Skip to main content

MiRNAs’ Function and Role in Evolution: Under the View of Genomic Enhancement Phenomena

  • Chapter
Genomic Elements in Health, Disease and Evolution

Abstract

Research on miRNAs is continuously progressing, giving exciting results about the nature and the molecular function of these newly emerged RNA molecules. Most of this research has been focused on the role of miRNAs in gene expression regulation of protein-coding genes primarily through direct binding to their 3′ UTR. But the story does not appear to end there for these molecules. There is growing evidence for additional roles of miRNAs, e.g. affecting DNA methylation, gene expression modulation by direct binding to 5′ UTRs and coding region of genes and many others. Due to this broad spectrum of actions evolution and natural selection had to restrict their activity in a relatively narrow way. This is obvious through recently accumulated evidence showing miRNA’s special relationship with genomic dosage events through interactions with various genomic elements such as paralogs genes and copy number variations. This chapter summarizes all the published data that correlate genomic duplications or repeats with miRNAs biogenesis and with their target sites distribution pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  2. Berezicov E, Guryev V, van de Belt J, Wienholds E, Plasterk HAR, Cuppen E (2005) Phylogenetic shadowing and computational identification of human miRNA genes. Cell 120:21–24

    Article  Google Scholar 

  3. Xie X, Lu J, Kulbokas EJ, Golub RT, Mootha V, Lindblad-Toh K, Lander SE, Kellis M (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lewis B, Burge C, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are miRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  5. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian miRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  6. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of miRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed Central  PubMed  Google Scholar 

  7. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial miRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  8. Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB (2007) Determinants of targeting by endogenous and exogenous miRNAs and siRNAs. RNA 13:1894–1910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian miRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cai X, Hagedorn CH, Cullen BR (2004) Human miRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Weber MJ (2005) New human and mouse miRNA genes found by homology search. FEBS J 272:59–73

    Article  CAS  PubMed  Google Scholar 

  12. Baskerville S, Bartel DP (2005) Microarray profiling of miRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kim YK, Kim VN (2007) Processing of intronic miRNAs. EMBO J 26:775–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MiRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human miRNAs. Nucleic Acids Res 33:2697–2706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of miRNA core promoters in four model species. PLoS Comput Biol 3:e37

    Article  PubMed Central  PubMed  Google Scholar 

  17. Felekkis K, Touvana E, Stefanou C, Deltas C (2010) miRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14:236–240

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in miRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  CAS  PubMed  Google Scholar 

  19. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MiRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by miRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  CAS  PubMed  Google Scholar 

  21. Tanzer A, Stadler PF (2004) Molecular evolution of a miRNA cluster. J Mol Biol 339:327–335

    Article  CAS  PubMed  Google Scholar 

  22. Nozawa M, Miura S, Nei M (2010) Origins and evolution of miRNA genes in Drosophila species. Genome Biol Evol 2:180–189

    Article  PubMed Central  PubMed  Google Scholar 

  23. Nozawa M, Miura S, Nei M (2012) Origins and evolution of miRNA genes in plant species. Genome Biol Evol 4:230–239

    Article  PubMed Central  PubMed  Google Scholar 

  24. Shomron N, Golan D, Hornstein E (2009) An evolutionary perspective of animal miRNAs and their targets. J Biomed Biotechnol 2009:594738

    PubMed Central  PubMed  Google Scholar 

  25. Lu C et al (2008) Genome-wide analysis for discovery of rice miRNAs reveals natural antisense miRNAs (nat-miRNAs). Proc Natl Acad Sci U S A 105:4951–4956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. He C, Li Z, Chen P, Huang H, Hurst LD, Chen J (2012) Young intragenic miRNAs are less coexpressed with host genes than old ones: implications of miRNA-host gene coevolution. Nucleic Acids Res 40:4002–4012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D (2010) Ancient animal miRNAs and the evolution of tissue identity. Nature 25:1084–1088

    Article  Google Scholar 

  28. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Maher C, Stein L, Ware D (2006) Evolution of Arabidopsis miRNA families through duplication events. Genome Res 16:510–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Jiang D, Yin C, Yu A, Zhou X, Liang W et al (2006) Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res 16:507–518

    Article  CAS  PubMed  Google Scholar 

  31. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A et al (2006) The expansion of the metazoan miRNA repertoire. BMC Genomics 7:25

    Article  PubMed Central  PubMed  Google Scholar 

  32. Li Y, Li C, Xia J, Jin Y (2011) Domestication of transposable elements into MiRNA genes in plants. PLoS One 6:e19212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yuan Z, Sun X, Jiang D, Ding Y, Lu Z et al (2010) Origin and evolution of a placental-specific miRNA family in the human genome. BMC Evol Biol 10:346

    Article  PubMed Central  PubMed  Google Scholar 

  34. Liu N, Okamura K, Tyler DM, Phillips MD, Chung WJ, Lai EC (2008) The evolution and functional diversification of animal miRNA genes. Cell Res 18:985–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Zhang L, Chia JM, Kumari S, Stein JC, Liu Z et al (2009) A genome-wide characterization of miRNA genes in maize. PLoS Genet 5:e1000716

    Article  PubMed Central  PubMed  Google Scholar 

  36. Sun J, Zhou M, Mao Z, Li C (2012) Characterization and evolution of miRNA genes derived from repetitive elements and duplication events in plants. PLoS One 7:e34092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW et al (2004) Evolution of miRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Jiang WK, Gao LZ (2011) Evolution of miRNA genes in Oryza sativa and Arabidopsis thaliana: an update of the inverted duplication model. PLoS One 6:e28073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Smalheiser NR, Torvik VI (2005) Mammalian miRNAs derived from genomic repeats. Trends Genet 21:322–326

    Article  CAS  PubMed  Google Scholar 

  40. Piriyapongsa J, Jordan IK (2007) A family of human miRNA genes from miniature inverted-repeat transposable elements. PLoS One 2:e203

    Article  PubMed Central  PubMed  Google Scholar 

  41. Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human miRNAs from transposable elements. Genetics 176:1323–1337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Devor EJ (2006) Primate miRNAs miR-220 and miR-492 lie within processed pseudogenes. J Hered 97:186–190

    Article  CAS  PubMed  Google Scholar 

  43. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14:814–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lehnert S, Kapitonov V, Thilakarathne PJ, Schuit FC (2011) Modeling the asymmetric evolution of a mouse and rat-specific miRNA gene cluster intron 10 of the Sfmbt2 gene. BMC Genomics 23:257

    Article  Google Scholar 

  45. Dahary D, Shalgi R, Pilpel Y (2011) CpG Islands as a putative source for animal miRNAs: evolutionary and functional implications. Mol Biol Evol 28:1545–1551

    Article  CAS  PubMed  Google Scholar 

  46. Chen K, Rajewsky N (2006) Deep conservation of miRNA-target relationships and 3′ UTR motifs in vertebrates, flies, and nematodes. Cold Spring Harb Symp Quant Biol 71:149–156

    Article  CAS  PubMed  Google Scholar 

  47. Miura S, Nozawa M, Nei M (2011) Evolutionary changes of the target sites of two miRNAs encoded in the Hox gene cluster of Drosophila and other insect species. Genome Biol Evol 3:129–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chen SC, Chuang TJ, Li WH (2011) The relationships among miRNA regulation, intrinsically disordered regions, and other indicators of protein evolutionary rate. Mol Biol Evol 28:2513–2520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen X, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci U S A 106:17835–17840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Abrouk M, Zhang R, Murat F, Li A, Pont C, Mao L, Salse J (2012) Grass MiRNA gene paleohistory unveils new insights into gene dosage balance in subgenome partitioning after whole-genome duplication. Plant Cell 24:1776–1792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Lehnert S, Van Loo P, Thilakarathne PJ, Marynen P, Verbeke G, Schuit FC (2009) Evidence for co-evolution between human miRNAs and Alu-repeats. PLoS One 4:e4456

    Article  PubMed Central  PubMed  Google Scholar 

  52. Li J, Musso G, Zhang Z (2008) Preferential regulation of duplicated genes by miRNAs in mammals. Genome Biol 9:R132

    Article  PubMed Central  PubMed  Google Scholar 

  53. D'Antonio M, Ciccarelli FD (2011) Modification of gene duplicability during the evolution of protein interaction network. PLoS Comput Biol 7:e1002029

    Article  PubMed Central  PubMed  Google Scholar 

  54. Fernández A, Chen J (2009) Human capacitance to dosage imbalance: coping with inefficient selection. Genome Res 19:2185–2192

    Article  PubMed Central  PubMed  Google Scholar 

  55. Felekkis K, Voskarides K, Dweep H, Sticht C, Gretz N, Deltas C (2011) Increased number of miRNA target sites in genes encoded in CNV regions. Evidence for an evolutionary genomic interaction. Mol Biol Evol 28:2421–2424

    Article  CAS  PubMed  Google Scholar 

  56. Dweep H, Gretz N, Felekkis K (2014) A schematic workflow of collecting information about the interaction of copy number variants and microRNAs with existing resources. Methods Mol Biol 1182:307–320

    Article  PubMed  Google Scholar 

  57. Henrichsen CN, Chaignat E, Reymond A (2009) Copy number variants, diseases and gene expression. Hum Mol Genet 18:R1–R8

    Article  CAS  PubMed  Google Scholar 

  58. Schuster-Bockler B, Conrad D, Bateman A (2010) Dosage sensitivity shapes the evolution of copy-number varied regions. PLoS One 5:e9474

    Article  PubMed Central  PubMed  Google Scholar 

  59. Stranger BE, Forrest MS, Dunning M et al (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Wang RT, Ahn S, Park CC, Khan AH, Lange K, Smith DJ (2011) Effects of genome-wide copy number variation on expression in mammalian cells. BMC Genomics 16:562

    Article  Google Scholar 

  61. Woodwark C, Bateman A (2011) The characterisation of three types of genes that overlie copy number variable regions. PLoS One 6:e14814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Karres JS, Hilgers V, Carrera I, Treisman J, Cohen SM (2007) The conserved miRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131:136–145

    Article  CAS  PubMed  Google Scholar 

  63. Charroux B, Freeman M, Kerridge S, Baonza A (2006) Atrophin contributes to the negative regulation of epidermal growth factor receptor signaling in Drosophila. Dev Biol 29:278–290

    Article  Google Scholar 

  64. Schnall-Levin M, Rissland OS, Johnston KW (2011) Unusually effective miRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res 21:1395–1403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Wu CI, Shen Y, Tang T (2009) Evolution under canalization and the dual roles of miRNAs: a hypothesis. Genome Res 19:734–743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  CAS  PubMed  Google Scholar 

  67. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of miRNAs on protein output. Nature 455:64–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by miRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  69. Gu X, Su Z, Huang Y (2009) Simultaneous expansions of miRNAs and protein-coding genes by gene/genome duplications in early vertebrates. J Exp Zool B Mol Dev Evol 312B:164–170

    Article  CAS  PubMed  Google Scholar 

  70. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A (2011) MiRNAs can generate thresholds in target gene expression. Nat Genet 43:854–859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Konstantinos Voskarides Ph.D. or Kyriacos Felekkis B.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voskarides, K., Felekkis, K. (2015). MiRNAs’ Function and Role in Evolution: Under the View of Genomic Enhancement Phenomena. In: Felekkis, K., Voskarides, K. (eds) Genomic Elements in Health, Disease and Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3070-8_1

Download citation

Publish with us

Policies and ethics