidence measures. In Proceedings, 1992 Computer Vision and Pattern Recognition, Champaign, Il, pages 228–233, IEEE, Los Alamitos, Ca, 1992.

    Chapter  Google Scholar 

  62. S Negandaripour and B K P Horn. Direct method for locating the focus of expansion. Computer Vision, Graphics, and Image Processing, 46 (3): 303–326, 1989.

    Google Scholar 

  63. R. Paquin and E Dubois. A spatio-temporal gradient method for estimating the displacement field in time-varying imagery. Computer Vision, Graphics, and Image Processing, 21: 205–221, 1983.

    Google Scholar 

  64. B Radig. Image sequence analysis using relational structure. Pattern Recognition, 17 (1): 161–168, 1984.

    Article  Google Scholar 

  65. K Rangarajan, M Shah, and D van Brackle. Optimal corner detector. Computer Vision, Graphics, and Image Processing, 48 (2): 230–245, 1989.

    Article  Google Scholar 

  66. J H Rong, J L Coatrieux, and R Collorec. Combining motion estimation and segmentation in digital subtracted angiograms analysis. In Sixth Multidimensional Signal Processing Workshop, Pacific Grove, Ca, page 44, IEEE, Piscataway, NJ, 1989.

    Chapter  Google Scholar 

  67. G Sandini and M Tistarelli. Analysis of camera motion through image sequences. In V Cappelini and R Marconi, editors, Advances in Image Processing and Pattern Recognition, pages 100–106. North Holland, Amsterdam, 1986.

    Google Scholar 

  68. R J Schalkoff. Dynamic imagery modelling and motion estimation using weak formulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9 (4): 578–584, 1987.

    Article  Google Scholar 

  69. B G Schunck. Robust estimation of image flow. In Sensor Fusion II: Human and Machine Strategies, Philadelphia, Pa, pages 116127, SPIE, Bellingham, Wa, 1989.

    Google Scholar 

  70. G L Scott. Local and Global Interpretation of Moving Images. Pitman; Morgan Kaufmann, London; San Mateo, Ca, 1988.

    Google Scholar 

  71. I K Sethi and R Jain. Finding trajectories of feature points in a monocular image sequence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9 (1): 56–73, 1987.

    Article  Google Scholar 

  72. M A Shah and R Jain. Detecting time—varying corners. In Proceedings of the 7th International Conference on Pattern Recognition, pages 42–48, Canada, 1983.

    Google Scholar 

  73. B Shahraray and M K Brown. Robust depth estimation from optical flow. In Proceedings of the Second International Conference on Computer Vision, Tarpon Springs, Fl, pages 641–650, IEEE, Piscataway, NJ, 1988.

    Chapter  Google Scholar 

  74. M A Snyder. The precision of 3D parameters in correspondence-based techniques: the case of uniform translational motion in a rigid environment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (5): 523–528, 1989.

    Article  Google Scholar 

  75. S M Song and R Leahy. Computation of 3D velocity fields from 3D cine CT images of a human heart. IEEE Transactions on Medical Imaging, 10 (3): 295–306, 1991.

    Article  Google Scholar 

  76. M Subbarao. Interpretation of Visual Motion: A Computational Study. Pitman; Morgan Kaufmann, London; San Mateo, Ca, 1988.

    MATH  Google Scholar 

  77. M Subbarao. Bounds on time-to-collision and rotational component from first-order derivatives of image flow. Computer Vision, Graphics, and Image Processing, 50 (3): 329–341, 1990.

    Google Scholar 

  78. W B Thompson and S T Barnard. Lower level estimation and interpretation of visual motion. Computer, 14 (8): 2028, 1981.

    Article  Google Scholar 

  79. W B Thompson and T C Pong. Detecting moving objects. International Journal of Computer Vision, 4 (1): 39–57, 1990.

    Article  Google Scholar 

  80. W B Thompson, K M Mutch, and V A Berzins. Analyzing object motion based on optical flow. In Proceedings of the 7th International IEEE Conference on Pattern Recognition, pages 791–194, Canada, 1983.

    Google Scholar 

  81. W B Thompson, K M Mutch, and V A Berzins. Dynamic occlusion analysis in optical flow fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7 (4): 374–383, 1985.

    Article  Google Scholar 

  82. R Y Tsai and T S Huang. Estimating three-dimensional motion parameters of a rigid planar patch. In Proceedings of PRIP Conference, pages 94–97. IEEE, 1981.

    Google Scholar 

  83. R Y Tsai and T S Huang. Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. In Proceedings of PRIP Conference, pages 112–118. IEEE, 1982.

    Google Scholar 

  84. S Ullman. The Interpretation of Visual Motion. MIT Press, Cambridge, Ma, 1979.

    Google Scholar 

  85. J F Vega-Riveros and K Jabbour. Review of motion analysis techniques. IEE Proceedings, Part I: Communications, Speech and Vision, 136 (6): 397–404, 1989.

    Article  Google Scholar 

  86. A Verri, F Girosi, and V Torre. Mathematical properties of the 2D motion field: From singular points to motion parameters. In Proceedings: Workshop on Visual Motion, Washington, DC, pages 190–200. IEEE, 1989.

    Google Scholar 

  87. J F Vesecky. Observation of sea—ice dynamics using synthetic aperture radar images automated analysis. IEEE Transactions on Geoscience and Remote Sensing, 26 (1): 38–48, 1988.

    Article  Google Scholar 

  88. A M Waxman and K Wohn. Contour evolution, neighbourhood deformation, and global image flow. The International Journal of Robotics Research, 4 (3): 95–108, 1985.

    Article  Google Scholar 

  89. A M Waxman, K Behrooz, and S Muralidhara. Closed-form solutions to image flow equations for 3D structure and motion. International Journal of Computer Vision, 1: 239–258, 1987.

    Article  Google Scholar 

  90. J A Webb and J K Aggarwal. Structure from motion of rigid and jointed objects. Artificial Intelligence, 19: 107–130, 1982.

    Article  Google Scholar 

  91. J Weng, T S Huang, and N Ahuja. Motion and structure from two perspective views: algorithms, error analysis, and error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (5): 451–476, 1989.

    Article  Google Scholar 

  92. S F Wu and J Kittler. General motion estimation and segmentation. In Visual Communications and Image Processing ‘80, Lausanne, Switzerland, pages 1198–1209, SPIE, Bellingham, Wa, 1990.

    Chapter  Google Scholar 

  93. WVM 89] Proceedings, Workshop on Visual Motion,Irvine, Ca, 1989. IEEE.

    Google Scholar 

  94. M Yachida, M Ikeda, and S Tsuji. A plan guided analysis of cineangiograms for measurment of dynamic behavior of heart wall. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2 (6): 537–543, 1980.

    Google Scholar 

  95. A Young and L Axel. Non-rigid heart wall motion using MR tagging. In Proceedings, 1992 Computer Vision and Pattern Recognition, Champaign, Il, pages 399–404, IEEE, Los Alamitos, Ca, 1992.

    Chapter  Google Scholar 

  96. J Y Zheng and S Tsuji. From anorthoscope perception to dynamic vision. In Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Cincinnati, Oh, pages 1154–1160, IEEE, Los Alamitos, Ca, 1990.

    Chapter  Google Scholar 

  97. X Zhuang, R M Haralick, and Y Zhao. From depth and optical flow to rigid body motion. In Proceedings–CVPR ‘88: Computer Society Conference on Computer Vision and Pattern Recognition, Ann Arbor, Mi, pages 393–397, IEEE, Los Alamitos, Ca, 1988.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Milan Sonka, Vaclav Hlavac and Roger Boyle

About this chapter

Cite this chapter

Sonka, M., Hlavac, V., Boyle, R. (1993). Motion analysis. In: Image Processing, Analysis and Machine Vision. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3216-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3216-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-45570-4

  • Online ISBN: 978-1-4899-3216-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics