Skip to main content

Vascular Endothelial Growth Factor-A-Induced Vascular Permeability and Leukocyte Extravasation

  • Chapter
  • First Online:
Endothelial Signaling in Development and Disease

Abstract

This review describes the process of vascular endothelial growth factor-A (VEGFA)-induced vascular permeability. A consequence of this response is edema formation and we briefly touch upon the mechanisms operating in endothelial cells that underlie leakage of plasma into tissue. We also describe signal transduction pathways downstream of the VEGF receptor-2 responsible for the in vivo permeability response. These involve the signaling molecules Src family kinases, Axl, focal adhesion kinase (FAK), phosphatidyl-inositol 3´kinase (PI3K), Akt, Rac, endothelial nitric oxide synthase (eNOS), and the adapter molecules TSAd, Shb, GAB1 and IQGAP1. Specific mechanisms for leukocyte extravasation in this context will be described. Despite the wealth of data characterizing the mechanisms of VEGFA-induced vascular permeability, the precise functional significance of this response for physiological processes remains elusive, although it is assumed that it promotes neoangiogenesis and tissue repair after ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

VEGFA:

Vascular endothelial growth factor A

VEGFR:

Vascular endothelial growth factor receptor

FAK:

Focal adhesion kinase

PI3K:

Phosphatidyl-inositol 3´kinase

eNOS:

Endothelial nitric oxide synthase

TSAd:

T cell-specific adapter protein

Shb:

Src homology-2 domain protein B

GAB1:

Grb2-associated binding protein 1

IQGAP1:

IQ motif-containing GTPase activating protein 1

VVOs:

Vesiculo-vacuolar organelles

VE-cadherin:

Vascular endothelial-cadherin

NO:

Nitric oxide

PAK:

p21-activated kinase

HGF:

Hepatocyte growth factor

N-WASP:

Neural Wiskott–Aldrich syndrome protein

Tiam:

T-cell lymphoma invasion and metastasis

VE-PTP:

Vascular endothelial -protein tyrosine phosphatase

ERK:

Extracellular signal-regulated kinase

CXCR:

Chemokine C-X-C motif ligand receptor

MMP:

Matrix metalloproteinase

ICAM-1:

Intercellular adhesion molecule-1

PSGL1:

P-selectin glycoprotein ligand 1

SDF-1:

Stromal cell-derived factor-1

ROS:

Reactive oxygen species

BRB:

Blood-retinal barrier

RCE:

Retinal capillary cell

RPE:

Retinal pigment epithelial cell

References

  1. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25(4):581–611.

    Article  CAS  PubMed  Google Scholar 

  2. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246(4935):1309–12.

    Article  CAS  PubMed  Google Scholar 

  3. Senger DR, Perruzzi CA, Feder J, Dvorak HF. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 1986;46(11):5629–32.

    CAS  PubMed  Google Scholar 

  4. McDonald DM, Thurston G, Baluk P. Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation. 1999;6(1):7–22.

    Article  CAS  PubMed  Google Scholar 

  5. Dvorak HF. Angiogenesis: update 2005. J Thromb Haemost. 2005;3(8):1835–42.

    Article  CAS  PubMed  Google Scholar 

  6. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78(6):539–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. J Intern Med. 2013;273:114–27.

    Article  CAS  PubMed  Google Scholar 

  8. Maurer M, Bader M, Bas M, Bossi F, Cicardi M, Cugno M, et al. New topics in bradykinin research. Allergy. 2011;66(11):1397–406.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY. Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med. 2009;11:e19..

    Article  PubMed Central  PubMed  Google Scholar 

  10. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11(2):109–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dvorak HF, Quay SC, Orenstein NS, Dvorak AM, Hahn P, Bitzer AM, et al. Tumor shedding and coagulation. Science. 1981;212(4497):923–4.

    Article  CAS  PubMed  Google Scholar 

  12. Nagy JA, Dvorak AM, Dvorak HF. Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med. 2012;2(2):a006544.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Majno G, Shea SM, Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969;42(3):647–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kohn S, Nagy JA, Dvorak HF, Dvorak AM. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest. 1992;67(5):596–607.

    CAS  PubMed  Google Scholar 

  15. Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995; 108(Pt 6):2369–79.

    CAS  PubMed  Google Scholar 

  16. Simionescu M, Simionescu N, Palade GE. Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol. 1982;94(2):406–13.

    Article  CAS  PubMed  Google Scholar 

  17. Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, et al. Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem. 2002;277(42):40091–8.

    Article  CAS  PubMed  Google Scholar 

  18. Adamson RH, Zeng M, Adamson GN, Lenz JF, Curry FE. PAF- and bradykinin-induced hyperpermeability of rat venules is independent of actin-myosin contraction. Am J Physiol Heart Circ Physiol. 2003;285(1):H406–17.

    Article  CAS  PubMed  Google Scholar 

  19. Waschke J, Drenckhahn D, Adamson RH, Curry FE. Role of adhesion and contraction in Rac 1-regulated endothelial barrier function in vivo and in vitro. Am J Physiol Heart Circ Physiol. 2004;287(2):H704–11.

    Article  CAS  PubMed  Google Scholar 

  20. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell. 1999;98(2):147–57.

    Article  CAS  PubMed  Google Scholar 

  21. Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol. 2004;5(4):261–70.

    Article  CAS  PubMed  Google Scholar 

  22. Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16(2):209–21.

    Article  CAS  PubMed  Google Scholar 

  23. Rudini N, Dejana E. Adherens junctions. Curr Biol. 2008;18(23):R1080–2.

    Article  CAS  PubMed  Google Scholar 

  24. Schulte D, Kuppers V, Dartsch N, Broermann A, Li H, Zarbock A, et al. Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. Embo J. 2011;30(20):4157–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cai J, Wu L, Qi X, Shaw L, Li Calzi S, Caballero S, et al. Placenta growth factor-1 exerts time-dependent stabilization of adherens junctions following VEGF-induced vascular permeability. PLoS One. 2011;6(3):e18076.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Christoffersson G, Zang G, Zhuang ZW, Vagesjo E, Simons M, Phillipson M, et al. Vascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency. Angiogenesis. 2012;15(3):469–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell. 1999;4(6):915–24.

    Article  CAS  PubMed  Google Scholar 

  28. Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravens A, et al. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest. 2004;113(6):885–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Zang G, Christoffersson G, Tian G, Harun-Or-Rashid M, Vagesjo E, Phillipson M, et al. Aberrant association between vascular endothelial growth factor receptor-2 and VE cadherin in response to vascular endothelial growth factor-a in Shb-deficient lung endothelial cells. Cell Signal. 2013;25:85–92.

    Article  CAS  PubMed  Google Scholar 

  30. Nawroth R, Poell G, Ranft A, Kloep S, Samulowitz U, Fachinger G, et al. VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. Embo J. 2002;21(18):4885–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nottebaum AF, Cagna G, Winderlich M, Gamp AC, Linnepe R, Polaschegg C, et al. VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J Exp Med. 2008;205(12):2929–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mellberg S, Dimberg A, Bahram F, Hayashi M, Rennel E, Ameur A, et al. Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. Faseb J. 2009;23(5):1490–502.

    Article  CAS  PubMed  Google Scholar 

  33. Komarova YA, Huang F, Geyer M, Daneshjou N, Garcia A, Idalino L, et al. VE-cadherin signaling induces EB3 phosphorylation to suppress microtubule growth and assemble adherens junctions. Mol Cell 2012;48(6):914–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Davis MJ. Perspective: physiological role(s) of the vascular myogenic response. Microcirculation. 2012;19(2):99–114. [Review].

    Article  CAS  PubMed  Google Scholar 

  35. Casey DP, Joyner MJ. Local control of skeletal muscle blood flow during exercise: Influence of available oxygen. J Appl Physiol 2011;111(6):1527–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Meyer RD, Sacks DB, Rahimi N. IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis. PLoS One. 2008;3(12):e3848.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Sun Z, Li X, Massena S, Kutschera S, Padhan N, Gualandi L, et al. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J Exp Med. 2012;209(7):1363–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Matsumoto T, Bohman S, Dixelius J, Berge T, Dimberg A, Magnusson P, et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis Embo J. 2005;24(13):2342–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Anneren C, Lindholm CK, Kriz V, Welsh M. The FRK/RAK-SHB signaling cascade: a versatile signal-transduction pathway that regulates cell survival, differentiation and proliferation. Curr Mol Med. 2003;3(4):313–24.

    Article  CAS  PubMed  Google Scholar 

  40. Holmqvist K, Cross M, Riley D, Welsh M. The Shb adaptor protein causes Src-dependent cell spreading and activation of focal adhesion kinase in murine brain endothelial cells. Cell Signal. 2003;15(2):171–9.

    Article  CAS  PubMed  Google Scholar 

  41. Holmqvist K, Cross MJ, Rolny C, Hagerkvist R, Rahimi N, Matsumoto T, et al. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem. 2004;279(21):22267–75.

    Article  CAS  PubMed  Google Scholar 

  42. Yamaoka-Tojo M, Tojo T, Kim HW, Hilenski L, Patrushev NA, Zhang L, et al. IQGAP1 mediates VE-cadherin-based cell-cell contacts and VEGF signaling at adherence junctions linked to angiogenesis. Arterioscler Thromb Vasc Biol. 2006;26(9):1991–7.

    Article  CAS  PubMed  Google Scholar 

  43. Wallez Y, Cand F, Cruzalegui F, Wernstedt C, Souchelnytskyi S, Vilgrain I, et al. Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene. 2007;26(7):1067–77.

    Article  CAS  PubMed  Google Scholar 

  44. Huber AH, Weis WI. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell. 2001;105(3):391–402.

    Article  CAS  PubMed  Google Scholar 

  45. Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem. 1999;274(51):36734–40.

    Article  CAS  PubMed  Google Scholar 

  46. Ruan GX, Kazlauskas A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. Embo J. 2012;31(7):1692–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8(11):1223–34.

    Article  CAS  PubMed  Google Scholar 

  48. Lee J, Borboa AK, Chun HB, Baird A, Eliceiri BP. Conditional deletion of the focal adhesion kinase FAK alters remodeling of the blood-brain barrier in glioma. Cancer Res. 2010;70(24):10131–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, Goka E, et al. VEGF-induced vascular permeability is mediated by FAK. Dev Cell. 2012;22(1):146–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci. 2003; 116(Pt 8):1409–16.

    Article  CAS  PubMed  Google Scholar 

  51. Qi JH, Claesson-Welsh L. VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Exp Cell Res. 2001;263(1):173–82.

    Article  CAS  PubMed  Google Scholar 

  52. Rajput C, Kini V, Smith M, Yazbeck P, Chavez A, Schmidt T, et al. Neural Wiskott-Aldrich syndrome protein (N-WASP)-mediated p120-catenin interaction with Arp2 actin complex stabilizes endothelial adherens junctions. J Biol Chem. 2013;288(6):4241–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Masson-Gadais B, Houle F, Laferriere J, Huot J. Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones. 2003;8(1):37–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Lakshmikanthan S, Sobczak M, Chun C, Henschel A, Dargatz J, Ramchandran R, et al. Rap1 promotes VEGFR2 activation and angiogenesis by a mechanism involving integrin alphavbeta. Blood. 2011;118(7):2015–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Mahabeleshwar GH, Feng W, Reddy K, Plow EF, Byzova TV. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res. 2007;101(6):570–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Le Boeuf F, Houle F, Huot J. Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem. 2004;279(37):39175–85.

    Article  PubMed  CAS  Google Scholar 

  57. Abdelsaid MA, El-Remessy AB. S-glutathionylation of LMW-PTP regulates VEGF-mediated FAK activation and endothelial cell migration. J Cell Sci. 2012; 125(Pt 20):4751–60.

    Article  CAS  PubMed  Google Scholar 

  58. Ridley AJ. Life at the leading edge. Cell. 2011;145(7):1012–22.

    Article  CAS  PubMed  Google Scholar 

  59. Monaghan-Benson E, Burridge K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. J Biol Chem. 2009;284(38):25602–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Hoang MV, Nagy JA, Senger DR. Active Rac1 improves pathologic VEGF neovessel architecture and reduces vascular leak: mechanistic similarities with angiopoietin-1. Blood. 2011;117(5):1751–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Waschke J, Baumgartner W, Adamson RH, Zeng M, Aktories K, Barth H, et al. Requirement of Rac activity for maintenance of capillary endothelial barrier properties. Am J Physiol Heart Circ Physiol. 2004;286(1):H394–401.

    Article  CAS  PubMed  Google Scholar 

  62. Birukova AA, Moldobaeva N, Xing J, Birukov KG. Magnitude-dependent effects of cyclic stretch on HGF- and VEGF-induced pulmonary endothelial remodeling and barrier regulation. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L612–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Garrett TA, Van Buul JD, Burridge K. VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp Cell Res. 2007;313(15):3285–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Elias BC, Bhattacharya S, Ray RM, Johnson LR. Polyamine-dependent activation of Rac1 is stimulated by focal adhesion-mediated Tiam1 activation. Cell Adh Migr. 2010;4(3):419–30.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Rivard N. Phosphatidylinositol 3-kinase: a key regulator in adherens junction formation and function. Front Biosci. 2009;14:510–22.

    Article  CAS  Google Scholar 

  66. Jiang BH, Liu LZ. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res. 2009;102:19–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Dayanir V, Meyer RD, Lashkari K, Rahimi N. Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation o phosphatidylinositol 3-kinase and cell proliferation. J Biol Chem. 2001;276(21):17686–92.

    Article  CAS  PubMed  Google Scholar 

  68. Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell. 2006;10(2):159–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–5.

    Article  CAS  PubMed  Google Scholar 

  70. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399(6736):597–601.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Lu Y, Xiong Y, Huo Y, Han J, Yang X, Zhang R, et al. Grb-2-associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A-endothelial NOS pathway. Proc Natl Acad Sci U S A. 2011;108(7):2957–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Schneider JC, El Kebir D, Chereau C, Lanone S, Huang XL, De Buys Roessingh AS, et al. Involvement of Ca2+/calmodulin-dependent protein kinase II in endothelial NO production and endothelium-dependent relaxation. Am J Physiol Heart Circ Physiol. 2003;284(6):H2311–9.

    Article  CAS  PubMed  Google Scholar 

  73. Maron BA, Michel T. Subcellular localization of oxidants and redox modulation of endothelial nitric oxide synthase. Circ J. 2012;76(11):2497–512.

    Article  CAS  PubMed  Google Scholar 

  74. Duval M, Le Boeuf F, Huot J, Gratton JP. Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol Biol Cell. 2007;18(11):4659–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Thibeault S, Rautureau Y, Oubaha M, Faubert D, Wilkes BC, Delisle C, et al. S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol Cell. 2010;39(3):468–76.

    Article  CAS  PubMed  Google Scholar 

  76. Hayashi M, Majumdar A, Li X, Adler J, Sun Z, Vertuani S, et al. VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat Commun. 2013;4:1672.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Broermann A, Winderlich M, Block H, Frye M, Rossaint J, Zarbock A, et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J Exp Med. 2011;208(12):2393–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Carra S, Foglia E, Cermenati S, Bresciani E, Giampietro C, Lora Lamia C, et al. Ve-ptp modulates vascular integrity by promoting adherens junction maturation. PLoS One. 2012;7(12):e51245.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Funa NS, Kriz V, Zang G, Calounova G, Akerblom B, Mares J, et al. Dysfunctional microvasculature as a consequence of shb gene inactivation causes impaired tumor growth. Cancer Res. 2009;69(5):2141–8.

    Article  CAS  PubMed  Google Scholar 

  80. Usatyuk PV, Gorshkova IA, He D, Zhao Y, Kalari SK, Garcia JG, et al. Phospholipase D-mediated activation of IQGAP1 through Rac1 regulates hyperoxia-induced p47phox translocation and reactive oxygen species generation in lung endothelial cells. J Biol Chem. 2009;284(22):15339–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Dance M, Montagner A, Yart A, Masri B, Audigier Y, Perret B, et al. The adaptor protein Gab1 couples the stimulation of vascular endothelial growth factor receptor-2 to the activation of phosphoinositide 3-kinase. J Biol Chem. 2006;281(32):23285–95.

    Article  CAS  PubMed  Google Scholar 

  82. Tan W, Palmby TR, Gavard J, Amornphimoltham P, Zheng Y, Gutkind JS. An essential role for Rac1 in endothelial cell function and vascular development. Faseb J. 2008;22(6):1829–38.

    Article  CAS  PubMed  Google Scholar 

  83. Sawada N, Salomone S, Kim HH, Kwiatkowski DJ, Liao JK. Regulation of endothelial nitric oxide synthase and postnatal angiogenesis by Rac1. Circ Res. 2008;103(4):360–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Serban D, Leng J, Cheresh D. H-ras regulates angiogenesis and vascular permeability by activation of distinct downstream effectors. Circ Res. 2008;102(11):1350–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Yuan TL, Choi HS, Matsui A, Benes C, Lifshits E, Luo J, et al. Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proc Natl Acad Sci U S A. 2008;105(28):9739–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Ackah E, Yu J, Zoellner S, Iwakiri Y, Skurk C, Shibata R, et al. Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Invest. 2005;115(8):2119–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P, et al. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med. 2005;11(11):1188–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Urao N, Razvi M, Oshikawa J, McKinney RD, Chavda R, Bahou WF, et al. IQGAP1 is involved in post-ischemic neovascularization by regulating angiogenesis and macrophage infiltration. PLoS One. 2010;5(10):e13440.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A. 2001;98(5):2604–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999;286(5449):2511–4.

    Article  CAS  PubMed  Google Scholar 

  91. Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell. 2008;14(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  92. Oubaha M, Gratton JP. Phosphorylation of endothelial nitric oxide synthase by atypical PKC zeta contributes to angiopoietin-1-dependent inhibition of VEGF-induced endothelial permeability in vitro. Blood. 2009;114(15):3343–51.

    Article  CAS  PubMed  Google Scholar 

  93. Winderlich M, Keller L, Cagna G, Broermann A, Kamenyeva O, Kiefer F, et al. VE-PTP controls blood vessel development by balancing Tie-2 activity. J Cell Biol. 2009;185(4):657–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Takuwa Y, Okamoto Y, Yoshioka K, Takuwa N. Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system. Biochim Biophys Acta. 2008;1781(9):483–8.

    Article  CAS  PubMed  Google Scholar 

  95. Tanimoto T, Jin ZG, Berk BC. Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J Biol Chem. 2002;277(45):42997–3001.

    Article  CAS  PubMed  Google Scholar 

  96. Gaengel K, Niaudet C, Hagikura K, Lavina B, Muhl L, Hofmann JJ, et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell. 2012;23(3):587–99.

    Article  CAS  PubMed  Google Scholar 

  97. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006;124(1):175–89.

    Article  CAS  PubMed  Google Scholar 

  98. Christoffersson G, Henriksnas J, Johansson L, Rolny C, Ahlstrom H, Caballero-Corbalan J, et al. Clinical and experimental pancreatic islet transplantation to striated muscle: establishment of a vascular system similar to that in native islets. Diabetes. 2010;59(10):2569–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Christoffersson G, Vagesjo E, Vandooren J, Liden M, Massena S, Reinert RB, et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood. 2012;120(23):4653–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Zhang H, Issekutz AC. Growth factor regulation of neutrophil-endothelial cell interactions. J Leukoc Biol. 2001;70(2):225–32.

    CAS  PubMed  Google Scholar 

  101. Zittermann SI, Issekutz AC. Endothelial growth factors VEGF and bFGF differentially enhance monocyte and neutrophil recruitment to inflammation. J Leukoc Biol. 2006;80(2):247–57.

    Article  CAS  PubMed  Google Scholar 

  102. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 2001;276(10):7614–20.

    Article  CAS  PubMed  Google Scholar 

  103. Goebel S, Huang M, Davis WC, Jennings M, Siahaan TJ, Alexander JS, et al. VEGF-A stimulation of leukocyte adhesion to colonic microvascular endothelium: implications for inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2006;290(4):G648–54.

    Article  CAS  PubMed  Google Scholar 

  104. Chidlow JH, Jr., Glawe JD, Alexander JS, Kevil CG. VEGF(1)(6)(4) differentially regulates neutrophil and T cell adhesion through ItgaL- and ItgaM-dependent mechanisms. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1361–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154–65.

    Article  CAS  PubMed  Google Scholar 

  106. Ancelin M, Chollet-Martin S, Herve MA, Legrand C, El Benna J, Perrot-Applanat M. Vascular endothelial growth factor VEGF189 induces human neutrophil chemotaxis in extravascular tissue via an autocrine amplification mechanism. Lab Invest. 2004;84(4):502–12.

    Article  CAS  PubMed  Google Scholar 

  107. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood. 1996;87(8):3336–43.

    CAS  PubMed  Google Scholar 

  108. Czepluch FS, Olieslagers S, van Hulten R, Voo SA, Waltenberger J. VEGF-A-induced chemotaxis of CD16+ monocytes is decreased secondary to lower VEGFR-1 expression. Atherosclerosis. 2011;215(2):331–8.

    Article  CAS  PubMed  Google Scholar 

  109. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–64.

    Article  CAS  PubMed  Google Scholar 

  110. Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG, et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell. 2011;19(6):715–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Vestweber D. Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann N Y Acad Sci. 2012;1257:184–92.

    Article  CAS  PubMed  Google Scholar 

  112. Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med. 2011;17(11):1381–90.

    Article  CAS  PubMed  Google Scholar 

  113. Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol. 2010;11(5):366–78.

    Article  CAS  PubMed  Google Scholar 

  114. Kim MH, Curry FR, Simon SI. Dynamics of neutrophil extravasation and vascular permeability are uncoupled during aseptic cutaneous wounding. Am J Physiol Cell Physiol. 2009;296(4):C848–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. He P. Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled? Cardiovasc Res. 2010;87(2):281–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Hurley JV. Acute Inflammation: The Effect of Concurrent Leucocytic Emigration and Increased Permeability on Particle Retention by the Vascular Wall. Br J Exp Pathol. 1964;45:627–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Lewis RE, Granger HJ. Diapedesis and the permeability of venous microvessels to protein macromolecules: the impact of leukotriene B4 (LTB4). Microvasc Res. 1988;35(1):27–47.

    Article  PubMed  Google Scholar 

  118. Baluk P, Bolton P, Hirata A, Thurston G, McDonald DM. Endothelial gaps and adherent leukocytes in allergen-induced early- and late-phase plasma leakage in rat airways. Am J Pathol. 1998;152(6):1463–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Phillipson M, Kaur J, Colarusso P, Ballantyne CM, Kubes P. Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration. PLoS One. 2008;3(2):e1649.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. van Buul JD, Mul FP, van der Schoot CE, Hordijk PL. ICAM-3 activation modulates cell-cell contacts of human bone marrow endothelial cells. J Vasc Res. 2004;41(1):28–37.

    Article  PubMed  CAS  Google Scholar 

  121. Wang Q, Doerschuk CM. Neutrophil-induced changes in the biomechanical properties of endothelial cells: roles of ICAM-1 and reactive oxygen species. J Immunol. 2000;164(12):6487–94.

    Article  CAS  PubMed  Google Scholar 

  122. Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade. Crit Rev Biochem Mol Biol. 2013;48(3):222-72

    Article  CAS  PubMed  Google Scholar 

  123. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.

    Article  CAS  PubMed  Google Scholar 

  124. Baffert F, Le T, Thurston G, McDonald DM. Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules. Am J Physiol Heart Circ Physiol. 2006;290(1):H107–18.

    Article  CAS  PubMed  Google Scholar 

  125. Falcon BL, Hashizume H, Koumoutsakos P, Chou J, Bready JV, Coxon A, et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol. 2009;175(5):2159–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008;222:155–61.

    Article  CAS  PubMed  Google Scholar 

  127. Cassetta L, Cassol E, Poli G. Macrophage polarization in health and disease. ScientificWorldJournal. 2011;11:2391–402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Barar J, Asadi M, Mortazavi-Tabatabaei SA, Omidi Y. Ocular drug delivery: impact of in vitro cell culture models. J Ophthalmic Vis Res. 2009;4(4):238–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Gardner TW, Antonetti DA, Barber AJ, Lieth E, Tarbell JA. The molecular structure and function of the inner blood-retinal barrier. Penn State Retina Research Group. Doc Ophthalmol. 1999;97(3–4):229–37.

    Article  CAS  PubMed  Google Scholar 

  130. Stewart MW. The expanding role of vascular endothelial growth factor inhibitors in ophthalmology. Mayo Clin Proc. 2012;87(1):77–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Miller JW, Le Couter J, Strauss EC, Ferrara N. Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology. 2013;120(1):106–14.

    Article  PubMed  Google Scholar 

  132. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem. 1999;274(33):23463–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from Diabetes Wellness Sweden (MP), the Novo Nordisk foundation (MP), the Swedish Cancer Fund (MW, LCW), the Swedish Research Council (MP, MW, LCW), the Swedish Diabetes Fund (MP, MW), the Ragnar Söderberg foundation (MP), the Knut and Alice Wallenberg Foundation (MP, LCW), and the Family Ernfors Fund (MP, MW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Welsh PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Phillipson, M., Christoffersson, G., Claesson-Welsh, L., Welsh, M. (2015). Vascular Endothelial Growth Factor-A-Induced Vascular Permeability and Leukocyte Extravasation. In: Schmidt, M., Liebner, S. (eds) Endothelial Signaling in Development and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2907-8_8

Download citation

Publish with us

Policies and ethics