Skip to main content

Serotonin in Autism Spectrum Disorder: Insights from Human Studies and Animal Models

  • Chapter
  • First Online:
The Molecular Basis of Autism

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Increased blood serotonin in people with autism was first reported over 50 years ago, and this biogenic amine has remained a focus for the understanding, risk and treatment of Autism Spectrum Disorders (ASD). There is growing evidence that serotonergic transmission is altered by disparate genetic and environmental risk factors for ASD. This review will focus on recent developments regarding serotonin in ASD. Recent studies include epidemiology studies linking ASD with conditions that alter prenatal serotonin in the fetus, altered serotonin in diverse genetic and environmental animal models, and human pathology and molecular and functional brain imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson GM, Freedman DX, Cohen DJ, Volkmar FR, Hoder EL, McPhedran P, Minderaa RB, Hansen CR, Young JG (1987) Whole blood serotonin in autistic and normal subjects. J Child Psychol Psychiatry 28:885–900

    Article  PubMed  CAS  Google Scholar 

  • Anderson GM, Hertzig ME, McBride PA (2012) Brief report: platelet-poor plasma serotonin in autism. J Autism Dev Disord 42:1510–1514

    Article  PubMed  Google Scholar 

  • Azmitia EC, Singh JS, Whitaker-Azmitia PM (2011a) Increased serotonin axons (immunoreactive to 5-HT transporter) in postmortem brains from young autism donors. Neuropharmacology 60:1347–1354

    Article  PubMed  CAS  Google Scholar 

  • Azmitia EC, Singh JS, Hou XP, Wegiel J (2011b) Dystrophic serotonin axons in postmortem brains from young autism patients. Anat Rec, 294:1653–1662

    Article  CAS  Google Scholar 

  • Balkovetz DF, Tiruppathi C, Leibach FH, Mahesh VB, Ganapathy V (1989) Evidence for an imipramine-sensitive serotonin transporter in human placental brush-border membranes. J Biol Chem 264:2195–2198

    PubMed  CAS  Google Scholar 

  • Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366.

    Article  PubMed  CAS  Google Scholar 

  • Berman NEJ, Puri V, Chandrala S, Puri S, Macgregor R, Liverman CS, Klein RM (2006) Serotonin in trigeminal ganglia of female rodents: relevance to menstrual migraine. Headache 46:1230–1245

    Article  PubMed  Google Scholar 

  • Beversdorf DQ, Nordgren RE, Bonab AA, Fischman AJ, Weise SB, Dougherty DD, Felopulos GJ, Zhou FC, Bauman ML (2012) 5-HT2 receptor distribution shown by [18F]setoperone PET in high-functioning autistic adults. J Neuropsychiatry Clin Neurosci 24:191–197

    Article  PubMed  CAS  Google Scholar 

  • Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, Blakely RD, Deneris ES, Levitt P (2011) A transient placental source of serotonin for the fetal forebrain. Nature 472:347–350

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60:1527–1533

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brodkin ES (2007) BALB/c mice: low sociability and other phenotypes that may be relevant to autism. Behav Brain Res 176:53–65

    Article  PubMed  CAS  Google Scholar 

  • Bromley RL, Mawer GE, Briggs M, Cheyne F, Clayton-Smith J, García-Fiñana M, Kneen R, Lucas SB, Shallcross R, Baker GA; Liverpool and Manchester Neurodevelopment Group (2013) The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J Neurol Neurosurg Psychiatry 84:637–643

    Article  PubMed Central  PubMed  Google Scholar 

  • Cassel S, Carouge D, Gensburger C, Anglard P, Burgun C, Dietrichm JB, Aunis D, Zwiller J (2006) Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol 70:487–492

    Article  PubMed  CAS  Google Scholar 

  • Chandana SR, Behen ME, Juhasz C, Muzik O, Rothermel RD, Mangner TJ, Chakraborty PK, Chugani HT, Chugani DC (2005) Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. Int J Dev Neurosci 23:171–182

    Article  PubMed  CAS  Google Scholar 

  • Chantiluke K, Barrett N, Giampietro V, Brammer M, Simmons A, Murphy DG, Rubia K (2014) Inverse effect of fluoxetine on medial prefrontal cortex activation during reward reversal in ADHD and autism. Cereb Cortex [Epub ahead of print]

    Google Scholar 

  • Chess S (1971) Autism in children with congenital rubella. Journal of Autism and Childhood Schizophrenia 1:33–47

    Article  PubMed  CAS  Google Scholar 

  • Christenson JG, Dairman W, Udenfriend S (1972) On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase (immunological titration-aromatic L-amino acid decarboxylase-serotonin-dopamine-norepinephrine). Proc Nat Acad Sci U S A 69:343–347

    Article  CAS  Google Scholar 

  • Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard M (2013) Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309:1696–1703

    Article  PubMed  CAS  Google Scholar 

  • Chugani DC, Muzik O, Rothermel R, Behen M, Chakraborty P, Mangner T, da Silva EA, Chugani HT (1977) Altered serotonin synthesis in the dentatothalamo-cortical pathway in autistic boys. Ann Neurol 14:666–669

    Google Scholar 

  • Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, Chugani HT (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45:287–295

    Article  PubMed  CAS  Google Scholar 

  • Cohen IL, Liu X, Schutz C, White BN, Jenkins EC, Brown WT, Holden JJ (2003) Association of autism severity with a monoamine oxidase a functional polymorphism. Clin Genet 64:190–197

    Article  PubMed  CAS  Google Scholar 

  • Cook EH Jr Charak DA Arida J Spohn JA Roizen NJ Leventhal BL (1994) Depressive and obsessive–compulsive symptoms in hyperserotonemic parents of children with autistic disorder. Psychiatry Res 52:25–33

    Article  PubMed  Google Scholar 

  • Cook EH Jr, Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, Lord C, Courchesne E (1997) Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 60:928–934

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cook EH Jr Leventhal BL Heller W Metz J Wainwright M Freedman DX (1990) Autistic children and their first-degree relatives: relationships between serotonin and norepinephrine levels and intelligence. J Neuropsychiatry Clin Neurosci 2:268–274

    Article  PubMed  Google Scholar 

  • Coon H, Dunn D, Lainhart J, Miller J, Hamil C, Battaglia A, Tancredi R, Leppert MF, Weiss R, McMahon W (2005) Possible association between autism and variants in the brain-expressed tryptophan hydroxylase gene (TPH2). Am J Med Genet B Neuropsychiatr Genet 135B:42–46

    Article  PubMed  Google Scholar 

  • Correa RR, Barrilari SE, Guimaraes CS, Rossi e Silva RC, Olegario JG, Cavellani CL, Oliveira FA, Salge AK, Teixeira VP, Castro EC (2009) Expression of the melatonin receptor and tryptophan hydroxylase in placentas of the fetus with intra-uterine stress. Eur J Obstet Gynecol Reprod Biol 147:234–236

    Article  PubMed  CAS  Google Scholar 

  • Cote F, Fligny C, Bayard E, Launay JM, Gershon MD, Mallet J, Vodjdani G (2007) Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci U S A 104:329–334

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Coutinho AM, Sousa I, Martins M, Correia C, Morgadinho T, Bento C, Marques C, Ataíde A, Miguel TS, Moore, JH, Oliveira G, Vicente AM (2007) Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levels. Hum Genet 121:243–256

    Google Scholar 

  • Croen LA, Grether JK, Yoshida CK, Odouli R, Hendrick V (2011) Antidepressant use during pregnancy and childhood autism spectrum disorders. Arch Gen Psychiatry 68:1104–1112

    Article  PubMed  Google Scholar 

  • Daly EM, Deeley Q, Ecker C, Craig M, Hallahan B, Murphy C, Johnston P, Spain D, Gillan N, Brammer M, Giampietro V, Lamar M, Page L, Toal F, Cleare A, Surguladze S, Murphy DG (2012) Serotonin and the neural processing of facial emotions in adults with autism: an fMRI study using acute tryptophan depletion. Arch Gen Psychiatry 69:1003–1013

    Article  PubMed  Google Scholar 

  • Davis LK, Hazlett HC, Librant AL, Nopoulos P, Sheffield VC, Piven J, Wassink TH (2008) Cortical enlargement in autism is associated with a functional VNTR in the monoamine oxidase a gene. Am J Med Genet B Neuropsychiatr Genet 147B:1145–1151

    Article  PubMed Central  PubMed  Google Scholar 

  • Devlin B, Cook EH Jr, Coon H, Dawson G, Grigorenko EL, McMahon W, Minshew N, Pauls D, Smith, M, Spence MA, Rodier PM, Stodgell C, Schellenberg GD (2005) CPEA Genetics Network Autism and the serotonin transporter, the long and short of it. Mol Psychiatry 10:1110–1116

    Google Scholar 

  • Deykin EY, MacMahon B (1979) Viral exposure and autism. Am J Epidemiol 109:628–638

    PubMed  CAS  Google Scholar 

  • Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL (1990) A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J Cereb Blood Flow Metab 9:1–12

    Article  Google Scholar 

  • Eddahibi S, Guignabert C, Barlier-Mur AM, Dewachter L, Fadel E, Dartevelle P, Humbaert M, Simonneau G, Hanoun N, Saurini F, Hamon M, Adnot S (2006) Cross talk between endothelial and smooth muscle cells in pulmonary hypertension. Circulation 113:1857–1864

    Article  PubMed  CAS  Google Scholar 

  • Fatemi SH, Reutiman TJ, Folsom TD, Huang H, Oishi K, Mori S, Smee DF, Pearce DA, Winter C, Sohr R, Juckel G (2008) Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr Res 99:56–70

    Article  PubMed Central  PubMed  Google Scholar 

  • Fernstrom JD, Wurtman RJ (1971) Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173:149–151

    Article  PubMed  CAS  Google Scholar 

  • Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414

    Article  PubMed  CAS  Google Scholar 

  • Ghaziuddin M, Tsai LY, Eilers L, Ghaziuddin N (1992) Brief report: Autism and herpes simplex encephalitis. J Autism Dev Disord 22:107–113

    Article  PubMed  CAS  Google Scholar 

  • Girgis RR, Slifstein M, Xu X, Frankle WG, Anagnostou E, Wasserman S, Pepa L, Kolevzon A, Abi-Dargham A, Laruelle M, Hollander E (2011) The 5-HT(2A) receptor and serotonin transporter in Asperger’s disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB. Psychiatry Res 194:230–234

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goldberg J, Anderson GM, Zwaigenbaum L, Hall GB, Nahmias C, Thompson A, Szatmari P (2009) Cortical serotonin type-2 receptor density in parents of children with autism spectrum disorders. J Autism Dev Disord 2009:97–104

    Article  Google Scholar 

  • Hagerman R, Hoem G, Hagerman P (2010) Fragile X and autism: Intertwined at the molecular level leading to targeted treatments. Mol Autism 1:12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hamon M, Bourgoin S, Artaud FEl, Mestikawy S (1981) The respective roles of tryptophan uptake and tryptophan hydroxylase in the regulation of serotonin synthesis in the central nervous system. J Physiol 77:269–279

    CAS  Google Scholar 

  • Hoshino Y, Yamamoto T, Kaneko M, Tachibana R, Watanabe M, Ono Y, Kumashiro H (1984) Blood serotonin and free tryptophan concentration in autistic children. Neuropsychobiol 11:22–27

    Article  CAS  Google Scholar 

  • Hviid A, Melbye M, Pasternak B (2013) Use of selective serotonin reuptake inhibitors during pregnancy and risk of autism. N Engl J Med 369:2406–2415

    Article  PubMed  CAS  Google Scholar 

  • Ide S, Itoh M, Goto Y (2005) Defect in normal developmental increase of the brain biogenic amine concentration in the mecp2-null mouse. Neurosci Lett 386:14–17

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Tojo K, Otsubo C, Udagawa T, Kumazawa K, Ishikawa M, Tokudome G, Hosoya T, Tajima N, Claycomb WC, Nakao K, Kawamura M (2005) 5-hydroxytryptamine synthesis in HL-1 cells and neonatal rat cardiocytes. Biochem Biophys Res Commun 328:522–525

    Article  PubMed  CAS  Google Scholar 

  • Jones MB, Palmour RM, Zwaigenbaum L, Szatmari P (2004) Modifier effects in autism at the MAO-A and DBH loci. Am J Med Genet B Neuropsychiatr Genet 126:58–65

    Article  Google Scholar 

  • Kane MJ, Angoa-Peréz M, Briggs DI, Sykes CE, Francescutti DM, Rosenberg DR, Kuhn DM (2012) Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism. PLoS One 7:e48975

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kannan S, Saadani-Makki F, Muzik O, Chakraborty P, Mangner TJ, Janisse J, Romero R, Chugani DC (2007) Microglial activation in perinatal rabbit brain induced by intrauterine inflammation: detection with 11C-(R)-PK11195 and small-animal PET. J Nucl Med 48:946–954

    Article  PubMed  CAS  Google Scholar 

  • Kannan S, Saadani-Makki F, Balakrishnan B, Dai H, Chakraborty PK, Janisse J, Muzik O, Romero R, Chugani DC (2011) Decreased cortical serotonin in neonatal rabbits exposed to endotoxin in utero. J Cereb Blood Flow Metab 31:738–749

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kerr TM, Muller CL, Miah M, Jetter CS, Pfeiffer R, Shah C, Baganz N, Anderson GM, Crawley JN, Sutcliffe JS, Blakely RD, Veenstra-Vanderweele J (2013) Genetic background modulates phenotypes of serotonin transporter Ala56 knock-in mice. Mol Autism 4:35

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim DK, Tolliver TJ, Huang S J, Martin BJ, Andrews AM, Wichems C, Holmes A, Lesch KP, Murphy DL (2005) Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacol 49:798–810

    Article  CAS  Google Scholar 

  • Kudo Y, Boyd CA (2002) Human placental amino acid transporter genes: expression and function. Reproduction 124:593–600

    Article  PubMed  CAS  Google Scholar 

  • Leboyer M, Philippe A, Bouvard M, Guilloud-Bataille M, Bondoux D, Tabuteau F, Feingold J, Mouren-Simeoni MC, Launay JM (1999) Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives. Biol Psychiatry 45:158–163

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J Müller, CR Hamer DH, Murphy DL (1996) Association of anxiety-related with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Leventhal BL, Cook Jr, EH, Morford M, Ravitz A, Freedman DX (1990) Relationships of whole blood serotonin and plasma norepinephrine within families. J Autism Dev Disord, 20:499–511

    Google Scholar 

  • Ligam P, Manuelpillai U, Wallace EM, Walker D (2005) Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta and decidua: implications for role of the kynurenine pathway in pregnancy. Placenta 26:498–504

    Article  PubMed  CAS  Google Scholar 

  • Lin HC, Gean PW, Wang CC, Chan YH, Chen PS (2013) The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model. PLoS One 8:e55248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mackler AM, Barber EM, Takikawa O, Pollard JW (2003) Indoleamine 2,3-dioxygenase is regulated by IFN-gamma in the mouse placenta during Listeria monocytogenes infection. J Immunol 170:823–830

    Article  PubMed  CAS  Google Scholar 

  • Makkonen I, Riikonen R, Kokki H, Airaksinen MM, Kuikka JT (2008) Serotonin and dopamine transporter binding in children with autism determined by SPECT. Dev Med Child Neurol 50:593–597

    Article  PubMed  Google Scholar 

  • Manuelpillai U, Ligam P, Smythe G, Wallace EM, Hirst J, Walker DW (2005) Identification of kynurenine pathway enzyme mRNAs and metabolites in human placenta: up-regulation by inflammatory stimuli and with clinical infection. Am J Obstet Gynecol 192:280–288

    Article  PubMed  CAS  Google Scholar 

  • Mason-Brothers A, Ritvo ER, Pingree C, Petersen PB, Jenson WR, McMahon WM, Freeman BJ, Jorde LB, Spencer MJ, Mo A (1990) The UCLA-University of Utah epidemiologic survey of autism: prenatal, perinatal, and postnatal factors. Pediatrics 86:514–519

    PubMed  CAS  Google Scholar 

  • Matsuda M, Imaoka T, Vomachka AJ, Gudelsky GA, Hou Z, Mistry M, Bailey JP, Nieport KM, Walther DJ, Bader M, & Horseman ND (2004) Serotonin regulates mammary gland development via an autocrine–paracrine loop. Development Cell 6:193–203

    Article  Google Scholar 

  • Moja EA, Stoff DM, Gessa GL, Castoldi D, Assereto R, Tofanetti O (1988) Decrease in plasma tryptophan after tryptophan-free amino acid mixtures in man. Life Sci 42:1551–1556

    Article  PubMed  CAS  Google Scholar 

  • Moja EA, Cipolla P, Castoldi D, Tofanetti O (1989) Dose-response decrease in plasma tryptophan and in brain tryptophan and serotonin after tryptophan-free amino acid mixtures in rats. Life Sci 44:971–976

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  PubMed  CAS  Google Scholar 

  • Murphy DG, Daly E, Schmitz N, Toal F, Murphy K, Curran S, Erlandsson K, Eersels J, Kerwin R, Ell P, Travis M (2006) Cortical serotonin 5-HT2A receptor binding and social communication in adults with Asperger’s syndrome: an in vivo SPECT study. Am J Psychiatry 163:934–936.

    Article  PubMed  Google Scholar 

  • Nabi R, Serajee FJ, Chugani DC, Zhong H, Huq AH (2004) Association of tryptophan 2,3 dioxygenase gene polymorphism with autism. Am J Med Genet B Neuropsychiatr Genet 125:63–68

    Article  Google Scholar 

  • Nakamura K, Sekine Y, Ouchi Y, Tsujii M, Yoshikawa E, Futatsubashi M, Tsuchiya KJ, Sugihara G, Iwata Y, Suzuki K, Matsuzaki H, Suda S, Sugiyama T, Takei N, Mori N (2010) Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatry 67:59–68

    Article  PubMed  CAS  Google Scholar 

  • Ni W, Watts SW (2006) 5-hydroxytryptamine in the cardiovascular systems: focus on the serotonin transporter (SERT). Clin Exp Pharmacol Physiol 33:575–583

    Article  PubMed  CAS  Google Scholar 

  • Ni W, Geddes TJ, Priestley JR, Szasz T, Kuhn DM, Watts SW (2008) The existence of a local 5-hydroxytryptaminergic system in peripheral arteries. Br J Pharmacol 154:663–674

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nocito A, Dahm F, Jochum W, Jang JH, Georgiev P, Bader M, Renner EL, Clavien PA (2007) Serotonin mediates oxidative stress and mitochondrial toxicity in a murine model of nonalcoholic steatohepatitis. Gastroenterology 133:608–618

    Article  PubMed  CAS  Google Scholar 

  • Oblak A, Gibbs TT, Blatt GJ (2013) Reduced serotonin receptor subtypes in a limbic and a neocortical region in autism. Autism Res 6:571–583

    Article  PubMed  Google Scholar 

  • Oritz-Alvarado R, Guzmán-Quevedo O, Meracado-Camargo R, Haertle T, Vignes C, Bolaños-Jiménez F (2006) Expression of tryptophan hydroxylase in developing mouse taste papillae. FEBS Letters 580:5371–5376

    Article  CAS  Google Scholar 

  • Pardridge, WM (1977) Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J Neurochem 28:103–108

    Article  PubMed  CAS  Google Scholar 

  • Patterson PH (2009) Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res 204:313–321

    Article  PubMed  CAS  Google Scholar 

  • Piven J, Tsai GC, Nehme E, Coyle JT, Chase GA, Folstein SE (1991) Platelet serotonin, a possible marker for familial autism. J Autism Dev Disord 21:51–59

    Google Scholar 

  • Sakowski SA, Geddes TJ, Thomas DM, Levi E, Hatfield JS, Kuhn DM (2006) Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies. Brain Res 1085:11–18

    Article  PubMed  CAS  Google Scholar 

  • Samaco RC, Mandel-Brehm C, Chao HT, Ward CS, Fyffe-Maricich SL, Ren J, Hyland K, Thaller C, Maricich SM, Humphreys P, Greer JJ, Percy A, Glaze DG, Zoghbi HY, Neul JL (2009) Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc Natl Acad Sci U S A 106:21966–21971

    Article  PubMed Central  PubMed  Google Scholar 

  • Schain RJ, Freedman DX (1961) Studies on 5-hydroxyindole metabolism in autism and other mentally retarded children. J Pediatr 59:315–320

    Article  Google Scholar 

  • Siesser WB, Zhang X, Jacobsen JP, Sotnikova TD, Gainetdinov RR, Caron MG (2010) Tryptophan hydroxylase 2 genotype determines brain serotonin synthesis but not tissue content in C57Bl/6 and BALB/c congenic mice. Neurosci Lett 481:6–11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Slominski A, Pisarchik A, Semak I, Sweatman T, Worstman J, Szczesniewski A, Slugocki G, McNulty J, Kauser S, Tobin DJ (2002) Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J 16:896–898

    PubMed  CAS  Google Scholar 

  • Smith QR, Monna S, Aoyagi M, & Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658

    Article  PubMed  CAS  Google Scholar 

  • Smit-Rigter LA, Noorlander CW, von Oerthel L, Chameau P, Smidt MP, van Hooft JA (2012) Prenatal fluoxetine exposure induces life-long serotonin 5-HT3 receptor-dependent cortical abnormalities and anxiety-like behaviour. Neuropharmacology 62:865–870

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (2001) Endogenous neurotoxins from tryptophan. Toxicon 39:61–73

    Article  PubMed  CAS  Google Scholar 

  • Stull MA, Pai V, Vomachka AJ, Marshall AM, Joacb GA, Horseman ND (2007) Mammary gland homeostasis employs serotonergic regulation of epithelial tight junctions. Proc Natl Acad Sci 104:16708–16713

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamada K, Tomonaga S, Hatanaka F, Nakai N, Takao K, Miyakawa T, Nakatani J, Takumi T (2010) Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling. PLoS One 5e:15126

    Article  CAS  Google Scholar 

  • Tassone F, Qi L, Zhang W, Hansen RL, Pessah IN, Hertz-Picciotto I (2011) MAOA, DBH and SLC6A4 variants in CHARGE: A case control study of autism spectrum disorders. Autism Res 4:250–261

    Article  PubMed Central  PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    Article  PubMed  CAS  Google Scholar 

  • Veenstra-VanderWeele J, Muller CL, Iwamoto H, Sauer JE, Owens WA, Shah CR, Cohen J, Mannangatti P, Jessen T, Thompson BJ, Ye R, Kerr TM, Carneiro AM, Crawley JN, Sanders-Bush E, McMahon DG, Ramamoorthy S, Daws LC, Sutcliffe JS, Blakely RD (2012) Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci U S A 109:5469–5474

    Article  PubMed Central  PubMed  Google Scholar 

  • Verma D, Chakraborti B, Karmakar A, Bandyopadhyay T, Singh AS, Sinha S, Chatterjee A, Ghosh S, Mohanakumar KP, Mukhopadhyay K, Rajamma U (2013) Sexual dimorphic effect in the genetic association of monoamine oxidase A (MAOA) markers with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 50C:11–20

    Google Scholar 

  • Walther DJ, Peter JU, Winter S, Höltje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115:851–862

    Article  PubMed  CAS  Google Scholar 

  • Walther DJ, Stahlberg S, Vowinckel J (2011) Novel roles for biogenic monoamines: from monoamines in transglutaminase-mediated post-translational protein modification to monoaminylation deregulation diseases. FEBS J 278:4740–4755

    Article  PubMed  CAS  Google Scholar 

  • Wang CC, Lin HC, Chan YH, Gean PW, Yang YK, Chen PS (2013) 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model. Int J Neuropsychopharmacol 16:2027–2039

    Article  PubMed  CAS  Google Scholar 

  • Wassink TH, Hazlett HC, Epping EA, Arndt S, Dager SR, Schellenberg GD, Dawson, G, Piven J (2007) Cerebral cortical gray matter overgrowth and functional variation of the serotonin transporter gene in autism. Arch Gen Psychiatry 64:709–717

    Article  PubMed  CAS  Google Scholar 

  • Weiss LA, Ober C, Cook EH Jr (2006a) ITGB3 shows genetic and expression interaction with SLC6A4. Hum Genet 120:93–100

    Article  PubMed  CAS  Google Scholar 

  • Weiss LA, Kosova G, Delahanty RJ, Jiang L, Cook EH, Ober C, Sutcliffe JS (2006b) Variation in ITGB3 is associated with whole-blood serotonin level and autism susceptibility. Eur J Hum Genet 14:923–931

    Article  PubMed  CAS  Google Scholar 

  • Whyte A, Jessen T, Varney S, Carneiro AM (2014) Serotonin transporter and integrin beta 3 genes interact to modulate serotonin uptake in mouse brain. Neurochem Int 73:122–126

    Article  PubMed  CAS  Google Scholar 

  • Winter C, Reutiman TJ, Folsom TD, Sohr R, Wolf RJ, Juckel G, Fatemi SH (2008) Dopamine and serotonin levels following prenatal viral infection in mouse—implications for psychiatric disorders such as schizophrenia and autism. Eur Neuropsychopharmacol 18:712–716

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yamashita, Y, Fujimoto, C, Nakajima E, Isagai, T, Matsuishi, T (2003) Possible association between congenital cytomegalovirus infection and autistic disorder. J Autism Dev Disord 33:455–459

    Article  PubMed  Google Scholar 

  • Zerbo O, Qian Y, Yoshida C, Grether JK, Van de Water J, Croen LA (2013) Maternal infection during pregnancy and autism spectrum disorders. J Autism Dev Disord [Epub ahead of print]

    Google Scholar 

  • Zhang X, Beaulieu, JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217

    Google Scholar 

  • Zhang YQ, Friedman DB, Wang Z, Woodruff E 3rd, Pan L, O’Donnell J, Broadie K (2005) Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis. Mol Cell Proteomics 4:278–290

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Leotta A, Kustanovich V, Lajonchere C, Geschwind DH, Law K, Law P, Qiu S, Lord C, Sebat, J, Ye K, Wigler M (2007) A unified genetic theory for sporadic and inherited autism. Proc Nat Acad Sci U S A 104:12831–12836

    Google Scholar 

  • Zoghbi HY, Milstien S, Butler IJ, Smith EO, Kaufman S, Glaze DG, Percy AK (1989) Cerebrospinal fluid biogenic amines and biopterin in Rett syndrome. Ann Neurol 25:56–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane C. Chugani PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benza, N., Chugani, D. (2015). Serotonin in Autism Spectrum Disorder: Insights from Human Studies and Animal Models. In: Fatemi, S. (eds) The Molecular Basis of Autism. Contemporary Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2190-4_13

Download citation

Publish with us

Policies and ethics