Skip to main content

Molecular Basis of Cholinergic Changes in Autism Spectrum Disorders and Relevance for Treatment Interventions

  • Chapter
  • First Online:
The Molecular Basis of Autism

Abstract

The causes of autism are heterogeneous and still largely unknown. Cholinergic abnormalities are reported in molecular pathological studies conducted on brain tissues from adults with autism and may explain the numerous cognitive and behavioural changes seen in the autism spectrum disorders (ASD), including impairment in various cognitive domains, memory and attention. Currently available treatments for the behavioural problems frequently reported in children and adults with ASD are largely for symptomatic relief of irritability, hyperactivity and repetitive stereotyped behaviour.

In this review we address current knowledge about the cholinergic changes in ASD and how these are relevant in clinical setting. In particular, we review the prospect of the use of cholinesterase inhibitors and other cholinomimetics (chemicals that can act by either directly stimulating the nicotinic or muscarinic receptors, or promote acetylcholine release) in ASD for treatment of both cognitive and behavioural changes, based on their benefits in neurodegenerative (e.g. Alzheimer’s disease and Lewy Body Spectrum Diseases) and neurodevelopmental disorders (e.g. schizophrenia and Down syndrome). As a result, we provide an overview of the current use of cholinesterase inhibitors (donepezil, galantamine and rivastigmine) and cholinomimetics (e.g. nicotine) in the treatment of cognitive and behavioral symptoms in ASD, and discuss developments of novel cholinergic drug interventions that can safely target core disease mechanisms as early as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah MW, Mortensen EL, Greaves-Lord K, Larsen N, Bonefeld-Jørgensen EC, Nørgaard-Pedersen B, Hougaard DM, Grove J (2012) Neonatal levels of neurotrophic factors and risk of autism spectrum disorders. Acta Psychiatr Scand 128:61–69

    PubMed  Google Scholar 

  • Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, Kay G, Laties A, Nathanson NM, Pasricha PJ, Wein AJ (2006) Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol 148:565–578

    PubMed Central  CAS  PubMed  Google Scholar 

  • Acevido NL, Muralidharan B, Paadala N, To J, Jonakait GM (2007) Toll-like receptor ligands and CD154 stimulate microglia to produce a factor(s) that promote excess cholinergic differentiation in the developing rat basal forebrain: implications for neurodevelopmental disorders. Pediatr Res 61:15–20

    Google Scholar 

  • Adams CE, Yonchek JC, Schulz KM, Graw SL, Stitzel J, Teschke PU, Stevens KE (2012) Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases. Neuroscience 207:274–282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmed AI, Ali AN, Kramers C, Härmark LV, Burger DM, Verhoeven WM (2013) Neuropsychiatric adverse events of varenicline: a systematic review of published reports. J Clin Psychopharmacol 33:55–62

    CAS  PubMed  Google Scholar 

  • Alkondon M, Albuquerque EX (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 145:109–120

    CAS  PubMed  Google Scholar 

  • Amenta F, Tayebati SK (2008) Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Curr Med Chem 15:488–498

    CAS  PubMed  Google Scholar 

  • American Psychiatric Association (APA) (2000) Diagnostic and statistical manual of mental disorders, (4th ed., text revision). Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Anthenelli RM, Morris C, Ramey TS, Dubrava SJ, Tsilkos K, Russ C, Yunis C (2013) Effects of varenicline on smoking cessation in aduts with stably treated current or past major depression: a randomized control trial. Ann Int Med 159: 390–400

    PubMed  Google Scholar 

  • Arnold LE, Aman MG, Hollway J, Hurt E, Bates B, Li X, Farmer C, Anand R, Thompson S, Ramadan Y, Williams C (2012) Placebo-controlled pilot trial of mecamylamine for treatment of autism spectrum disorders. J Child Adolesc Psychopharmacol 22:198–205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arnold LE, Anand R, Aman M (2013) Varenicline in autistic disorder: hypothesis and case report of single-patient crossover. J Child Adolesc Psychopharmacol 23:61–64

    PubMed  Google Scholar 

  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245

    CAS  PubMed  Google Scholar 

  • Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N (2002) Effects of age on brain volume and head circumference in autism. Neurology 59:175–183

    CAS  PubMed  Google Scholar 

  • Bailey CD, De Biasi M, Fletcher PJ, Lambe EK (2010) The nicotinic acetylcholine receptor alpha5 subunit plays a key role in attention circuitry and accuracy. J Neurosci 30:9241–9252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bailey CD, Alves NC, Nashmi R, De Biasi M, Lambe EK (2012) Nicotinic α5 subunits drive developmental changes in the activation and morphology of prefrontal cortex layer VI neurons. Biol Psychiatry 71:120–128

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme JF, Baulac M, Brice A, Bruzzone R, LeGuerm E (2001) First genetic evidence of GABA9A receptor dysfunction in epilepsy: a mutation in the gamma-2-subunit gene. Nat Genet 28:46–48

    Google Scholar 

  • Bauman ML, Kemper TL (1994) Neuroanatomical observations of the brain in autism. In: Bauman ML, Kemper TL (eds) The Neurobiology of Autism . The Johns Hopkins University Press, Baltimore pp 119–145.

    Google Scholar 

  • Bernardi S, Anagnostou E, Shen J, Kolevzon A, Buxbaum JD, Hollander E, Hof PR, Fan J (2011) In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism. Brain Res 1380:198–205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blumberg SJ, Bramlett MD, Kogan MD, Schive LA, Jones JR, Lu MC (2013) Changes in prevalence of parent-reported autism spectrum disorder in school-aged US children: 2007 to 2011–2012. Nat Heath Stat Reports 65:1–12

    Google Scholar 

  • Brugha TS, McManus S, Bankart J, Scott F, Purdon S, Smith J, Bebbington P, Jenkins R, Meltzer H (2011) Epidemiology of autism spectrum disorders in adults in the community in England. Arch Gen Psychiatry 68:459–465

    PubMed  Google Scholar 

  • Buckley AW, Sassower K, Rodriguez AJ, Jennison K, Wingert K, Buckley J, Thurm A, Sato S, Swedo S (2011) An open label trial of donepezil for enhancement of rapid eye movement sleep in young children with autism spectrum disorders. J Child Adolesc Psychopharmacol 21:353–357

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buiter HJ, Windhorst AD, Huisman MC, Yaqub M, Knol DL, Fisher A, Lammertsma AA, Leysen JE (2013) [11C]AF150(S), an agonist PET ligand for M1 muscarinic acetylcholine receptors. EJNMMI Res 23:19. doi:10.1186/2191–219X-3-19

    Google Scholar 

  • Cavarsan CF, Avanzi RD, Queiroz CM, Xavier GF, Mello LE, Covolan L (2011) M1 acetylcholine receptor expression is decreased in hippocampal CA1 region of aged epileptic animals. Aging Dis 2:301–307

    PubMed Central  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (CDCP) (2012) Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, 14 sites. United States, 2008. MMWR 61:1–19

    Google Scholar 

  • Cheng SB, Amici SA, Ren XQ, McKay SB, Treuil MW, Lindstrom JM, Rao J, Anand R (2009). Presynaptic targeting of alpha4beta 2 nicotinic acetylcholine receptors is regulated by neurexin-1beta. J Biol Chem 284:23251–23259

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chez MG, Buchanan TM, Becker M, Kessler J, Aimonovitch MC, Mrazek SR (2003) Donepezil hydrochloride: a double-blind study in autistic children. J Pediatric Neurol 1:83–88

    CAS  Google Scholar 

  • Chez MG, Aimonovitch M, Buchanan T, Meazek S, Tremb RJ (2004) Treating autistic spectrum disorders in children: utility of the cholinesterase inhibitor rivastigmine tartrate. J Child Neurol 19:165–169

    PubMed  Google Scholar 

  • Chilian B, Abdollahpour H, Bierhals T, Haltrich I, Fekete G, Nagel I, Rosenberger G, Kutsche K (2013) Dysfunction of SHANK2 and CHRNA7 in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci. Clin Genet 84:560–565

    CAS  PubMed  Google Scholar 

  • Chung YC, Lee CR, Park TW, Yang KH, Kim KW (2009) Effect of donepezil added to atypical antipsychotics on cognition in patients with schizophrenia: an open-label trial. World J Biol Psychiatry 10:156–162

    PubMed  Google Scholar 

  • Constantino JN (2011) The quantitative nature of autistic social impairment. Pediatric Res 69:55–62

    Google Scholar 

  • Courchesne E, Karus CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pirce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA, Courchesne RY (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57:245–253

    CAS  PubMed  Google Scholar 

  • Croen LA, Goines P, Braunschweig D, Yolken R, Yoshida CK, Grether JK, Fireman B, Kharrazi M, Hansen RL, Van de Water J (2008) Brain-derived neurotrophic factor and autism: maternal and infant peripheral blood levels in the Early Markers for Autism (EMA) Study. Autism Res 1:130–137

    PubMed Central  PubMed  Google Scholar 

  • Cubells JF, Deoreo EH, Harvey PD, Garlow SJ, Garber K, Adam MP, Martin CL (2011) Pharmaco-genetically guided treatment of recurrent rage outbursts in an adult male with 15q13.3 deletion syndrome. Am J Med Genet A 155:805–810

    CAS  Google Scholar 

  • Culp DJ, Luo W, Richardson LA, Watson GE, Latchney LR (1996) Both M1 and M3 receptors regulate exocrine secretion by mucous acini. Am J Physiol Cell Physiol 271:C1963–C1972

    CAS  Google Scholar 

  • de Caires S, Steenkamp V (2010) Use of Yokukansan (TJ-54) in the treatment of neurological disorders: a review. Phytother Res 24:1265–1270

    PubMed  Google Scholar 

  • De Vitto TJ Drost DJ Neufeld RWJ Rajakumar N Pavlosky W Williamson P Nicolson R (2007) Evidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 61:465–473

    Google Scholar 

  • Deng C, Huang XF (2005) Decreased density of muscarinic receptors in the superior temporal gyrus in schizophrenia. J Neurosci Res 81:883–890

    CAS  PubMed  Google Scholar 

  • Deutsch SI, Urbano MR, Burket JA, Herndon AL, Winebarger EE (2011) Pharmacotherapeutic implications of the association between genomic instability at chromosome 15q13.3 and autism spectrum disorders. Clin Neuropharmacol 34:203–205

    CAS  PubMed  Google Scholar 

  • Dwyer JB, Broide RS, Leslie FM (2008) Nicotine and brain development. Brain Defects Res (PC) 84:30–44

    CAS  Google Scholar 

  • Farlow M, Miller ML, Pejovic V (2008) Treatment options in Alzheimer’s disease: maximizing benefit, managing expectations. Dement Geriatr Cogn Disord 25:408–422

    CAS  PubMed  Google Scholar 

  • Fatemi SH, Yousefi MK, Kneeland RE, Liesch SB, Folsom TD, Thiras PD (2013) Antismoking and potential antipsychotic effects of varenicline in subjects with schizophrenia or schizoaffective disorder: a double-blind placebo and buroprion-controlled study. Schizophr Res 146:376–378

    Google Scholar 

  • Felder CC, Bymaster FP, Ward J, DeLapp N (2000) Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 43:4333–4353

    CAS  PubMed  Google Scholar 

  • Fernandes CC, Pinto-Duartes A, Ribiero JA, SebastiĂŁo AM (2008) Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons. J Neurosci 21:5611–5618

    Google Scholar 

  • Gabis L, Wei Huang, Azizian A, DeVincent C, Tudorica A, Kesner-Baruch Y, Roche P, Pomeroy J (2008) 1H-magnetic resonance spectroscopy markers of cognitive and language ability in clinical subtypes of autism spectrum disorders. J Child Neurol 23:766–774

    PubMed  Google Scholar 

  • Garcia KL, Yu G, Nicolini C, Michalski B, Garzon DJ, Chiu VS, Tongiorgi E, Szatmari P, Fahnestock M (2012) Altered balance of proteolytic isoforms of pro-brain-derived neurotrophic factor in autism. J Neuropathol Exp Neurol 71:289–297

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaynor CM, Handley SL (2001) Effects of nicotine on head-shakes and tryptophan metabolites. Psychopharmacol 153:327–333

    CAS  Google Scholar 

  • Ghaleiha A, Ghyasvand M, Mohammadi MR, Farokhnia M, Yadegari N, Tabrizi M, Hajiaghaee R, Yekehtaz H, Akhondzadeh S (2013) Galantamine efficacy and tolerability as an augmentative therapy in autistic children: a randomized, double-blind, placebo-controlled trial. J Psychopharmacol 28:677–685

    PubMed  Google Scholar 

  • Gibbons RD, Mann JJ (2013) Varenicline, smoking cessation, and neuropsychiatric adverse events. Am J Psychiatry 170:1–8

    Google Scholar 

  • Gillberg C, Billstedt E (2000) Autism and Asperger syndrome: coexistence with other clinical disorders. Acta Psychiat Scand 102:321–330

    CAS  PubMed  Google Scholar 

  • Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491

    CAS  PubMed  Google Scholar 

  • Granon S, Faure P, Changeux JP (2003) Executive and social behaviors under nicotinic receptor regulation. Proc Natl Acad Sci USA 100:9596–9691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Handen BL, Johnson CR, McAuliffe-Bellin S, Murray PJ, Hardan AY (2011) Safety and efficacy of donepezil in children and adolescents with autism: neuropsychological measures. J Child Adolesc Psychopharmacol 21:43–50

    Google Scholar 

  • Hardan AY, Handen BL (2002) A retrospective open trial of adjunctive donepezil in children and adolescents with autistic disorder. J Child Adolesc Psychopharmacol 12:237–241

    PubMed  Google Scholar 

  • Hardan AY, Minshew NJ, Melhem NM, Srihari S, Jo B, Bansal R, Leshavan MS, Stanley JA (2008) An MRI and proton spectroscopy study of the thalamus in children with autism. Psychiatry Res 163:97–105

    PubMed Central  PubMed  Google Scholar 

  • Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya K, Sekine Y, Suzuki K, Minabe Y, Takei N, Iyo M, Mori N (2006) Reduced serum levels of brain-derived neurotrophic factor in adult male patients with autism. Prog Neuropsychophramacol Biol Psychiatry 30:1529–1531

    CAS  Google Scholar 

  • Hazlett HC, Poe MD, Lightbody AA, Styner M, MacFall JR, Reiss AL, Piven J (2012) Trajectories of early brain volume development in fragile X syndrome and autism. J Am Acad Child Adolesc Psychiatry 51:921–933

    PubMed Central  PubMed  Google Scholar 

  • Heller JH, Spiridigliozzi GA, Dorraiswamy PM, Sullivan JA, Crissman BG, Kishnani PS (2004) Donepezil effects on language in children with Down syndrome: results of the first 22-week pilot clinical trial. Am J Med Genet 130A:325–356

    PubMed Central  PubMed  Google Scholar 

  • Heller JH, Spiridigliozzi GA, Crissman BG, Sullivan JA, Eelis RL, Li JS, Doraiswamy PM, Krishnan KR, Kishnani PS (2006) Safety and efficacy of rivastigmine in adolescents with down syndrome: a preliminary 20-week, open-label study. J Child Adolesc Psychopharmacol 16:755–765

    PubMed Central  PubMed  Google Scholar 

  • Heller JH, Spiridigliozzi GA, Crissman BG, McKillop JA, Yamamoto H, Kishnani PS (2010) Safety and efficacy of rivastigmine in adolescents with Down syndrome: long-term follow-up. J Child Adolesc Psychopharmacol 20:517–520

    PubMed Central  PubMed  Google Scholar 

  • Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Sanders HA, Kennedy DN, Caviness VS Jr (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 55:530–540

    Google Scholar 

  • Hertzman M (2003) Galantamine in the treatment of adult autism: a report of three clinical cases. Int J Psychiatry Medicine 33:395–398

    Google Scholar 

  • Hillmer AT, Wooten DW, Slesarev MS, Ahlers EO, Barnhart TE, Murali D, Schneider ML, Mukherjee J, Christian BT (2012) PET imaging of α4β2* nicotinic acetylcholine receptors: quantitative analysis of 18F-nifene kinetics in the nonhuman primate. J Nucl Med 53:1471–1480

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hillmer AT, Wooten DW, Farhoud M, Barnhart TE, Mukherjee J, Christian BT (2013) The effects of lobeline on α4β2* nicotinic acetylcholine receptor binding and uptake of [18F]nifene in rats. J Neurosci Methods 214:163–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hohmann CF, Berger-Sweeney J (1998) Cholinergic regulation of cortical development and plasticity: new twists to an old story. Perspect Dev Neurobiol 5:401–425

    CAS  PubMed  Google Scholar 

  • Hohnadel E, Bouchard K, Terry AV Jr (2007) Galantamine and donepezil attenuate pharmacologically induced deficits in prepulse inhibition in rats. Neuropharmacology 52:542–551

    PubMed Central  CAS  PubMed  Google Scholar 

  • Houghton PJ, Ren Y, Howes MJ (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23:181–199

    CAS  PubMed  Google Scholar 

  • Howson AL, Batth S, Ilivitsky V, Boisjoli A, Jaworski M, Mahoney C, Knott VJ (2004) Clinical and attentional effects of acute nicotine treatment in Tourette’s syndrome. Eur Psychiatry 19:102–112

    PubMed  Google Scholar 

  • Huh CYL, Danik M, Manseau F, Trudeau L-E, Williams S (2008) Chronic exposure to nerve growth factor increases acetylcholine and glutamate release from cholinergic neurons of the rat medial septum and diagonal band of Broca via Mechanisms mediated by p75NTR. J Neurosci 28:1404–1409

    CAS  PubMed  Google Scholar 

  • Jamain S, Betancur C, Quach H, Philippe A, Fellous M, Giros B, Gillberg C, Leboyer M, Bourgeron T, Study PARISP (2002) Linkage and association of the glutamate receptor 6 gene with autism. Mol Psychiatry 7:302–310

    PubMed Central  CAS  PubMed  Google Scholar 

  • James SJ, Pauly M, Melnyk S, Stewart PA, Schmidt BL, Lemcke N, Reynolds AM, Molloy CA, Johnson C, Clemons T, Hyman SL (2011) Dietary choline intake by children with autism is below the recommended dietary reference intake (DRI) established by the IOM. International meeting for autism research: dietary choline intake by children with autism is below the recommended dietary reference intake (DRI) established by the IOM INSAR meeting, 11 May 2011

    Google Scholar 

  • Kang K, Huang XF, Wang Q, Deng C (2009) Decreased density of serotonin 2A receptors in the superior temporal gyrus in schizophrenia—a postmortem study. Prog Neuropsychopharmacol Biol Psychiatry 33:867–871

    CAS  PubMed  Google Scholar 

  • Karvat G, Kimchi T (2013) Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology 39:831–840

    PubMed Central  PubMed  Google Scholar 

  • Katoh-Semba R, Wakako R, Komori T, Shigemi H, Miyazaki N, Ito H, Kumagai T, Tsuzuki M, Shigemi K, Yoshida F, Nakayama A (2007) Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls. Int J Dev Neurosci 25:367–372

    CAS  PubMed  Google Scholar 

  • Kawai H, Zago W, Berg DK (2002) Nicotinic α7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. J Neurosci 22:7903–7912

    CAS  PubMed  Google Scholar 

  • Kawashima K, Fujii T, Moriwaki Y, Misawa H, Horiguchi K (2012) Reconciling neuronally and nonneuronally derived acetylcholine in the regulation of immune function. Ann NY Acad Sci 1261:7–17

    CAS  PubMed  Google Scholar 

  • Kennedy DO, Wake G, Savelev S, Tildesley NT, Perry EK, Wesnes KA, Scholey AB (2003) Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties. Neuropsychopharmacology 28:1871–1881

    CAS  PubMed  Google Scholar 

  • Kishnani PS, Heller JH, Spiridigliozzi GA, Lott I, Escobar L, Richardson S, Zhang R, McRae T (2010) Donepezil for treatment of cognitive dysfunction in children with Down syndrome aged 10–17. Am J Med Genet A 152A:3028–3035

    PubMed  Google Scholar 

  • Koshimizu H, Leiter LM, Miyakawa T (2012) M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Mol Brain 5:10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krasnoperova MG, Simashkova NV, Bashina VM (2004) Use of cholinomimetics in the treatment of endogeneous autism in children. Zh Nevrol Psikhiatr Im S S Korsakova 104:35–39

    CAS  PubMed  Google Scholar 

  • Kroker KS, Rast G, Rosenbrock H (2011) Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP. Eur J Pharmacol 671:26–32

    CAS  PubMed  Google Scholar 

  • Lamping KG, Wess J, Cui Y, Nuno DW, Faraci FM (2004) Muscarinic (M) receptors in coronary circulation: gene-targeted mice define the role of M2 and M3 receptors in response to acetylcholine. Arterioscler Thromb Vasc Biol 24:1253–1258

    CAS  PubMed  Google Scholar 

  • Lauder JM, Schambra UB (1999) Morphogenetic roles of acetylcholine. Environ Health Perspect 107 (suppl 1):65–69

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lavine N, Reuben M, Clarke PB (1997) A population of nicotinic receptors is associated with thalamocortical afferents in the adult rat: laminal and areal analysis. J Comp Neurol 380:175–190

    CAS  PubMed  Google Scholar 

  • Le Couteur A Bailey A Goode S Pickles A Robertson S Gottesman I Rutter M (1996) A broader phenotype of autism: the clinical spectrum in twins. J Child Psychol Psychiatry 37:785–801

    CAS  PubMed  Google Scholar 

  • Lee M, Martin-Ruiz CM, Graham AJ, Court JA, Jaros E, Perry RH, Iverson P, Bauman ML, Perry EK (2002) Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 125:1483–1495

    CAS  PubMed  Google Scholar 

  • Levin ED, Caldwell DP (2006) Low-dose mecamylamine improves learning of rats in the radial-arm maze repeated acquisition procedure. Neurobiol Learn Mem 86:117–122

    CAS  PubMed  Google Scholar 

  • Levinson DF, Shi J, Wang K, Oh S, Riley B, Pulver AE, Wildenauer DB, Laurent C, Mowry BJ, Gejman PV, Owen MJ, Kendler KS, Nestadt G, Schwab SG, Mallet J, Nertney D, Sanders AR, Williams NM, Wormley B, Lasseter VK, Albus M, Godard-BauchĂ© S, Alexander M, Duan J, O’Donovan MC, Walsh D, O’Neill A, Papadimitriou GN, Dikeos D, Maier W, Lerer B, Campion D, Cohen D, Jay M, Fanous A, Eichhammer P, Silverman JM, Norton N, Zhang N, Hakonarson H, Gao C, Citri A, Hansen M, Ripke S, Schizophrenia Psychiatric GWAS Consortium, Dudbridge F, Holmans PA (2012) Genome-wide association study of multiplex schizophrenia pedigrees. Am J Psychiatry 169:963–973

    PubMed  Google Scholar 

  • Levy RB, Reyes AD, Aoki C (2008) Chollinergic modulation of local pyramid-interneuron synapses exhibiting divergent short-term dynamics in rat sensory cortex. Brain Res 1215:97–104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lewine JD, Andrews R, Chez M, Patil AA, Devinsky O, Smith M, Kanner A, Davis JT, Funke M, Jones G, Chong B, Provencal S, Weisend M, Lee RR, Orrison WW Jr (1999) Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics 104:405–418

    CAS  PubMed  Google Scholar 

  • Lippiello PM (2005) Nicotinic cholinergic antagonists: a novel approach for the treatment of autism. Med Hypotheses 66:985–990

    Google Scholar 

  • Mancama D, Arranz MJ, Landau S, Kerwin R (2003) Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 119B:2–6

    CAS  PubMed  Google Scholar 

  • Mariani J (1982) Extent of multiple innervation of Purkinje cells by climbing fibres in the olivocerebellar system of weaver, reeler, and staggerer mutant mice. J Neurobiol 13:119–126

    CAS  PubMed  Google Scholar 

  • Martin-Ruiz CM, Lee M, Perry RH, Bauman ML, Court JA, Perry EK (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res Brain Mol Res 123:81–90

    CAS  Google Scholar 

  • Massey KA, Zago WM, Berg DK (2006) BDNF up-regulates α7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons. Mol Cell Neurosci 33:8

    Google Scholar 

  • Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo MM (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 97:9579–9584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Metherte R (2004) Nicotinic acetylcholine receptors in sensory cortex. Learn Memory 11:50–59

    Google Scholar 

  • Mills Schumann C Hamstra J Goodlin-Jones BL Lotspeich LJ Kwon H Buonocore MH Lammers CR Reiss AL Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401

    Google Scholar 

  • Mills JL, Hediger ML, Molloy CA, Chrousos GP, Manning-Courtney P, Yu KF, Brasington M, England LJ (2007) Elevated levels of growth-related hormones in autism and autism spectrum disorder. Clin Endocrinol 67:230–237

    CAS  Google Scholar 

  • Minshew NJ, Sweeney JA, Bauman M (1997) Neurological aspects of autism. In: Cohen D, Volkmar F (eds) Handbook of autism and pervasive developmental disorders. Wiley, New York, pp 344–369

    Google Scholar 

  • Möller JC, Eggert KM, Unger M, Odin P, Chaudhuri KR, Oertel WH (2008) Clinical risk-benefit assessment of dopamine agonists. Eur J Neurol 15(S2):15–23

    PubMed  Google Scholar 

  • Mowla A, Mosavinasab M, Haghshenas H, Borhani Haghighi A (2007) Does serotonin augmentation have any effect on cognition and activities of daily living in Alzheimer’s disease? A double-blind, placebo-controlled clinical trial. J Clin Psychopharmacol 27:484–487

    CAS  PubMed  Google Scholar 

  • Mukaetova-Ladinska EB, Arnold H, Jaros E, Perry R, Perry E (2004) Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neurobiol Appl Neurol 30:615–623

    CAS  Google Scholar 

  • Mukaetova-Ladinska EB, Westwood J, Perry EK (2010) Cholinergic components in autism spectrum disorder. In: Blatt E (ed) The neurochemical basis autism. From Molecules to Minicolumns. Springer, Heidelberg, pp. 129–161

    Google Scholar 

  • Mukaetova-Ladinska EB, Schaffer W, Bronnikova TV, Westwood J, Perry EK (2012) Cholinergic therapy for autistic spectrum disorder. In: White CJ, Tait JE (eds) Cholinesterase: production, uses and health effects. Nova Science, New York, pp 33–66

    Google Scholar 

  • Mulley JC, Mefford HC (2011) Epilepsy and the new cytogenetics. Epilepsia 52:423–432

    PubMed Central  PubMed  Google Scholar 

  • Murphy M, Bolton PF, Pickles A, Fombonne E, Piven J, Rutter M (2000) Personality traits of the relatives of autistic probands. Psychol Med 30:1411–1424

    CAS  PubMed  Google Scholar 

  • Nathanson NM (2008) Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 119:33–43

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, Hansen RL, Phillips TM (2000) Neuropeptides and neurotrophins in neonatal blood of children with autism, mental retardation and cerebral palsy. Neurology 54:A247

    Google Scholar 

  • Nelson PG, Kuddo T, Song EY, Dambrosia JM, Kohler S, Satyanarayana G, Vandunk C, Grether JK, Nelson KB (2006) Selected neurotrophins, neuropeptides, and cytokines: developmental trajectory and concentrations in neonatal blood of children with autism or Down syndrome. Int J Dev Neurosci 24:73–80

    CAS  PubMed  Google Scholar 

  • Nicolson R, Craven-Thuss B, Smith J (2006) A prospective, open-label trial of galantamine in autistic disorder. J Child Adolesc Psychopharmacol 16:621–629

    PubMed  Google Scholar 

  • Niederhofer H, Staffen W, Mair A (2002) Galantamine may be effective in treating autistic disorder. BMJ 32:1422

    Google Scholar 

  • Palma E, Conti L, Roseti C, Limatola C (2012) Novel approaches to study the involvement of α7-nAChR in human diseases. Curr Drug Targets 13:579–586

    CAS  PubMed  Google Scholar 

  • Palmen SMJC, Hulshoff Pol HE, Kemner C, Schnack HG, Durston S, Lahuis BE, Kahn RS, van Engeland H (2004) Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychol Med 34:1–10

    Google Scholar 

  • Pandey SK, Pan S, Kant R, Kuruvilla SA, Pan ML, Mukherjee J (2012) Synthesis and evaluation of 3-123I-iodo-5-[2-(S)-3-pyrrolinylmethoxy]-pyridine (niodene) as a potential nicotinic α4β2 receptor imaging agent. Bioorg Med Chem Lett 22:7610–7614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pennell PB, Burdette DE, Ross DA, Henry TR, Albin RL, Sackellares JC, Frey KA (1999) Muscarinic receptor loss and preservation of presynaptic cholinergic terminals in hippocampal scelrosis. Epilepsia 40:38–46

    CAS  PubMed  Google Scholar 

  • Pepeu G, Giovannini MG (2004) Changes in acetylcholine extracellular levels during cognitive processes. Learn Memory 11:21–27

    Google Scholar 

  • Perry EK, Lee M, Martin-Ruiz CM, Court JA, Volsen SG, Merrit J, Folly E, Iversen PE, Bauman ML, Perry RH, Wenk GL (2001) Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am J Psychiatry 158:1058–1066

    CAS  PubMed  Google Scholar 

  • Petersen AK, Ahmad A, Shafiq M, Brown-Kipphut B, Fong CT, Anwar Iqbal M (2013) Deletion 1q43 encompassing only CHRM3 in a patient with autistic disorder. Eur J Med Genet 56:118–122

    PubMed  Google Scholar 

  • Pickles A, Starr E, Kazak S, Bolton P, Papanikolaou K, Bailey A, Goodman R, Rutter M (2000) Variable expression of the autism broader phenotype: findings from extended pedigrees. J Child Psychol Psychiatry 41:491–502

    CAS  PubMed  Google Scholar 

  • Ragozzino ME, Artis S, Singh A, Twose TM, Beck JE, Messer WS Jr (2012) The selective M1 muscarinic cholinergic agonist CDD-0102A enhances working memory and cognitive flexibility. J Pharmacol Exp Ther 340:588–594

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ray MA, Graham AJ, Lee M, Perry RH, Court JA, Perry EK (2005) Neuronal nicotinic acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus. Neurobiol Dis 19:366–377

    CAS  PubMed  Google Scholar 

  • Ribeiz SR, Bassitt DP, Arrais JA, Avila R, Steffens DC, Bottino CM (2010) Cholinesterase inhibitors as adjunctive therapy in patients with schizophrenia and schizoaffective disorder: a review and meta-analysis of the literature. CNS Drugs 24:303–317

    CAS  PubMed  Google Scholar 

  • Riley B, Williamson M, Collier D, Wilkie H, Makoff A (2002) A 3-Mb map of a large Segmental duplication overlapping the alpha7-nicotinic acetylcholine receptor gene (CHRNA7) at human 15q13-q14. Genomics 79:197–209

    CAS  PubMed  Google Scholar 

  • Rötering S, Scheunemann M, Fischer S, Hiller A, Peters D, Deuther-Conrad W, Brust P (2013). Radiosynthesis and first evaluation in mice of [(18)F]NS14490 for molecular imaging of α7 nicotinic acetylcholine receptors. Bioorg Med Chem 21:2635–2642

    PubMed  Google Scholar 

  • Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2:255–267

    CAS  PubMed  Google Scholar 

  • Sadakata T, Shinoda Y, Oka M, Sekine Y, Sato Y, Saruta C, Miwa H, Tanaka M, Itohara S, Furuichi T (2012) Reduced axonal localization of a Caps2 splice variant impairs axonal release of BDNF and causes autistic-like behavior in mice. Proc Natl Acad Sci U S A 109:21104–21109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scarr E, Sundram S, Keriakous D, Dean B (2007) Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. Biol Psychiatry 61:1161–1170

    CAS  PubMed  Google Scholar 

  • Scholey AB, Tildesley NT, Ballard CG, Wesnes KA, Tasker A, Perry EK, Kennedy DO (2008) An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology (Berl) 198:127–139

    CAS  Google Scholar 

  • Sheikh AM, Malik M, Wen G, Chauhan A, Chauhan V, Gong CX, Liu F, Brown WT, Li X (2010) BDNF-Akt-Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. J Neurosci Res 88:2641–2647

    CAS  PubMed  Google Scholar 

  • Shirey JK, Brady AE, Jones PJ, Davis AA, Bridges TM, Kennedy JP, Jadhav SB, Menon UN, Xiang Z, Watson ML, Christian EP, Doherty JJ, Quirk MC, Snyder DH, Lah JJ, Levey AI, Nicolle MM, Lindsley CW, Conn PJ (2009) A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 29:14271–14286

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shuang M, Liu J, Jia MX, Yang JZ, Wu SP, Gong XH, Ling YS, Ruan Y, Yang XL, Zhang D (2004) Family-based association study between autism and glutamate receptor 6 gene in Chinese Han trios. Am J Med Genetics 131:48–50

    Google Scholar 

  • Shytle RD, Silver AA, Philipp MK, McConville BJ, Sanberg PR (1998) Transdermal nicotine for Tourette’s syndrome. Drug Dev Res 38:290–298

    Google Scholar 

  • Spiridigliozzi GA, Heller JH, Crissman BG, Sullivan-Saarela JA, Eelis R, Dawson D, Li J, Kishnani PS (2007) Preliminary study of safety and efficacy of donepezil hydrochloride in children with Down syndrome: a clinical report series. Am J Med Genet A 143A:1408–1413

    CAS  PubMed  Google Scholar 

  • Srivastava RK, Agarwal M, Pundhir A (2011) Role of dopenezil in autism: its conductiveness in psychopharmacology. Case reports in psychiatry ID563204

    Google Scholar 

  • Steinlein OK, Bertrand D (2008) Neuronal nicotinic acetylcholine receptors: from the genetic analysis to neurological diseases. Biochem Pharmacol 76:1175–1183

    CAS  PubMed  Google Scholar 

  • Stuart-Hamilton I, Griffith G, Totsika V, Nash S, Hastings RP, Felce D, Kerr M (2009) The circumstances and support needs of older people with Autism. Report for the Welsh Assembly Government, Welsh Assembly, Cardiff

    Google Scholar 

  • Sylvester Vizi E, RĂłzsa B, Mayer A, Kiss JP, Zelles T, Lendvai B (2004) Further evidence for the functional role of nonsynaptic nicotinic acetylcholine receptors. Eur J Pharmacol 500:499–508.

    Google Scholar 

  • Taly A, Corringer P-J, Guedin D, Lestage P, Changeux J-P (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 8:733–750

    CAS  PubMed  Google Scholar 

  • Tata AM, Cursi S, Biagioni S, Augusti-Tocco G (2003) Cholinergic modulation of neurofilament expression and neurite outgrowth in chick sensory neurons. J Neurosci Res 73:227–234

    CAS  PubMed  Google Scholar 

  • Tildesley NT, Kennedy DO, Perry EK, Ballard CG, Savelev S, Wesnes KA, Scholey AB (2003) Salvia lavandulaefolia (Spanish sage) enhances memory in healthy young volunteers. Pharmacol Biochem Behav 75:669–674

    CAS  PubMed  Google Scholar 

  • Tildesley NT, Kennedy DO, Perry EK, Ballard CG, Wesnes KA, Scholey AB (2005) Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiol Behav 83:699–709

    CAS  PubMed  Google Scholar 

  • Torrao AS, Lindstrom JM, Britto LR (2003) Nicotine and alpha-bungarotoxin modify the dendritic growth of cholinoceptive neurons in the developing chick tectum. Brain Res Dev Brain Res 143:115–118

    CAS  PubMed  Google Scholar 

  • Vasconcelos MM, Brito AR, Domingues RC, da Cruz LC, Gasparetto EL, Werner J, Gonc Alves JP (2008) Proton magnetic resonance spectroscopy in school-aged autistic children. J Neuroimaging 18:288–295

    PubMed  Google Scholar 

  • VilarĂł MT, Palacios JM, Mengod G (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Letts 114:154–159

    Google Scholar 

  • Walker BR, Diefenbach KS, Parikh TN (2007) Inhibition within the nucleus tractus solitarius (NTS) ameliorates environmental exploration deficits due to cerebellum lesions in an animal model for autism. Behav Brain Res 176:109–120

    CAS  PubMed  Google Scholar 

  • Wheless JW, Simos PG, Butler IJ (2002) Language dysfunction in epileptic conditions. Semin Pediatr Neurol 9:218–228

    PubMed  Google Scholar 

  • White SW, Oswald D, Ollendick T, ScahillL (2009) Anxiety in children and adolescents with autism spectrum disorders. Clin Psychol Rev 29:216–229

    Google Scholar 

  • Wiker C, Schilstrom B, Sandback C, Wadenberg ML, Svensson TH (2008) Adjunctive galantamine, but not donepezil, enhances the antipsychotic-like effect of raclopride in rats. Int J Neuropsychopharmacol 14:1–6

    Google Scholar 

  • Williams NM, Franke B, Mick E, Anney RJ, Freitag CM, Gill M, Thapar A, O’Donovan MC, Owen MJ, Holmans P, Kent L, Middleton F, Zhang-James Y, Liu L, Meyer J, Nguyen TT, Romanos J, Romanos M, Seitz C, Renner TJ, Walitza S, Warnke A, Palmason H, Buitelaar J, Rommelse N, Vasquez AA, Hawi Z, Langley K, Sergeant J, Steinhausen HC, Roeyers H, Biederman J, Zaharieva I, Hakonarson H, Elia J, Lionel AC, Crosbie J, Marshall CR, Schachar R, Scherer SW, Todorov A, Smalley SL, Loo S, Nelson S, Shtir C, Asherson P, Reif A, Lesch KP, Faraone SV (2012) Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3. Am J Psychiatry 169:195–204

    PubMed Central  PubMed  Google Scholar 

  • Wonnacott, S, Sidhpura N, Balfour DJ (2005) Nicotine: from molecular mechanisms to behaviour. Curr Opinion Pharmacol 5:53–59

    CAS  Google Scholar 

  • Yasui DH, Scoles HA, Horike S, Meguro-Horike M, Dunaway KW, Schroeder DI, Lasalle JM (2011) 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum Mol Genet 20:4311–4323

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo JH, Valdovinos MG, Williams DC (2007) Relevance of donepezil in enhancing learning and memory in special populations: a review of the literature. J Autism Dev Disord 37:1883–1901

    PubMed  Google Scholar 

  • Zeisel SH (1986) Dietary influences on neurotransmission. Adv Pediatr 33:23–47

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeta B. Mukaetova-Ladinska MD, PhD, MRCPsych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mukaetova-Ladinska, E., Perry, E. (2015). Molecular Basis of Cholinergic Changes in Autism Spectrum Disorders and Relevance for Treatment Interventions. In: Fatemi, S. (eds) The Molecular Basis of Autism. Contemporary Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2190-4_15

Download citation

Publish with us

Policies and ethics