Skip to main content

The Neuropathology of Autism

  • Chapter
  • First Online:
The Molecular Basis of Autism

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Most researchers agree that autism spectrum disorders (ASD) comprise a group of developmental conditions whose pathological substratum resides in the brain. Despite the significance of neuropathological research in ASD, relatively few studies have been performed on the subject. The limited number of studies may be accounted, in part, by the scarcity of available tissues in different brain banks. Furthermore, variability within each patient population in regards to pre-agonal/agonal conditions, medications, comorbidity (e.g., seizures), and postmortem interval may all account for dissimilar findings among the limited number of reported studies. Only recently has a clear picture begun to emerge as to the neuropathological underpinnings of ASD. The presence of heterotopias, laminar effacement, and minicolumnopathy suggest that heterochronic divisions of periventricular germinal cells may provide for the asynchronous development of pyramidal cells and interneurons within the cerebral cortex. A similar defect within the rhombic lip may help explain brainstem and cerebellar malformations. Autism spectrum disorders are multifactorial conditions wherein a genetic proclivity and environmental stressors act at particular times during brain development to provide an autistic phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarkrog T (1968) Organic factors in infantile psychoses and borderline psychoses: retrospective study of 45 cases subjected to pneumoencephalography. Dan Med Bull 15:283–288

    CAS  PubMed  Google Scholar 

  • Arin DM, Bauman ML, Kemper TL (1991) The distribution of Purkinje cell loss in the cerebellum in autism. Neurology 41(3 Suppl. 1):307

    Google Scholar 

  • Avino TA, Hutsler JJ (2010) Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders. Brain Res 1360:138–146

    Article  CAS  PubMed  Google Scholar 

  • Azmitia EC, Singh JS, Hou XP, Wegiel J (2011) Dystrophic serotonin axons in postmortem brains from young autism patients. Anat Rec 294:1653–1662

    Article  CAS  Google Scholar 

  • Bailey A, Luthert P, Bolton P, Le Couteur A, Rutter M, Harding B (1993) Autism and megalencephaly. Lancet 341:1225–1226

    Article  CAS  PubMed  Google Scholar 

  • Bailey A, Luthert P, Dean A et al (1998). A clinicopathological study of autism. Brain 121:889–905

    Article  PubMed  Google Scholar 

  • Bauman ML (1991) Microscopic neuroanatomic abnormalities in autism. Pediatrics 87:791–796

    CAS  PubMed  Google Scholar 

  • Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874

    Article  CAS  PubMed  Google Scholar 

  • Bauman ML, Kemper TL (1994) Neuroanatomical observations of the brain in autism. In: Bauman ML, Kemper TL (eds) The neurobiology of autism. Johns Hopkins University Press, Baltimore, pp 119–145

    Google Scholar 

  • Bauman ML, Kemper TL (1996) Observations on the Purkinje cells in the cerebellar vermis in autism. J Neuropathol Exp Neurol 55:613

    Article  Google Scholar 

  • Bauman ML, Kemper TL (2005) Structural brain anatomy in autism: what is the evidence? In: Bauman ML, Kemper TL (eds) The neurobiology of autism, 2nd edn. Johns Hopkins University Press, Baltimore, pp 121–135

    Google Scholar 

  • Blumbergs P, Reilly P, Vink R (2008) Trauma. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology. Hodder Arnold, London, pp 733–832

    Google Scholar 

  • Briacombe MB, Pickett R, Pickett J (2007) Autism postmortem neuroinformatic resource: the autism tissue program (ATP) informatics portal. J Autism Dev Disord 37:574–579

    Article  Google Scholar 

  • Buxhoeveden D, Switala AE, Roy E, Casanova MF (2000) Quantitative analysis of cell columns in the cerebral cortex. J Neurosci Methods 97:7–17

    Article  CAS  PubMed  Google Scholar 

  • Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Press, Cambridge

    Google Scholar 

  • Casanova MF (2013) The minicolumnopathy of autism. In: Buxbaum JD, Hof PR (eds) The neuroscience of autism spectrum disorders. Academic, London, pp 327–333

    Chapter  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala A, Roy E (2002a) Minicolumnar pathology in autism. Neurology 58:428–432

    Article  PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002b) Neuronal density and architecture (gray level index) in the brains of autistic patients. J Child Neurol 17:515–521

    Article  PubMed  Google Scholar 

  • Casanova MF, Van Kooten IAJ, Switala AE et al (2006a) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303

    Article  PubMed  Google Scholar 

  • Casanova MF, Van Kooten I, Switala AE et al (2006b). Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clin Neurosci Res 6:127–133

    Article  Google Scholar 

  • Casanova MF, Trippe J 2nd, Switala AE (2007) A temporal continuity to the vertical organization of the human neocortex: a study spanning prenatal development and aging. Cereb Cortex 17:130–137

    Article  PubMed  Google Scholar 

  • Casanova MF, Konkachbaev AI, Switala AE, Elmaghraby AD (2008) Recursive trace line method for detecting myelinated bundles: a comparison study with pyramidal cell arrays. J Neurosci Methods 168:367–372

    Article  PubMed Central  PubMed  Google Scholar 

  • Casanova MF, El-Baz A, Vanbogaert E, Narahari P, Switala A (2010). A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathol 20:451–458

    Article  PubMed  Google Scholar 

  • Casanova MF, El-Baz AS, Kamat SS et al (2013) Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathol Commun 1(1):67

    Article  PubMed Central  PubMed  Google Scholar 

  • Chan KK, Lowe J (2002) Techniques in neuropathology. In: Bancroft JD, Gamble M (eds) Theory and practice of histological techniques. Churchill Livingstone, London, pp 371–414

    Google Scholar 

  • Coleman P, Romano J, Lapham L, Simon W (1985) Cell counts in cerebral cortex of an autistic patients. J Autism Dev Disord 15:245–255

    Article  CAS  PubMed  Google Scholar 

  • Courchesne E, Müller RA, Saitoh O (1999) Brain weight in autism: normal in the majority of cases, megalencephalic in rare cases. Neurology 52:1057–1059

    Article  CAS  PubMed  Google Scholar 

  • Courchesne E, Mouton PR, Calhoun ME et al (2011). Neuron number and size in prefrontal cortex of children with autism. JAMA 306:2001–2010

    Article  CAS  PubMed  Google Scholar 

  • Crooks R, Mitchel T, Thorn M (2000) Patterns of cerebellar atrophy in patients with chronic epilepsy: a quantitative neuropathological study. Epilepsy Res 41:63–73

    Article  CAS  PubMed  Google Scholar 

  • Darby JK (1976) Neuropathologic aspects of psychosis in children. J Autism Child Schizophr 6:339–352

    Article  CAS  PubMed  Google Scholar 

  • Darby JK, Clark L (1992) Autism syndrome as a final common pathway of behavioral expression for many organic disorders. Am J Psychiatry 149:146

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J, Hendry S, Hashikawa T, Molinari M, Jones EG (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37:655–673

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Halt AR, Realmuto G Earle J, Kist DA, Thuras P, Merz A (2002) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 22:171–175

    Article  PubMed  Google Scholar 

  • Gillberg C, Steffenburg S (1989) Autistic behavior in Moebius syndrome. Acta Paediatr Scand 78:314–316

    Article  CAS  PubMed  Google Scholar 

  • Hof PR, Knabe R, Bovier P, Bouras C (1991) Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol 82:321–326

    Article  CAS  PubMed  Google Scholar 

  • Hutsler JJ, Avino TA (2013) Sigmoid fits to located and characterized cortical boundaries in human cerebral cortex. J Neurosci Methods 212:242–246

    Article  PubMed  Google Scholar 

  • Hutsler JJ, Love T, Zhang H (2007) Histologic and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 61:449–457

    Article  PubMed  Google Scholar 

  • Itabashi HH, Andrews JM, Tomiyasu U, Erlich SS, Sathyavagiswaran L (2007) Forensic neuropathology: a practical review of the fundamentals. Elsevier, New York

    Google Scholar 

  • Jordan BD (2009) Brain injury in boxing. Clin Sports Med 28:561–578

    Article  PubMed  Google Scholar 

  • Kemper TL, Bauman ML (1993) The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 11:175–187

    CAS  PubMed  Google Scholar 

  • Kennedy DP, Semendeferi K, Courchesne E (2007) No reduction of spindle neuron number in frontoinsular cortex in autism. Brain Cogn 64:124–129

    Article  PubMed  Google Scholar 

  • Kulesza RJ, Mangunay K (2008) Morphological features of the medial superior olive in autism. Brain Res 1200:132–137

    Article  CAS  PubMed  Google Scholar 

  • Laurence JA, Fatemi SH (2005) Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4:206–210

    Article  CAS  PubMed  Google Scholar 

  • Lawrence YA, Kemper TL, Bauman ML, Blatt GJ (2010) Parvalbumin-, calbindin-, and caretinin-immunoreactive hippocampal interneurn density in autism. Acta Neurol Scand 121:99–108

    Article  CAS  PubMed  Google Scholar 

  • Lorente de Nó R (1938) The cerebral cortex: architecture, intracortical connections, and motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, London, pp 291–339

    Google Scholar 

  • Ludwig J (2002) Handbook of autopsy practice. Humana Press, Totowa

    Book  Google Scholar 

  • Martchek M, Thevarkunnel S, Bauman M, Blatt G, Kemper T (2006) Lack of evidence of neuropathology in the locus coeruleus in autism. Acta Neuropathol 111:497–499

    Article  CAS  PubMed  Google Scholar 

  • Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain: cortical organization and the group-selective theory of higher brain function. MIT Press, Cambridge, pp 7–51

    Google Scholar 

  • Mountcastle VB (1998) Perceptual neuroscience: the cerebral cortex. Harvard University Press, Cambridge

    Google Scholar 

  • Otsu N (1979) A threshold selection method from grey-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  • Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. AJNR 23:1074–1087

    PubMed  Google Scholar 

  • Pickett J, London E (2005) The neuropathology of autism: a review. J Neuropathol Exp Neurol 64:925–935

    Article  PubMed  Google Scholar 

  • Raymond GV, Bauman ML, Kemper TL (1996) Hippocampus in autism: a Golgi analysis. Acta Neuropathol 91:117–119

    Article  CAS  PubMed  Google Scholar 

  • Redcay E, Courchesne E (2005) When is the brain enlarged in autism? A metaanalysis of all brain size reports. Biol Psychiatry 58:1–9

    Article  PubMed  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J (1996) Embryological origins for autism: developmental abnormalities of the cranial nerve motor nuclei. J Comp Neurol 370:247–261

    Article  CAS  PubMed  Google Scholar 

  • Santos M, Uppal N, Butti C et al (2011) Von Economo neurons in autism: a stereological study of the frontoinsular cortex in children. Brain Res 1380:206–217

    Article  CAS  PubMed  Google Scholar 

  • Schleicher A, Palomero-Gallagher N, Morosan P, Eickhoff SB, Kowalski T, de Vos K, Amunts K, Zilles K (2005) Quantitative architectural analysis: a new approach to cortical mapping. Anat Embryol 210:373–386

    Article  CAS  PubMed  Google Scholar 

  • Schmitz C, Rezaie P (2008) The neuropathology of autism: where do we stand? Neuropathol Appl Neurobiol 34:4–11

    CAS  PubMed  Google Scholar 

  • Schumann CM, Amaral DG (2005) Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 491:320–329

    Article  PubMed Central  PubMed  Google Scholar 

  • Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679

    Article  CAS  PubMed  Google Scholar 

  • Schumann CM, Buonocore MH, Amaral DG (2001) Magnetic resonance imaging of the postmortem brain. J Autism Dev Disord 31:561–568

    Article  CAS  PubMed  Google Scholar 

  • Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ (2009) The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 118:673–684

    Article  PubMed  Google Scholar 

  • Soto-Ares G, Delmaire C, Deries B, ValleeL, Pruvo JP (2000) Cerebellar cortical dysplasia: MR findings in a complex entity. AJNR 21:1511–1519

    CAS  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Szentágothai J, Arbib MA (1975) Conceptual models of neural organization. MIT Press, Cambridge

    Google Scholar 

  • Thevarkunnel S, Martchek MA, Kemper TL, Bauman ML, Blatt GJ (2004) A neuroanatomical study of the brainstem nuclei in autism. Abstr Soc Neurosci 1028.10

    Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    Article  CAS  PubMed  Google Scholar 

  • Von Bonin G Mehler W (1971) On columnar arrangement of nerve cells in cerebral cortex. Brain Res 27:1–9

    Article  Google Scholar 

  • Von Economo CF, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien

    Google Scholar 

  • Wegiel J, Kuchna I, Nowicki K et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119:755–770

    Article  PubMed Central  PubMed  Google Scholar 

  • Weidenheim KM, Goodman L, Dickson DW, Gillberg C, Rastam M, Rapin I (2001) Etiology and pathophysiology of autistic behavior: clues from two cases with an unusual variant of neuroaxonal dystrophy. J Child Neurol 16:809–819

    Article  CAS  PubMed  Google Scholar 

  • Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ (2008) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28K. Cerebellum 7:406–416

    Article  CAS  PubMed  Google Scholar 

  • Williams RS, Hauser SI, Purpura DP, DeLong GR, Swisher CN (1980) Autism and mental retardation: neuropathologic studies performed in four retarded persons with autistic behavior. Arch Neurol 37:749–753

    Article  CAS  PubMed  Google Scholar 

  • Yates AJ, Thelmo W, Pappius HM (1975) Postmortem changes in the chemistry and histology of normal and edematous brains. Am J Pathol 79:555–564

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30:14595–14609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Casanova MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Casanova, M. (2015). The Neuropathology of Autism. In: Fatemi, S. (eds) The Molecular Basis of Autism. Contemporary Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2190-4_8

Download citation

Publish with us

Policies and ethics