Skip to main content

The Vasculature in the Diseased Eye

  • Chapter
  • First Online:
Endothelial Signaling in Development and Disease
  • 1026 Accesses

Abstract

The eye serves as a mirror to the body vasculature. Changes in the retinal vasculature translate into the prediction of risk from cardiovascular disease. The mammalian retinal vasculature is the most widely used tissue to study physiological angiogenesis. Thus, the retinal vasculature plays a particular role in research linking various fields of expertise. Diabetic retinopathy is often cited as the paradigm for an angiogenic disease. However, there is much more to the diabetic eye, as the disease characteristics need to be considered to understand commonalities and differences f.e. to tumor angiogenesis. Primarily. diabetic retinopathy is vasoregressive in nature. Progressive capillary dropout drives sight-threatening proliferative diabetic retinopathy and macular edema by inflaming a hypoxic response. Although there is no animal model that qualitatively and quantitatively mimicks advanced human eye disease, they reflect the complex hyperglycemia-driven interaction of the neurovascular unit better than any in vitro systems. Downstream of high ambient glucose, multiple biochemical abnormalities exist which affect not only vascular cells of the capillary network but the entire neurovascular unit. Novel concepts that arise from tumor research can be useful to limit the neovascular of permeability-enhancing response to hypoxia in the diabetic retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yau JW, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hammes HP, et al. Diabetic retinopathy in type 1 diabetes-a contemporary analysis of 8,784 patients. Diabetologia. 2011;54(8):1977–84.

    Article  CAS  PubMed  Google Scholar 

  3. Kyto JP, et al. Decline in the cumulative incidence of severe diabetic retinopathy in patients with type 1 diabetes. Diabetes Care. 2011;34(9):2005–7.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366(13):1227–39.

    Article  CAS  PubMed  Google Scholar 

  5. Klein R. Diabetic retinopathy and nephropathy. In: Cortes P, Mogensen CE, editors. The diabetic kidney, Totowa: Humana Press; 2006. p. 473–98.

    Chapter  Google Scholar 

  6. Knudsen ST, et al. Macular edema reflects generalized vascular hyperpermeability in type 2 diabetic patients with retinopathy. Diabetes Care. 2002;25(12):2328–34.

    Article  PubMed  Google Scholar 

  7. Knudsen LL, et al. The North Jutland County Diabetic Retinopathy Study (NCDRS) 2. Non-ophthalmic parameters and clinically significant macular oedema. Br J Ophthalmol. 2007;91(12):1593–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Google Scholar 

  9. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet. 1998;352(9131):837–53.

    Google Scholar 

  10. Hirsch IB, Brownlee M. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care. 2007;30(1):186-7. author reply 188–9.

    Article  PubMed  Google Scholar 

  11. Klein R, et al. Association of ocular disease and mortality in a diabetic population. Arch Ophthalmol. 1999;117(11):1487–95.

    Article  CAS  PubMed  Google Scholar 

  12. Kramer CK, et al. Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: meta-analysis of observational studies. Diabetes Care. 34(5):1238–44.

    Google Scholar 

  13. Robinson R, et al. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech. 5(4):444–56.

    Google Scholar 

  14. Hammes HP, et al. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes. 2004;53(4):1104–10.

    Article  CAS  PubMed  Google Scholar 

  15. Nishikawa T, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.

    Article  CAS  PubMed  Google Scholar 

  16. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    Article  CAS  PubMed  Google Scholar 

  17. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 107(9):1058–70.

    Google Scholar 

  18. Hammes HP, et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 2003;9(3):294–9.

    Article  CAS  PubMed  Google Scholar 

  19. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, et al. Receptor for advanced glycation end product expression in experimental diabetic retinopathy. Ann N Y Acad Sci. 2008;1126:42–5.

    Article  CAS  PubMed  Google Scholar 

  21. Yao D, et al. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem. 2007;282(42):31038–45.

    Article  CAS  PubMed  Google Scholar 

  22. Thangarajah H, et al. HIF-1alpha dysfunction in diabetes. Cell Cycle. 2010;9(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  23. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Geraldes P, et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med. 2009;15(11):1298–306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pfister F, et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes. 2008;57(9):2495–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zheng L, Kern TS. Role of nitric oxide, superoxide, peroxynitrite and PARP in diabetic retinopathy. Front Biosci (Landmark. Ed). 2009;14:3974–87.

    Article  CAS  Google Scholar 

  27. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342(6):381–9.

    Google Scholar 

  28. Chalmers J, Cooper ME. UKPDS and the legacy effect. N Engl J Med. 2008;359(15):1618–20.

    Article  CAS  PubMed  Google Scholar 

  29. El-Osta A, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205(10):2409–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 93(1):137–88.

    Google Scholar 

  31. De Bock K, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154(3):651–63.

    Google Scholar 

  32. Kern TS, Engerman RL. Vascular lesions in diabetes are distributed non-uniformly within the retina. Exp Eye Res. 1995;60(5):545–9.

    Article  CAS  PubMed  Google Scholar 

  33. Alikhani M, Roy S, Graves DT. FOXO1 plays an essential role in apoptosis of retinal pericytes. Mol Vis. 2010;16:408–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Yatoh S, et al. Antioxidants and an inhibitor of advanced glycation ameliorate death of retinal microvascular cells in diabetic retinopathy. Diabetes Metab Res Rev. 2006;22(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  35. Behl Y, et al. Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am J Pathol. 2008;172(5):1411–8.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Klaassen I, Van Noorden, CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res. 2013;34:19–48.

    Article  CAS  PubMed  Google Scholar 

  37. Rakoczy EP, et al. Characterization of a mouse model of hyperglycemia and retinal neovascularization. Am J Pathol. 2010;177(5):2659–70.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.

    Article  CAS  PubMed  Google Scholar 

  39. Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci. 2006;26(11):2862–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Hammes HP, Federoff HJ, Brownlee M. Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med. 1995;1(5):527–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Bringmann A, et al. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424.

    Article  CAS  PubMed  Google Scholar 

  42. Carlevaro MF, et al. Transferrin promotes endothelial cell migration and invasion: implication in cartilage neovascularization. J Cell Biol. 1997;136(6):1375–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mishra A, Newman EA. Inhibition of inducible nitric oxide synthase reverses the loss of functional hyperemia in diabetic retinopathy. Glia. 2010;58(16):1996–2004.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Du Y, Sarthy VP, Kern TS. Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Physiol Regul Integr Comp Physiol. 2004;287(4):R735–41.

    Article  CAS  PubMed  Google Scholar 

  45. Kashii S, et al. Dual actions of nitric oxide in N-methyl-D-aspartate receptor-mediated neurotoxicity in cultured retinal neurons. Brain Res. 1996;711(1–2):93–101.

    Article  CAS  PubMed  Google Scholar 

  46. Krady JK, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes. 2005;54(5):1559–65.

    Article  CAS  PubMed  Google Scholar 

  47. Feng Y, et al. Gene expression profiling of vasoregression in the retina–involvement of microglial cells. PLoS One. 2011;6(2):e16865.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Feng Y, et al. Vasoregression linked to neuronal damage in the rat with defect of polycystin-2. PLoS One. 2009;4(10):e7328.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Booth G, et al. Mechanisms of amelioration of glucose-induced endothelial dysfunction following inhibition of protein kinase C in vivo. Diabetes. 2002;51(5):1556–64.

    Article  CAS  PubMed  Google Scholar 

  50. Chibber R, et al. Activity of the glycosylating enzyme, core 2 GlcNAc (beta1,6) transferase, is higher in polymorphonuclear leukocytes from diabetic patients compared with age-matched control subjects: relevance to capillary occlusion in diabetic retinopathy. Diabetes. 2000;49(10):1724–30.

    Article  CAS  PubMed  Google Scholar 

  51. Chavakis T, Bierhaus A, Nawroth PP. RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect. 2004;6(13):1219–25.

    Article  CAS  PubMed  Google Scholar 

  52. Aiello LP, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.

    Article  CAS  PubMed  Google Scholar 

  53. Watanabe D, et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med. 2005;353(8):782–92.

    Article  CAS  PubMed  Google Scholar 

  54. Bromberg-White JL, et al. Identification of VEGF-Independent Cytokines in Proliferative Diabetic Retinopathy Vitreous. Invest Ophthalmol Vis Sci. 2013;54(10):6472–80.

    Article  CAS  PubMed  Google Scholar 

  55. Jonas JB, et al. Cytokine concentration in aqueous humor of eyes with diabetic macular edema. Retina. 2012;32(10):2150–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Hammes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hammes, HP. (2015). The Vasculature in the Diseased Eye. In: Schmidt, M., Liebner, S. (eds) Endothelial Signaling in Development and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2907-8_12

Download citation

Publish with us

Policies and ethics