Skip to main content

Part of the book series: Springer Series in Statistics ((SSS))

  • 5842 Accesses

Abstract

This chapter looks at a subclass of VGLMs called Reduced-Rank VGLMs (RR-VGLMs). They are built on the idea of latent variables, and are the same as VGLMs except some of their constraint matrices are estimated. RR-VGLMs have with interesting properties and applications. It is a dimension-reduction method, e.g., when applied to the multinomial logit model it leads to the stereotype model. Another related class of models is row–column interaction models (RCIMs), and two-parameter RR-VGLMs are described in this chapter. Some applications mentioned here and/or developed elsewhere include quasi-variances and indirect gradient analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti, A. 2013. Categorical Data Analysis (Third ed.). Hoboken: Wiley.

    MATH  Google Scholar 

  • Ahn, S. K. and G. C. Reinsel 1988. Nested reduced-rank autoregressive models for multiple time series. Journal of the American Statistical Association 83(403):849–856.

    MATH  MathSciNet  Google Scholar 

  • Anderson, J. A. 1984. Regression and ordered categorical variables. Journal of the Royal Statistical Society, Series B 46(1):1–30. With discussion.

    Google Scholar 

  • Anderson, T. W. 1951. Estimating linear restrictions on regression coefficients for multivariate normal distributions. Annals of Mathematical Statistics 22(3):327–351.

    Article  MATH  MathSciNet  Google Scholar 

  • Andrews, H. P., R. D. Snee, and M. H. Sarner 1980. Graphical display of means. American Statistician 34(4):195–199.

    Google Scholar 

  • Baker, F. B. and S.-H. Kim 2004. Item Response Theory: Parameter Estimation Techniques (Second ed.). New York: Marcel Dekker.

    Google Scholar 

  • Bock, R. D. and M. Leiberman 1970. Fitting a response model for n dichotomously scored items. Psychometrika 35(2):179–197.

    Article  Google Scholar 

  • Carroll, R. J. and D. Ruppert 1988. Transformation and Weighting in Regression. New York: Chapman and Hall.

    Book  MATH  Google Scholar 

  • de Gruijter, D. N. M. and L. J. T. Van der Kamp 2008. Statistical Test Theory for the Behavioral Sciences. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • Firth, D. 2003. Overcoming the reference category problem in the presentation of statistical models. Sociological Methodology 33(1):1–18.

    Article  Google Scholar 

  • Firth, D. and R. X. de Menezes 2004. Quasi-variances. Biometrika 91(1):65–80.

    Article  MATH  MathSciNet  Google Scholar 

  • Gabriel, K. R. and S. Zamir 1979. Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21(4):489–498.

    Article  MATH  Google Scholar 

  • Goodman, L. A. 1981. Association models and canonical correlation in the analysis of cross-classifications having ordered categories. Journal of the American Statistical Association 76(374):320–334.

    MathSciNet  Google Scholar 

  • Hilbe, J. M. 2011. Negative Binomial Regression (Second ed.). Cambridge, UK; New York, USA: Cambridge University Press.

    Google Scholar 

  • Izenman, A. J. 1975. Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis 5(2):248–264.

    Article  MATH  MathSciNet  Google Scholar 

  • Izenman, A. J. 2008. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. New York, USA: Springer.

    Book  Google Scholar 

  • Liu, H. and K. S. Chan 2010. Introducing COZIGAM: An R package for unconstrained and constrained zero-inflated generalized additive model analysis. Journal of Statistical Software 35(11):1–26.

    Article  Google Scholar 

  • McCullagh, P. and J. A. Nelder 1989. Generalized Linear Models (Second ed.). London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Mosteller, F. and J. W. Tukey 1977. Data Analysis and Regression. Reading, MA, USA: Addison-Wesley.

    Google Scholar 

  • Rasch, G. 1961. On general laws and the meaning of measurement in psychology. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability 4:321–333.

    Google Scholar 

  • Reinsel, G. C. and R. P. Velu 1998. Multivariate Reduced-Rank Regression: Theory and Applications. New York, USA: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Reinsel, G. C. and R. P. Velu 2006. Partically reduced-rank multivariate regression models. Statistica Sinica 16(3):899–917.

    MATH  MathSciNet  Google Scholar 

  • Richards, F. S. G. 1961. A method of maximum-likelihood estimation. Journal of the Royal Statistical Society, Series B 23(2):469–475.

    MATH  MathSciNet  Google Scholar 

  • Schenker, N. and J. F. Gentleman 2001. On judging the significance of differences by examining the overlap between confidence intervals. American Statistician 55(3):182–186.

    Article  MathSciNet  Google Scholar 

  • Seber, G. A. F. and C. J. Wild 1989. Nonlinear Regression. New York, USA: Wiley.

    Book  MATH  Google Scholar 

  • Smyth, G. K. 1996. Partitioned algorithms for maximum likelihood and other nonlinear estimation. Statistics and Computing 6(3):201–216.

    Article  Google Scholar 

  • Smyth, G. K., A. F. Huele, and A. P. Verbyla 2001. Exact and approximate REML for heteroscedastic regression. Statistical Modelling 1(3):161–175.

    Article  MATH  Google Scholar 

  • Taylor, L. R. 1961. Aggregation, variance and the mean. Nature 189(4766): 732–735.

    Article  Google Scholar 

  • Yee, T. W. 2014. Reduced-rank vector generalized linear models with two linear predictors. Computational Statistics & Data Analysis 71:889–902.

    Article  MathSciNet  Google Scholar 

  • Yee, T. W. and A. F. Hadi 2014. Row-column interaction models, with an R implementation. Computational Statistics 29(6):1427–1445.

    Article  MATH  MathSciNet  Google Scholar 

  • Yee, T. W. and T. J. Hastie 2003. Reduced-rank vector generalized linear models. Statistical Modelling 3(1):15–41.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Thomas Yee

About this chapter

Cite this chapter

Yee, T.W. (2015). Reduced-Rank VGLMs. In: Vector Generalized Linear and Additive Models. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2818-7_5

Download citation

Publish with us

Policies and ethics