Skip to main content

Structure and Functions of Telomeres in Organismal Homeostasis and Disease

  • Chapter
Genomic Elements in Health, Disease and Evolution

Abstract

The chromosome protective telomeric structure and the biological pathways involved in telomere metabolism are imperative for cellular, tissue and organismal homeostasis as well as species perpetuation. During the life span of a multicellular organism, a portion of telomeric length is dispensable. This loss is replenished by highly conserved telomere elongation pathways operating mainly during gametogenesis and in early stages of embryogenesis, to allow development, and tissue renewal throughout life. Herein, we discuss the structure and function of telomeres, the mechanisms of telomere capping and maintenance and the biological consequences of telomere dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Jackson SP (2009) The DNA-damage response: new molecular insights and new approaches to cancer therapy. Biochem Soc Trans 37(Pt 3):483–494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ghosal G, Chen J (2013) DNA damage tolerance: a double-edged sword guarding the genome. Transl Cancer Res 2(3):107–129

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Fry RC, Begley TJ, Samson LD (2005) Genome-wide responses to DNA-damaging agents. Annu Rev Microbiol 59:357–377

    Article  CAS  PubMed  Google Scholar 

  5. Kreuzer KN (2013) DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol 5(11):a012674

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Stracker TH, Roig I, Knobel PA, Marjanovic M (2013) The ATM signaling network in development and disease. Front Genet 4:37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Jackson SP, Durocher D (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 49(5):795–807

    Article  CAS  PubMed  Google Scholar 

  9. Goodpasture C, Bloom SE, Hsu TC, Arrighi FE (1976) Human nucleolus organizers: the satellites or the stalks? Am J Hum Genet 28(6):559–566

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Garavis M, Gonzalez C, Villasante A (2013) On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution. Genome Biol Evol 5(6):1142–1150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Olovnikov AM (1971) Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR 201(6):1496–1499

    CAS  PubMed  Google Scholar 

  12. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41(1):181–190

    Article  CAS  PubMed  Google Scholar 

  13. Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239(94):197–201

    Article  CAS  PubMed  Google Scholar 

  14. De Lange T (2005) Telomere-related genome instability in cancer. Cold Spring Harb Symp Quant Biol 70:197–204

    Article  PubMed  Google Scholar 

  15. O'Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11(3):171–181

    PubMed Central  PubMed  Google Scholar 

  16. Egan ED, Collins K (2012) Biogenesis of telomerase ribonucleoproteins. RNA 18(10):1747–1759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225(4):951–960

    Article  CAS  PubMed  Google Scholar 

  18. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    Article  CAS  PubMed  Google Scholar 

  19. de Lange T (2009) How telomeres solve the end-protection problem. Science 326(5955):948–952

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Giraud-Panis MJ, Pisano S, Poulet A, Le Du MH, Gilson E (2010) Structural identity of telomeric complexes. FEBS Lett 584(17):3785–3799

    Article  CAS  PubMed  Google Scholar 

  21. Muller HJ (1938) The remaking of chromosomes. Collecting Net 13:181–198

    Google Scholar 

  22. McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci U S A 25(8):405–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. McClintock B (1941) The stability of broken ends of chromosomes in Zea Mays. Genetics 26(2):234–282

    PubMed Central  CAS  PubMed  Google Scholar 

  24. McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23(4):315–376

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396(6712):643–649

    Article  CAS  PubMed  Google Scholar 

  26. Gisselsson D, Pettersson L, Hoglund M, Heidenblad M, Gorunova L, Wiegant J et al (2000) Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci U S A 97(10):5357–5362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gagos S, Irminger-Finger I (2005) Chromosome instability in neoplasia: chaotic roots to continuous growth. Int J Biochem Cell Biol 37(5):1014–1033

    Article  CAS  PubMed  Google Scholar 

  28. Murnane JP (2012) Telomere dysfunction and chromosome instability. Mutat Res 730(1-2):28–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gisselsson D, Hoglund M (2005) Connecting mitotic instability and chromosome aberrations in cancer--can telomeres bridge the gap? Semin Cancer Biol 15(1):13–23

    Article  CAS  PubMed  Google Scholar 

  30. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  31. Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120(1):33–53

    Article  CAS  PubMed  Google Scholar 

  32. Szostak JW, Blackburn EH (1982) Cloning yeast telomeres on linear plasmid vectors. Cell 29(1):245–255

    Article  CAS  PubMed  Google Scholar 

  33. Greider CW, Blackburn EH (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51(6):887–898

    Article  CAS  PubMed  Google Scholar 

  34. Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337(6205):331–337

    Article  CAS  PubMed  Google Scholar 

  35. Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59(3):521–529

    Article  CAS  PubMed  Google Scholar 

  36. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85(18):6622–6626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lorite P, Carrillo JA, Palomeque T (2002) Conservation of (TTAGG)(n) telomeric sequences among ants (Hymenoptera, Formicidae). J Hered 93(4):282–285

    Article  CAS  PubMed  Google Scholar 

  38. Zielke S, Bodnar A (2010) Telomeres and telomerase activity in scleractinian corals and Symbiodinium spp. Biol Bull 218(2):113–121

    CAS  PubMed  Google Scholar 

  39. Gomes NM, Ryder OA, Houck ML, Charter SJ, Walker W, Forsyth NR et al (2011) Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10(5):761–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zakian VA (1995) Telomeres: beginning to understand the end. Science 270(5242):1601–1607

    Article  CAS  PubMed  Google Scholar 

  41. Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88(5):657–666

    Article  CAS  PubMed  Google Scholar 

  42. Chai W, Shay JW, Wright WE (2005) Human telomeres maintain their overhang length at senescence. Mol Cell Biol 25(6):2158–2168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Bischoff C, Graakjaer J, Petersen HC, Hjelmborg J, Vaupel JW, Bohr V et al (2005) The heritability of telomere length among the elderly and oldest-old. Twin Res Hum Genet 8(5):433–439

    Article  PubMed  Google Scholar 

  44. Forsyth NR, Elder FF, Shay JW, Wright WE (2005) Lagomorphs (rabbits, pikas and hares) do not use telomere-directed replicative aging in vitro. Mech Ageing Dev 126(6-7):685–691

    Article  CAS  PubMed  Google Scholar 

  45. Raices M, Verdun RE, Compton SA, Haggblom CI, Griffith JD, Dillin A et al (2008) C. elegans telomeres contain G-strand and C-strand overhangs that are bound by distinct proteins. Cell 132(5):745–757

    Article  CAS  PubMed  Google Scholar 

  46. Oganesian L, Karlseder J (2011) Mammalian 5′ C-rich telomeric overhangs are a mark of recombination-dependent telomere maintenance. Mol Cell 42(2):224–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hayflick L (1997) Mortality and immortality at the cellular level. A review. Biochemistry (Mosc) 62(11):1180–1190

    CAS  Google Scholar 

  48. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  49. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460

    Article  CAS  PubMed  Google Scholar 

  50. Armanios M, Blackburn EH (2012) The telomere syndromes. Nat Rev Genet 13(10):693–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Donate LE, Blasco MA (2011) Telomeres in cancer and ageing. Philos Trans R Soc Lond B Biol Sci 366(1561):76–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Ahmed A, Tollefsbol T (2001) Telomeres and telomerase: basic science implications for aging. J Am Geriatr Soc 49(8):1105–1109

    Article  CAS  PubMed  Google Scholar 

  53. Ranganathan V, Heine WF, Ciccone DN, Rudolph KL, Wu X, Chang S et al (2001) Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Curr Biol 11(12):962–966

    Article  CAS  PubMed  Google Scholar 

  54. Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J et al (2001) Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 37(2 Pt 2):381–385

    Article  CAS  PubMed  Google Scholar 

  55. Ding Z, Mangino M, Aviv A, Spector T, Durbin R (2014) Estimating telomere length from whole genome sequence data. Nucleic Acids Res 42(9):e75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346(6287):866–868

    Article  CAS  PubMed  Google Scholar 

  57. Kimura M, Stone RC, Hunt SC, Skurnick J, Lu X, Cao X et al (2010) Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nat Protoc 5(9):1596–1607

    Article  CAS  PubMed  Google Scholar 

  58. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355

    Article  CAS  PubMed  Google Scholar 

  59. Shay JW, Wright WE (2011) Role of telomeres and telomerase in cancer. Semin Cancer Biol 21(6):349–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Greider CW (1996) Telomere length regulation. Annu Rev Biochem 65:337–365

    Article  CAS  PubMed  Google Scholar 

  61. Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102(4):407–410

    Article  CAS  PubMed  Google Scholar 

  62. Mathon NF, Lloyd AC (2001) Cell senescence and cancer. Nat Rev Cancer 1(3):203–213

    Article  CAS  PubMed  Google Scholar 

  63. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23(16):2919–2933

    Article  CAS  PubMed  Google Scholar 

  65. Falandry C, Bonnefoy M, Freyer G, Gilson E (2014) Biology of cancer and aging: a complex association with cellular senescence. J Clin Oncol 32(24):2604–2610

    Article  PubMed  Google Scholar 

  66. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352

    Article  CAS  PubMed  Google Scholar 

  67. Harrington L (2012) Haploinsufficiency and telomere length homeostasis. Mutat Res 730(1-2):37–42

    Article  CAS  PubMed  Google Scholar 

  68. Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE et al (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 17(4):498–502

    Article  CAS  PubMed  Google Scholar 

  69. Harrington L, McPhail T, Mar V, Zhou W, Oulton R, Bass MB et al (1997) A mammalian telomerase-associated protein. Science 275(5302):973–977

    Article  CAS  PubMed  Google Scholar 

  70. Harrington L, Zhou W, McPhail T, Oulton R, Yeung DS, Mar V et al (1997) Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 11(23):3109–3115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Hughes TR, Evans SK, Weilbaecher RG, Lundblad V (2000) The Est3 protein is a subunit of yeast telomerase. Curr Biol 10(13):809–812

    Article  CAS  PubMed  Google Scholar 

  72. Lin JJ, Zakian VA (1995) An in vitro assay for Saccharomyces telomerase requires EST1. Cell 81(7):1127–1135

    Article  CAS  PubMed  Google Scholar 

  73. Lingner J, Cech TR, Hughes TR, Lundblad V (1997) Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci U S A 94(21):11190–11195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Lundblad V, Blackburn EH (1993) An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73(2):347–360

    Article  CAS  PubMed  Google Scholar 

  75. Lundblad V, Szostak JW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57(4):633–643

    Article  CAS  PubMed  Google Scholar 

  76. Snow BE, Erdmann N, Cruickshank J, Goldman H, Gill RM, Robinson MO et al (2003) Functional conservation of the telomerase protein Est1p in humans. Curr Biol 13(8):698–704

    Article  CAS  PubMed  Google Scholar 

  77. Reichenbach P, Hoss M, Azzalin CM, Nabholz M, Bucher P, Lingner J (2003) A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr Biol 13(7):568–574

    Article  CAS  PubMed  Google Scholar 

  78. Fukuhara N, Ebert J, Unterholzner L, Lindner D, Izaurralde E, Conti E (2005) SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol Cell 17(4):537–547

    Article  CAS  PubMed  Google Scholar 

  79. Noel JF, Larose S, Abou Elela S, Wellinger RJ (2012) Budding yeast telomerase RNA transcription termination is dictated by the Nrd1/Nab3 non-coding RNA termination pathway. Nucleic Acids Res 40(12):5625–5636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Sauerwald A, Sandin S, Cristofari G, Scheres SH, Lingner J, Rhodes D (2013) Structure of active dimeric human telomerase. Nat Struct Mol Biol 20(4):454–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Tuzon CT, Wu Y, Chan A, Zakian VA (2011) The Saccharomyces cerevisiae telomerase subunit Est3 binds telomeres in a cell cycle- and Est1-dependent manner and interacts directly with Est1 in vitro. PLoS Genet 7(5):e1002060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Witkin KL, Collins K (2004) Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev 18(10):1107–1118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Min B, Collins K (2009) An RPA-related sequence-specific DNA-binding subunit of telomerase holoenzyme is required for elongation processivity and telomere maintenance. Mol Cell 36(4):609–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117(3):323–335

    Article  CAS  PubMed  Google Scholar 

  85. Chen JL, Greider CW (2004) An emerging consensus for telomerase RNA structure. Proc Natl Acad Sci U S A 101(41):14683–14684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Cristofari G, Lingner J (2003) Fingering the ends: how to make new telomeres. Cell 113(5):552–554

    Article  CAS  PubMed  Google Scholar 

  87. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP et al (1995) The RNA component of human telomerase. Science 269(5228):1236–1241

    Article  CAS  PubMed  Google Scholar 

  88. Fu D, Collins K (2007) Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell 28(5):773–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Grozdanov PN, Roy S, Kittur N, Meier UT (2009) SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA 15(6):1188–1197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Kanemaki M, Kurokawa Y, Matsu-ura T, Makino Y, Masani A, Okazaki K et al (1999) TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem 274(32):22437–22444

    Article  CAS  PubMed  Google Scholar 

  91. Makino Y, Kanemaki M, Kurokawa Y, Koji T, Tamura T (1999) A rat RuvB-like protein, TIP49a, is a germ cell-enriched novel DNA helicase. J Biol Chem 274(22):15329–15335

    Article  CAS  PubMed  Google Scholar 

  92. Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132(6):945–957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Darzacq X, Kittur N, Roy S, Shav-Tal Y, Singer RH, Meier UT (2006) Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J Cell Biol 173(2):207–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C et al (2004) PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell 16(5):777–787

    Article  CAS  PubMed  Google Scholar 

  95. Hukezalie KR, Wong JM (2013) Structure-function relationship and biogenesis regulation of the human telomerase holoenzyme. FEBS J 280(14):3194–3204

    Article  CAS  PubMed  Google Scholar 

  96. Jady BE, Bertrand E, Kiss T (2004) Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J Cell Biol 164(5):647–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Tycowski KT, Shu MD, Kukoyi A, Steitz JA (2009) A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol Cell 34(1):47–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Venteicher AS, Artandi SE (2009) TCAB1: driving telomerase to Cajal bodies. Cell Cycle 8(9):1329–1331

    Article  CAS  PubMed  Google Scholar 

  99. Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE (2003) Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 17(19):2384–2395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Sealey DC, Zheng L, Taboski MA, Cruickshank J, Ikura M, Harrington LA (2010) The N-terminus of hTERT contains a DNA-binding domain and is required for telomerase activity and cellular immortalization. Nucleic Acids Res 38(6):2019–2035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Greider CW (1991) Telomerase is processive. Mol Cell Biol 11(9):4572–4580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Chen JL, Greider CW (2003) Template boundary definition in mammalian telomerase. Genes Dev 17(22):2747–2752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Lai CK, Miller MC, Collins K (2003) Roles for RNA in telomerase nucleotide and repeat addition processivity. Mol Cell 11(6):1673–1683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Cohn M, Blackburn EH (1995) Telomerase in yeast. Science 269(5222):396–400

    Article  CAS  PubMed  Google Scholar 

  105. Prescott J, Blackburn EH (1997) Telomerase RNA mutations in Saccharomyces cerevisiae alter telomerase action and reveal nonprocessivity in vivo and in vitro. Genes Dev 11(4):528–540

    Article  CAS  PubMed  Google Scholar 

  106. Prowse KR, Avilion AA, Greider CW (1993) Identification of a nonprocessive telomerase activity from mouse cells. Proc Natl Acad Sci U S A 90(4):1493–1497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I et al (2002) Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem 277(18):15566–15572

    Article  CAS  PubMed  Google Scholar 

  108. Skvortsov DA, Zvereva ME, Shpanchenko OV, Dontsova OA (2011) Assays for detection of telomerase activity. Acta Naturae 3(1):48–68

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Allshire RC, Dempster M, Hastie ND (1989) Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res 17(12):4611–4627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Aubert G, Hills M, Lansdorp PM (2012) Telomere length measurement-caveats and a critical assessment of the available technologies and tools. Mutat Res 730(1-2):59–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Wright WE, Brasiskyte D, Piatyszek MA, Shay JW (1996) Experimental elongation of telomeres extends the lifespan of immortal x normal cell hybrids. EMBO J 15(7):1734–1741

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Aviv A, Hunt SC, Lin J, Cao X, Kimura M, Blackburn E (2011) Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res 39(20):e134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Montpetit AJ, Alhareeri AA, Montpetit M, Starkweather AR, Elmore LW, Filler K et al (2014) Telomere length: a review of methods for measurement. Nurs Res 63(4):289–299

    Article  PubMed Central  PubMed  Google Scholar 

  114. Alter BP, Baerlocher GM, Savage SA, Chanock SJ, Weksler BB, Willner JP et al (2007) Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood 110(5):1439–1447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Alter BP, Giri N, Savage SA, Rosenberg PS (2009) Cancer in dyskeratosis congenita. Blood 113(26):6549–6557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Calado RT, Regal JA, Kleiner DE, Schrump DS, Peterson NR, Pons V et al (2009) A spectrum of severe familial liver disorders associate with telomerase mutations. PLoS One 4(11):e7926

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Ikeda H, Aida J, Hatamochi A, Hamasaki Y, Izumiyama-Shimomura N, Nakamura K et al (2014) Quantitative fluorescence in situ hybridization measurement of telomere length in skin with/without sun exposure or actinic keratosis. Hum Pathol 45(3):473–480

    Article  CAS  PubMed  Google Scholar 

  118. Kawano Y, Ishikawa N, Aida J, Sanada Y, Izumiyama-Shimomura N, Nakamura K et al (2014) Q-FISH measurement of hepatocyte telomere lengths in donor liver and graft after pediatric living-donor liver transplantation: donor age affects telomere length sustainability. PLoS One 9(4):e93749

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Sanada Y, Aida J, Kawano Y, Nakamura K, Shimomura N, Ishikawa N et al (2012) Hepatocellular telomere length in biliary atresia measured by Q-FISH. World J Surg 36(4):908–916

    Article  PubMed  Google Scholar 

  120. Baerlocher GM, Lansdorp PM (2004) Telomere length measurements using fluorescence in situ hybridization and flow cytometry. Methods Cell Biol 75:719–750

    Article  CAS  PubMed  Google Scholar 

  121. Izumiyama-Shimomura N, Nakamura K, Aida J, Ishikawa N, Kuroiwa M, Hiraishi N et al (2014) Short telomeres and chromosome instability prior to histologic malignant progression and cytogenetic aneuploidy in papillary urothelial neoplasms. Urol Oncol 32(2):135–145

    Article  CAS  PubMed  Google Scholar 

  122. Poon SS, Lansdorp PM (2001) Quantitative fluorescence in situ hybridization (Q-FISH). Curr Protoc Cell Biol (Chapter 18:Unit 18 4). doi: 10.1002/0471143030.cb1804s12

  123. Poon SS, Lansdorp PM (2001) Measurements of telomere length on individual chromosomes by image cytometry. Methods Cell Biol 64:69–96

    Article  CAS  PubMed  Google Scholar 

  124. Rufer N, Dragowska W, Thornbury G, Roosnek E, Lansdorp PM (1998) Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol 16(8):743–747

    Article  CAS  PubMed  Google Scholar 

  125. Baird DM, Rowson J, Wynford-Thomas D, Kipling D (2003) Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 33(2):203–207

    Article  CAS  PubMed  Google Scholar 

  126. Cawthon RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37(3):e21

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Bendix L, Horn PB, Jensen UB, Rubelj I, Kolvraa S (2010) The load of short telomeres, estimated by a new method, Universal STELA, correlates with number of senescent cells. Aging Cell 9(3):383–397

    Article  CAS  PubMed  Google Scholar 

  128. Hills M, Lucke K, Chavez EA, Eaves CJ, Lansdorp PM (2009) Probing the mitotic history and developmental stage of hematopoietic cells using single telomere length analysis (STELA). Blood 113(23):5765–5775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Lan Q, Cawthon R, Shen M, Weinstein SJ, Virtamo J, Lim U et al (2009) A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of non-Hodgkin lymphoma. Clin Cancer Res 15(23):7429–7433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Shen M, Cawthon R, Rothman N, Weinstein SJ, Virtamo J, Hosgood HD 3rd et al (2011) A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of lung cancer. Lung Cancer 73(2):133–137

    Article  PubMed Central  PubMed  Google Scholar 

  131. de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM et al (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10(2):518–527

    Article  PubMed Central  PubMed  Google Scholar 

  132. Counter CM, Hirte HW, Bacchetti S, Harley CB (1994) Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci U S A 91(8):2900–2904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015

    Article  CAS  PubMed  Google Scholar 

  134. Piatyszek MA, Kim NW, Weinrich SL, Hiyama K, Hiyama E, Wright WE et al (1995) Detection of telomerase activity in human cells and tumors by a telomeric repeat amplification protocol (TRAP). Methods Cell Sci 17:1–15

    Article  Google Scholar 

  135. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3(11):1271–1274

    Article  CAS  PubMed  Google Scholar 

  136. Gagos S, Chiourea M, Christodoulidou A, Apostolou E, Raftopoulou C, Deustch S et al (2008) Pericentromeric instability and spontaneous emergence of human neoacrocentric and minute chromosomes in the alternative pathway of telomere lengthening. Cancer Res 68(19):8146–8155

    Article  CAS  PubMed  Google Scholar 

  137. Garcia-Cao M, O'Sullivan R, Peters AH, Jenuwein T, Blasco MA (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36(1):94–99

    Article  CAS  PubMed  Google Scholar 

  138. Cesare AJ, Reddel RR (2008) Telomere uncapping and alternative lengthening of telomeres. Mech Ageing Dev 129(1-2):99–108

    Article  CAS  PubMed  Google Scholar 

  139. Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11(5):319–330

    Article  CAS  PubMed  Google Scholar 

  140. Henson JD, Neumann AA, Yeager TR, Reddel RR (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21(4):598–610

    Article  CAS  PubMed  Google Scholar 

  141. Henson JD, Reddel RR (2010) Assaying and investigating alternative lengthening of telomeres activity in human cells and cancers. FEBS Lett 584(17):3800–3811

    Article  CAS  PubMed  Google Scholar 

  142. Muntoni A, Reddel RR (2005) The first molecular details of ALT in human tumor cells. Hum Mol Genet (14 Spec No. 2:R191-6)

    Google Scholar 

  143. Reddel RR (2003) Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett 194(2):155–162

    Article  CAS  PubMed  Google Scholar 

  144. Reddel RR, Bryan TM, Colgin LM, Perrem KT, Yeager TR (2001) Alternative lengthening of telomeres in human cells. Radiat Res 155(1 Pt 2):194–200

    Article  CAS  PubMed  Google Scholar 

  145. Sakellariou D, Chiourea M, Raftopoulou C, Gagos S (2013) Alternative lengthening of telomeres: recurrent cytogenetic aberrations and chromosome stability under extreme telomere dysfunction. Neoplasia 15(11):1301–1313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Londono-Vallejo JA, Der-Sarkissian H, Cazes L, Bacchetti S, Reddel RR (2004) Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res 64(7):2324–2327

    Article  CAS  PubMed  Google Scholar 

  147. Carbone R, Pearson M, Minucci S, Pelicci PG (2002) PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 21(11):1633–1640

    Article  CAS  PubMed  Google Scholar 

  148. Lamarche BJ, Orazio NI, Weitzman MD (2010) The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 584(17):3682–3695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21(1):281–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Munch S, Weidtkamp-Peters S, Klement K, Grigaravicius P, Monajembashi S, Salomoni P et al (2014) The tumor suppressor PML specifically accumulates at RPA/Rad51-containing DNA damage repair foci but is nonessential for DNA damage-induced fibroblast senescence. Mol Cell Biol 34(10):1733–1746

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  151. Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24(3):331–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Xu ZX, Timanova-Atanasova A, Zhao RX, Chang KS (2003) PML colocalizes with and stabilizes the DNA damage response protein TopBP1. Mol Cell Biol 23(12):4247–4256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Grobelny JV, Godwin AK, Broccoli D (2000) ALT-associated PML bodies are present in viable cells and are enriched in cells in the G(2)/M phase of the cell cycle. J Cell Sci 113(Pt 24):4577–4585

    CAS  PubMed  Google Scholar 

  154. Plantinga MJ, Pascarelli KM, Merkel AS, Lazar AJ, von Mehren M, Lev D et al (2013) Telomerase suppresses formation of ALT-associated single-stranded telomeric C-circles. Mol Cancer Res 11(6):557–567

    Article  CAS  PubMed  Google Scholar 

  155. Draskovic I, Arnoult N, Steiner V, Bacchetti S, Lomonte P, Londono-Vallejo A (2009) Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc Natl Acad Sci U S A 106(37):15726–15731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Dejardin J, Kingston RE (2009) Purification of proteins associated with specific genomic Loci. Cell 136(1):175–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Liu L, Bailey SM, Okuka M, Munoz P, Li C, Zhou L et al (2007) Telomere lengthening early in development. Nat Cell Biol 9(12):1436–1441

    Article  CAS  PubMed  Google Scholar 

  158. Wang F, Yin Y, Ye X, Liu K, Zhu H, Wang L et al (2012) Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Res 22(4):757–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Zalzman M, Falco G, Sharova LV, Nishiyama A, Thomas M, Lee SL et al (2010) Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464(7290):858–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Blasco MA, Lee HW, Rizen M, Hanahan D, DePinho R, Greider CW (1997) Mouse models for the study of telomerase. Ciba Found Symp 211:160–170, discussion 70-6

    CAS  PubMed  Google Scholar 

  161. Blasco MA (2005) Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J 24(6):1095–1103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C et al (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701–712

    Article  CAS  PubMed  Google Scholar 

  163. Artandi SE, Alson S, Tietze MK, Sharpless NE, Ye S, Greenberg RA et al (2002) Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc Natl Acad Sci U S A 99(12):8191–8196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Canela A, Martin-Caballero J, Flores JM, Blasco MA (2004) Constitutive expression of tert in thymocytes leads to increased incidence and dissemination of T-cell lymphoma in Lck-Tert mice. Mol Cell Biol 24(10):4275–4293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Gonzalez-Suarez E, Samper E, Ramirez A, Flores JM, Martin-Caballero J, Jorcano JL et al (2001) Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J 20(11):2619–2630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G et al (2008) Lung cancer susceptibility locus at 5p15.33. Nat Genet 40(12):1404–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A et al (2009) Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 41(2):221–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  168. Tomas-Loba A, Flores I, Fernandez-Marcos PJ, Cayuela ML, Maraver A, Tejera A et al (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135(4):609–622

    Article  CAS  PubMed  Google Scholar 

  169. Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469(7328):102–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F et al (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 4(8):691–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110

    Article  PubMed  CAS  Google Scholar 

  172. Lipps HJ, Rhodes D (2009) G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 19(8):414–422

    Article  CAS  PubMed  Google Scholar 

  173. Oganesian L, Bryan TM (2007) Physiological relevance of telomeric G-quadruplex formation: a potential drug target. Bioessays 29(2):155–165

    Article  CAS  PubMed  Google Scholar 

  174. Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334(6180):364–366

    Article  CAS  PubMed  Google Scholar 

  175. Huppert JL (2008) Hunting G-quadruplexes. Biochimie 90(8):1140–1148

    Article  CAS  PubMed  Google Scholar 

  176. Leonetti C, Scarsella M, Riggio G, Rizzo A, Salvati E, D’Incalci M et al (2008) G-quadruplex ligand RHPS4 potentiates the antitumor activity of camptothecins in preclinical models of solid tumors. Clin Cancer Res 14(22):7284–7291

    Article  CAS  PubMed  Google Scholar 

  177. Salvati E, Leonetti C, Rizzo A, Scarsella M, Mottolese M, Galati R et al (2007) Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J Clin Invest 117(11):3236–3247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Schoeftner S, Blasco MA (2009) A ‘higher order’ of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J 28(16):2323–2336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Chandra A, Hughes TR, Nugent CI, Lundblad V (2001) Cdc13 both positively and negatively regulates telomere replication. Genes Dev 15(4):404–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Meier B, Driller L, Jaklin S, Feldmann HM (2001) New function of CDC13 in positive telomere length regulation. Mol Cell Biol 21(13):4233–4245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Wright JH, Gottschling DE, Zakian VA (1992) Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev 6(2):197–210

    Article  CAS  PubMed  Google Scholar 

  182. Hardy CF, Sussel L, Shore D (1992) A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6(5):801–814

    Article  CAS  PubMed  Google Scholar 

  183. Tham WH, Zakian VA (2002) Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene 21(4):512–521

    Article  CAS  PubMed  Google Scholar 

  184. Krauskopf A, Blackburn EH (1998) Rap1 protein regulates telomere turnover in yeast. Proc Natl Acad Sci U S A 95(21):12486–12491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Kyrion G, Boakye KA, Lustig AJ (1992) C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol Cell Biol 12(11):5159–5173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Levy DL, Blackburn EH (2004) Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol 24(24):10857–10867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Marcand S, Brevet V, Gilson E (1999) Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J 18(12):3509–3519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11(20):1624–1630

    Article  CAS  PubMed  Google Scholar 

  189. Adams IR, McLaren A (2004) Identification and characterisation of mRif1: a mouse telomere-associated protein highly expressed in germ cells and embryo-derived pluripotent stem cells. Dev Dyn 229(4):733–744

    Article  CAS  PubMed  Google Scholar 

  190. Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ (2009) A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 23(7):837–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. Buonomo SB, Wu Y, Ferguson D, de Lange T (2009) Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J Cell Biol 187(3):385–398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Silverman J, Takai H, Buonomo SB, Eisenhaber F, de Lange T (2004) Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev 18(17):2108–2119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Xu L, Blackburn EH (2004) Human Rif1 protein binds aberrant telomeres and aligns along anaphase midzone microtubules. J Cell Biol 167(5):819–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  194. Dan J, Liu Y, Liu N, Chiourea M, Okuka M, Wu T et al (2014) Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev Cell 29(1):7–19

    Article  CAS  PubMed  Google Scholar 

  195. Court R, Chapman L, Fairall L, Rhodes D (2005) How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep 6(1):39–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Hwang H, Buncher N, Opresko PL, Myong S (2012) POT1–TPP1 regulates telomeric overhang structural dynamics. Structure 20(11):1872–1880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4):503–514

    Article  CAS  PubMed  Google Scholar 

  198. Gottschling DE, Zakian VA (1986) Telomere proteins: specific recognition and protection of the natural termini of Oxytricha macronuclear DNA. Cell 47(2):195–205

    Article  CAS  PubMed  Google Scholar 

  199. Greider CW (1999) Telomeres do D-loop-T-loop. Cell 97(4):419–422

    Article  CAS  PubMed  Google Scholar 

  200. de Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5(4):323–329

    Article  PubMed  CAS  Google Scholar 

  201. Kuzminov A (2014) The precarious prokaryotic chromosome. J Bacteriol 196(10):1793–1806

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  202. de Lange T, Petrini JH (2000) A new connection at human telomeres: association of the Mre11 complex with TRF2. Cold Spring Harb Symp Quant Biol 65:265–273

    Article  PubMed  Google Scholar 

  203. Zhu XD, Kuster B, Mann M, Petrini JH, de Lange T (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25(3):347–352

    Article  CAS  PubMed  Google Scholar 

  204. Brosh RM Jr (2013) DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 13(8):542–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  205. Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S et al (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14(6):763–774

    Article  CAS  PubMed  Google Scholar 

  206. Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ (2012) RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149(4):795–806

    Article  CAS  PubMed  Google Scholar 

  207. Doksani Y, Wu JY, de Lange T, Zhuang X (2013) Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155(2):345–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  208. Hockemeyer D, Daniels JP, Takai H, de Lange T (2006) Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell 126(1):63–77

    Article  CAS  PubMed  Google Scholar 

  209. Martinez P, Blasco MA (2010) Role of shelterin in cancer and aging. Aging Cell 9(5):653–666

    Article  CAS  PubMed  Google Scholar 

  210. Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM et al (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126(1):49–62

    Article  CAS  PubMed  Google Scholar 

  211. Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL et al (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138(1):90–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  212. Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336(6081):593–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  213. Kaul Z, Cesare AJ, Huschtscha LI, Neumann AA, Reddel RR (2012) Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep 13(1):52–59

    Article  PubMed Central  CAS  Google Scholar 

  214. Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13(17):1549–1556

    Article  CAS  PubMed  Google Scholar 

  215. Ballal RD, Saha T, Fan S, Haddad BR, Rosen EM (2009) BRCA1 localization to the telomere and its loss from the telomere in response to DNA damage. J Biol Chem 284(52):36083–36098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  216. Carlos AR, Escandell JM, Kotsantis P, Suwaki N, Bouwman P, Badie S et al (2013) ARF triggers senescence in Brca2-deficient cells by altering the spectrum of p53 transcriptional targets. Nat Commun 4:2697

    Article  PubMed  CAS  Google Scholar 

  217. Dantzer F, Giraud-Panis MJ, Jaco I, Ame JC, Schultz I, Blasco M et al (2004) Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol 24(4):1595–1607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  218. Dynek JN, Smith S (2004) Resolution of sister telomere association is required for progression through mitosis. Science 304(5667):97–100

    Article  CAS  PubMed  Google Scholar 

  219. van Steensel B, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385(6618):740–743

    Article  PubMed  Google Scholar 

  220. Loayza D, De Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423(6943):1013–1018

    Article  CAS  PubMed  Google Scholar 

  221. Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12(10):847–854

    Article  CAS  PubMed  Google Scholar 

  222. Torigoe H, Furukawa A (2007) Tetraplex structure of fission yeast telomeric DNA and unfolding of the tetraplex on the interaction with telomeric DNA binding protein Pot1. J Biochem 141(1):57–68

    Article  CAS  PubMed  Google Scholar 

  223. Zaug AJ, Podell ER, Cech TR (2005) Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci U S A 102(31):10864–10869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  224. Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327(5973):1657–1661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  225. Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB, Petrini JH et al (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2(8):E240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  226. Celli GB, Denchi EL, de Lange T (2006) Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8(8):885–890

    Article  PubMed  CAS  Google Scholar 

  227. Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8(4):299–309

    Article  CAS  PubMed  Google Scholar 

  228. Gottschling DE, Cech TR (1984) Chromatin structure of the molecular ends of Oxytricha macronuclear DNA: phased nucleosomes and a telomeric complex. Cell 38(2):501–510

    Article  CAS  PubMed  Google Scholar 

  229. Galati A, Magdinier F, Colasanti V, Bauwens S, Pinte S, Ricordy R et al (2012) TRF2 controls telomeric nucleosome organization in a cell cycle phase-dependent manner. PLoS One 7(4):e34386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  230. Pisano S, Galati A, Cacchione S (2008) Telomeric nucleosomes: forgotten players at chromosome ends. Cell Mol Life Sci 65(22):3553–3563

    Article  CAS  PubMed  Google Scholar 

  231. Biessmann H, Mason JM (2003) Telomerase-independent mechanisms of telomere elongation. Cell Mol Life Sci 60(11):2325–2333

    Article  CAS  PubMed  Google Scholar 

  232. Roth CW, Kobeski F, Walter MF, Biessmann H (1997) Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol Cell Biol 17(9):5176–5183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  233. Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75(6):1083–1093

    Article  CAS  PubMed  Google Scholar 

  234. Pardue ML, DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37:485–511

    Article  CAS  PubMed  Google Scholar 

  235. Abad JP, Villasante A (1999) The 3′ non-coding region of the Drosophila melanogaster HeT-A telomeric retrotransposon contains sequences with propensity to form G-quadruplex DNA. FEBS Lett 453(1-2):59–62

    Article  CAS  PubMed  Google Scholar 

  236. Raffa GD, Ciapponi L, Cenci G, Gatti M (2011) Terminin: a protein complex that mediates epigenetic maintenance of Drosophila telomeres. Nucleus 2(5):383–391

    Article  PubMed  Google Scholar 

  237. Cenci G, Ciapponi L, Gatti M (2005) The mechanism of telomere protection: a comparison between Drosophila and humans. Chromosoma 114(3):135–145

    Article  CAS  PubMed  Google Scholar 

  238. Gao G, Walser JC, Beaucher ML, Morciano P, Wesolowska N, Chen J et al (2010) HipHop interacts with HOAP and HP1 to protect Drosophila telomeres in a sequence-independent manner. EMBO J 29(4):819–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  239. Raffa GD, Cenci G, Ciapponi L, Gatti M (2013) Organization and maintenance of Drosophila telomeres: the roles of terminin and non-terminin proteins. Tsitologiia 55(3):204–208

    CAS  PubMed  Google Scholar 

  240. Raffa GD, Raimondo D, Sorino C, Cugusi S, Cenci G, Cacchione S et al (2010) Verrocchio, a Drosophila OB fold-containing protein, is a component of the terminin telomere-capping complex. Genes Dev 24(15):1596–1601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  241. Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10(2):81–86

    Article  CAS  PubMed  Google Scholar 

  242. Chamla Y, Ruffie M (1976) Production of C and T bands in human mitotic chromosomes after heat treatment. Hum Genet 34(2):213–216

    Article  CAS  PubMed  Google Scholar 

  243. Dutrillaux B (1973) New system of chromosome banding: the T bands (author's transl). Chromosoma 41(4):395–402

    Article  CAS  PubMed  Google Scholar 

  244. Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168(3937):1356–1358

    Article  CAS  PubMed  Google Scholar 

  245. Scheres JM (1974) Production of C and T bands in human chromosomes after heat treatment at high pH and staining with “stains-all”. Humangenetik 23(4):311–314

    CAS  PubMed  Google Scholar 

  246. Scheres JM (1976) CT banding of human chromosomes: description of the banding technique and some of its modifications. Hum Genet 31(3):293–307

    Article  CAS  PubMed  Google Scholar 

  247. Ferguson-Smith MA (2008) Cytogenetics and the evolution of medical genetics. Genet Med 10(8):553–559

    Article  PubMed  Google Scholar 

  248. Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8(12):950–962

    Article  CAS  PubMed  Google Scholar 

  249. Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3(2):91–102

    Article  CAS  PubMed  Google Scholar 

  250. Tommerup H, Dousmanis A, de Lange T (1994) Unusual chromatin in human telomeres. Mol Cell Biol 14(9):5777–5785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  251. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M et al (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8(4):416–424

    Article  CAS  PubMed  Google Scholar 

  252. Bender CM, Pao MM, Jones PA (1998) Inhibition of DNA methylation by 5-aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 58(1):95–101

    CAS  PubMed  Google Scholar 

  253. Dominguez-Bendala J, McWhir J (2004) Enhanced gene targeting frequency in ES cells with low genomic methylation levels. Transgenic Res 13(1):69–74

    Article  CAS  PubMed  Google Scholar 

  254. Shaffer LG, Lupski JR (2000) Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet 34:297–329

    Article  CAS  PubMed  Google Scholar 

  255. Ottaviani A, Gilson E, Magdinier F (2008) Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie 90(1):93–107

    Article  CAS  PubMed  Google Scholar 

  256. Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28(17):2503–2510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  257. Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66(6):1279–1287

    Article  CAS  PubMed  Google Scholar 

  258. Stadler G, Rahimov F, King OD, Chen JC, Robin JD, Wagner KR et al (2013) Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy. Nat Struct Mol Biol 20(6):671–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  259. Baur JA, Zou Y, Shay JW, Wright WE (2001) Telomere position effect in human cells. Science 292(5524):2075–2077

    Article  CAS  PubMed  Google Scholar 

  260. Renauld H, Aparicio OM, Zierath PD, Billington BL, Chhablani SK, Gottschling DE (1993) Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev 7(7A):1133–1145

    Article  CAS  PubMed  Google Scholar 

  261. Mondoux MA, Zakian VA (2007) Subtelomeric elements influence but do not determine silencing levels at Saccharomyces cerevisiae telomeres. Genetics 177(4):2541–2546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  262. Horn D, Cross GA (1995) A developmentally regulated position effect at a telomeric locus in Trypanosoma brucei. Cell 83(4):555–561

    Article  CAS  PubMed  Google Scholar 

  263. Matzke MA, Moscone EA, Park YD, Papp I, Oberkofler H, Neuhuber F et al (1994) Inheritance and expression of a transgene insert in an aneuploid tobacco line. Mol Gen Genet 245(4):471–485

    Article  CAS  PubMed  Google Scholar 

  264. Nimmo ER, Cranston G, Allshire RC (1994) Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J 13(16):3801–3811

    PubMed Central  CAS  PubMed  Google Scholar 

  265. Gehring WJ, Klemenz R, Weber U, Kloter U (1984) Functional analysis of the white gene of Drosophila by P-factor-mediated transformation. EMBO J 3(9):2077–2085

    PubMed Central  CAS  PubMed  Google Scholar 

  266. Hazelrigg T, Levis R, Rubin GM (1984) Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Cell 36(2):469–481

    Article  CAS  PubMed  Google Scholar 

  267. Levis R, Hazelrigg T, Rubin GM (1985) Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229(4713):558–561

    Article  CAS  PubMed  Google Scholar 

  268. Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63(4):751–762

    Article  CAS  PubMed  Google Scholar 

  269. Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17(6):1819–1828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  270. Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385(6618):744–747

    Article  CAS  PubMed  Google Scholar 

  271. Park MJ, Jang YK, Choi ES, Kim HS, Park SD (2002) Fission yeast Rap1 homolog is a telomere-specific silencing factor and interacts with Taz1p. Mol Cells 13(2):327–333

    CAS  PubMed  Google Scholar 

  272. Tennen RI, Bua DJ, Wright WE, Chua KF (2011) SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2:433

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  273. Kaminker P, Plachot C, Kim SH, Chung P, Crippen D, Petersen OW et al (2005) Higher-order nuclear organization in growth arrest of human mammary epithelial cells: a novel role for telomere-associated protein TIN2. J Cell Sci 118(Pt 6):1321–1330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  274. Netzer C, Rieger L, Brero A, Zhang CD, Hinzke M, Kohlhase J et al (2001) SALL1, the gene mutated in Townes-Brocks syndrome, encodes a transcriptional repressor which interacts with TRF1/PIN2 and localizes to pericentromeric heterochromatin. Hum Mol Genet 10(26):3017–3024

    Article  CAS  PubMed  Google Scholar 

  275. Koering CE, Pollice A, Zibella MP, Bauwens S, Puisieux A, Brunori M et al (2002) Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep 3(11):1055–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  276. van der Maarel SM, Frants RR (2005) The D4Z4 repeat-mediated pathogenesis of facioscapulohumeral muscular dystrophy. Am J Hum Genet 76(3):375–386

    Article  PubMed Central  PubMed  Google Scholar 

  277. Dixit M, Ansseau E, Tassin A, Winokur S, Shi R, Qian H et al (2007) DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proc Natl Acad Sci U S A 104(46):18157–18162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  278. Gabellini D, Green MR, Tupler R (2004) When enough is enough: genetic diseases associated with transcriptional derepression. Curr Opin Genet Dev 14(3):301–307

    Article  CAS  PubMed  Google Scholar 

  279. Gabriels J, Beckers MC, Ding H, De Vriese A, Plaisance S, van der Maarel SM et al (1999) Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene 236(1):25–32

    Article  CAS  PubMed  Google Scholar 

  280. Lemmers RJ, van der Vliet PJ, Klooster R, Sacconi S, Camano P, Dauwerse JG et al (2010) A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329(5999):1650–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Lupski JR (2012) Digenic inheritance and Mendelian disease. Nat Genet 44(12):1291–1292

    Article  CAS  PubMed  Google Scholar 

  282. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318(5851):798–801

    Article  CAS  PubMed  Google Scholar 

  283. Azzalin CM, Lingner J (2015) Telomere functions grounding on TERRA firma. Trends Cell Biol 25(1):29–36

    Article  CAS  PubMed  Google Scholar 

  284. Luke B, Panza A, Redon S, Iglesias N, Li Z, Lingner J (2008) The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32(4):465–477

    Article  CAS  PubMed  Google Scholar 

  285. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10(2):228–236

    Article  CAS  PubMed  Google Scholar 

  286. Martadinata H, Phan AT (2009) Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution. J Am Chem Soc 131(7):2570–2578

    Article  CAS  PubMed  Google Scholar 

  287. Randall A, Griffith JD (2009) Structure of long telomeric RNA transcripts: the G-rich RNA forms a compact repeating structure containing G-quartets. J Biol Chem 284(21):13980–13986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  288. Xu Y, Kimura T, Komiyama M (2008) Human telomere RNA and DNA form an intermolecular G-quadruplex. Nucleic Acids Symp Ser (Oxf) (52):169–170

    Google Scholar 

  289. Bah A, Wischnewski H, Shchepachev V, Azzalin CM (2012) The telomeric transcriptome of Schizosaccharomyces pombe. Nucleic Acids Res 40(7):2995–3005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  290. Greenwood J, Cooper JP (2012) Non-coding telomeric and subtelomeric transcripts are differentially regulated by telomeric and heterochromatin assembly factors in fission yeast. Nucleic Acids Res 40(7):2956–2963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  291. Vrbsky J, Akimcheva S, Watson JM, Turner TL, Daxinger L, Vyskot B et al (2010) siRNA-mediated methylation of Arabidopsis telomeres. PLoS Genet 6(6):e1000986

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  292. Azzalin CM, Lingner J (2008) Telomeres: the silence is broken. Cell Cycle 7(9):1161–1165

    Article  CAS  PubMed  Google Scholar 

  293. Porro A, Feuerhahn S, Reichenbach P, Lingner J (2010) Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol 30(20):4808–4817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  294. Nergadze SG, Farnung BO, Wischnewski H, Khoriauli L, Vitelli V, Chawla R et al (2009) CpG-island promoters drive transcription of human telomeres. RNA 15(12):2186–2194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  295. Caslini C, Connelly JA, Serna A, Broccoli D, Hess JL (2009) MLL associates with telomeres and regulates telomeric repeat-containing RNA transcription. Mol Cell Biol 29(16):4519–4526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  296. Porro A, Feuerhahn S, Lingner J (2014) TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Rep 6(4):765–776

    Article  CAS  PubMed  Google Scholar 

  297. Deng Z, Wang Z, Stong N, Plasschaert R, Moczan A, Chen HS et al (2012) A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. EMBO J 31(21):4165–4178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  298. Iglesias N, Redon S, Pfeiffer V, Dees M, Lingner J, Luke B (2011) Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Rep 12(6):587–593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  299. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28(13):1384–1396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  300. Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM (2014) RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun 5:5220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  301. Horard B, Gilson E (2008) Telomeric RNA enters the game. Nat Cell Biol 10(2):113–115

    Article  CAS  PubMed  Google Scholar 

  302. Lorenzi LE, Bah A, Wischnewski H, Shchepachev V, Soneson C, Santagostino M et al (2015) Fission yeast Cactin restricts telomere transcription and elongation by controlling Rap1 levels. EMBO J 34(1):115–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Chawla R, Redon S, Raftopoulou C, Wischnewski H, Gagos S, Azzalin CM (2011) Human UPF1 interacts with TPP1 and telomerase and sustains telomere leading-strand replication. EMBO J 30(19):4047–4058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  304. Zinsser F (1906) Atrophia cutis reticularis cum pigmentione, dystrophia unguium et leukokeratosis oris. Ikonogr Dermatol 5:219–223

    Google Scholar 

  305. Drachtman RA, Alter BP (1995) Dyskeratosis congenita. Dermatol Clin 13(1):33–39

    CAS  PubMed  Google Scholar 

  306. de la Fuente J, Dokal I (2007) Dyskeratosis congenita: advances in the understanding of the telomerase defect and the role of stem cell transplantation. Pediatr Transplant 11(6):584–594

    Article  PubMed  CAS  Google Scholar 

  307. Dokal I (2006) Dyskeratosis congenita: a cancer prone syndrome associated with telomerase deficiency. Hematology EHA 2:29–35

    Google Scholar 

  308. Savage SA, Alter BP (2009) Dyskeratosis congenita. Hematol Oncol Clin North Am 23(2):215–231

    Article  PubMed Central  PubMed  Google Scholar 

  309. Knight S, Vulliamy T, Copplestone A, Gluckman E, Mason P, Dokal I (1998) Dyskeratosis Congenita (DC) Registry: identification of new features of DC. Br J Haematol 103(4):990–996

    Article  CAS  PubMed  Google Scholar 

  310. Vulliamy TJ, Marrone A, Knight SW, Walne A, Mason PJ, Dokal I (2006) Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood 107(7):2680–2685

    Article  CAS  PubMed  Google Scholar 

  311. Armanios M, Chen JL, Chang YP, Brodsky RA, Hawkins A, Griffin CA et al (2005) Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci U S A 102(44):15960–15964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  312. Kirwan M, Dokal I (2009) Dyskeratosis congenita, stem cells and telomeres. Biochim Biophys Acta 1792(4):371–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  313. Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I (2004) Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 36(5):447–449

    Article  CAS  PubMed  Google Scholar 

  314. Vulliamy TJ, Walne A, Baskaradas A, Mason PJ, Marrone A, Dokal I (2005) Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol Dis 34(3):257–263

    Article  CAS  PubMed  Google Scholar 

  315. Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88(2):557–579

    Article  CAS  PubMed  Google Scholar 

  316. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ et al (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19(1):32–38

    Article  CAS  PubMed  Google Scholar 

  317. Marrone A, Walne A, Tamary H, Masunari Y, Kirwan M, Beswick R et al (2007) Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Blood 110(13):4198–4205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  318. Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ et al (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413(6854):432–435

    Article  CAS  PubMed  Google Scholar 

  319. Vulliamy TJ, Kirwan MJ, Beswick R, Hossain U, Baqai C, Ratcliffe A et al (2011) Differences in disease severity but similar telomere lengths in genetic subgroups of patients with telomerase and shelterin mutations. PLoS One 6(9):e24383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  320. Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ et al (2005) Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 352(14):1413–1424

    Article  CAS  PubMed  Google Scholar 

  321. Tsakiri KD, Cronkhite JT, Kuan PJ, Xing C, Raghu G, Weissler JC et al (2007) Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci U S A 104(18):7552–7557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  322. Vulliamy T, Beswick R, Kirwan M, Marrone A, Digweed M, Walne A et al (2008) Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci U S A 105(23):8073–8078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  323. Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y et al (2007) Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet 16(13):1619–1629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  324. Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I (2008) TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 112(9):3594–3600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  325. Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP (2008) TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet 82(2):501–509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  326. Aalfs CM, van den Berg H, Barth PG, Hennekam RC (1995) The Hoyeraal-Hreidarsson syndrome: the fourth case of a separate entity with prenatal growth retardation, progressive pancytopenia and cerebellar hypoplasia. Eur J Pediatr 154(4):304–308

    Article  CAS  PubMed  Google Scholar 

  327. Kajtar P, Mehes K (1994) Bilateral coats retinopathy associated with aplastic anaemia and mild dyskeratotic signs. Am J Med Genet 49(4):374–377

    Article  CAS  PubMed  Google Scholar 

  328. Anderson BH, Kasher PR, Mayer J, Szynkiewicz M, Jenkinson EM, Bhaskar SS et al (2012) Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat Genet 44(3):338–342

    Article  CAS  PubMed  Google Scholar 

  329. Polvi A, Linnankivi T, Kivela T, Herva R, Keating JP, Makitie O et al (2012) Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. Am J Hum Genet 90(3):540–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  330. Holohan B, Wright WE, Shay JW (2014) Cell biology of disease: telomeropathies: an emerging spectrum disorder. J Cell Biol 205(3):289–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  331. Conkright JJ, Na CL, Weaver TE (2002) Overexpression of surfactant protein-C mature peptide causes neonatal lethality in transgenic mice. Am J Respir Cell Mol Biol 26(1):85–90

    Article  CAS  PubMed  Google Scholar 

  332. Gross TJ, Hunninghake GW (2001) Idiopathic pulmonary fibrosis. N Engl J Med 345(7):517–525

    Article  CAS  PubMed  Google Scholar 

  333. Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816

    Article  PubMed  Google Scholar 

  334. Hodgson U, Laitinen T, Tukiainen P (2002) Nationwide prevalence of sporadic and familial idiopathic pulmonary fibrosis: evidence of founder effect among multiplex families in Finland. Thorax 57(4):338–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  335. Marshall RP, Puddicombe A, Cookson WO, Laurent GJ (2000) Adult familial cryptogenic fibrosing alveolitis in the United Kingdom. Thorax 55(2):143–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  336. Alder JK, Chen JJ, Lancaster L, Danoff S, Su SC, Cogan JD et al (2008) Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A 105(35):13051–13056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  337. Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C et al (2007) Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 356(13):1317–1326

    Article  CAS  PubMed  Google Scholar 

  338. Cronkhite JT, Xing C, Raghu G, Chin KM, Torres F, Rosenblatt RL et al (2008) Telomere shortening in familial and sporadic pulmonary fibrosis. Am J Respir Crit Care Med 178(7):729–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  339. Lee HL, Ryu JH, Wittmer MH, Hartman TE, Lymp JF, Tazelaar HD et al (2005) Familial idiopathic pulmonary fibrosis: clinical features and outcome. Chest 127(6):2034–2041

    Article  PubMed  Google Scholar 

  340. Loyd JE (2003) Pulmonary fibrosis in families. Am J Respir Cell Mol Biol 29(3 Suppl):S47–S50

    CAS  PubMed  Google Scholar 

  341. Parry EM, Alder JK, Qi X, Chen JJ, Armanios M (2011) Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase. Blood 117(21):5607–5611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  342. Steele MP, Speer MC, Loyd JE, Brown KK, Herron A, Slifer SH et al (2005) Clinical and pathologic features of familial interstitial pneumonia. Am J Respir Crit Care Med 172(9):1146–1152

    Article  PubMed Central  PubMed  Google Scholar 

  343. Garcia CK, Wright WE, Shay JW (2007) Human diseases of telomerase dysfunction: insights into tissue aging. Nucleic Acids Res 35(22):7406–7416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  344. Calado RT, Regal JA, Hills M, Yewdell WT, Dalmazzo LF, Zago MA et al (2009) Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia. Proc Natl Acad Sci U S A 106(4):1187–1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  345. Kirwan M, Vulliamy T, Marrone A, Walne AJ, Beswick R, Hillmen P et al (2009) Defining the pathogenic role of telomerase mutations in myelodysplastic syndrome and acute myeloid leukemia. Hum Mutat 30(11):1567–1573

    Article  CAS  PubMed  Google Scholar 

  346. Marrone A, Stevens D, Vulliamy T, Dokal I, Mason PJ (2004) Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency. Blood 104(13):3936–3942

    Article  CAS  PubMed  Google Scholar 

  347. Lyakhovich A, Ramirez MJ, Castellanos A, Castella M, Simons AM, Parvin JD et al (2011) Fanconi anemia protein FANCD2 inhibits TRF1 polyADP-ribosylation through tankyrase1-dependent manner. Genome Integr 2(1):4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  348. Joksic I, Vujic D, Guc-Scekic M, Leskovac A, Petrovic S, Ojani M et al (2012) Dysfunctional telomeres in primary cells from Fanconi anemia FANCD2 patients. Genome Integr 3(1):6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  349. Ghosh AK, Rossi ML, Singh DK, Dunn C, Ramamoorthy M, Croteau DL et al (2012) RECQL4, the protein mutated in Rothmund-Thomson syndrome, functions in telomere maintenance. J Biol Chem 287(1):196–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  350. Zhong ZH, Jiang WQ, Cesare AJ, Neumann AA, Wadhwa R, Reddel RR (2007) Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres. J Biol Chem 282(40):29314–29322

    Article  CAS  PubMed  Google Scholar 

  351. Metcalfe JA, Parkhill J, Campbell L, Stacey M, Biggs P, Byrd PJ et al (1996) Accelerated telomere shortening in ataxia telangiectasia. Nat Genet 13(3):350–353

    Article  CAS  PubMed  Google Scholar 

  352. Feldser D, Strong MA, Greider CW (2006) Ataxia telangiectasia mutated (Atm) is not required for telomerase-mediated elongation of short telomeres. Proc Natl Acad Sci U S A 103(7):2249–2251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  353. Hande MP, Balajee AS, Tchirkov A, Wynshaw-Boris A, Lansdorp PM (2001) Extra-chromosomal telomeric DNA in cells from Atm(-/-) mice and patients with ataxia-telangiectasia. Hum Mol Genet 10(5):519–528

    Article  CAS  PubMed  Google Scholar 

  354. Chu WK, Hickson ID (2009) RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 9(9):644–654

    Article  CAS  PubMed  Google Scholar 

  355. Payne M, Hickson ID (2009) Genomic instability and cancer: lessons from analysis of Bloom's syndrome. Biochem Soc Trans 37(Pt 3):553–559

    Article  CAS  PubMed  Google Scholar 

  356. Wyllie FS, Jones CJ, Skinner JW, Haughton MF, Wallis C, Wynford-Thomas D et al (2000) Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet 24(1):16–17

    Article  CAS  PubMed  Google Scholar 

  357. Opresko PL, Cheng WH, von Kobbe C, Harrigan JA, Bohr VA (2003) Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogenesis 24(5):791–802

    Article  CAS  PubMed  Google Scholar 

  358. Crabbe L, Verdun RE, Haggblom CI, Karlseder J (2004) Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306(5703):1951–1953

    Article  CAS  PubMed  Google Scholar 

  359. Barefield C, Karlseder J (2012) The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Res 40(15):7358–7367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  360. Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B, Uicker W et al (2001) DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet 10(25):2917–2931

    Article  CAS  PubMed  Google Scholar 

  361. Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM et al (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A 96(25):14412–14417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  362. Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M et al (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402(6758):187–191

    Article  CAS  PubMed  Google Scholar 

  363. Yehezkel S, Segev Y, Viegas-Pequignot E, Skorecki K, Selig S (2008) Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 17(18):2776–2789

    Article  CAS  PubMed  Google Scholar 

  364. Yehezkel S, Shaked R, Sagie S, Berkovitz R, Shachar-Bener H, Segev Y et al (2013) Characterization and rescue of telomeric abnormalities in ICF syndrome type I fibroblasts. Front Oncol 3:35

    Article  PubMed Central  PubMed  Google Scholar 

  365. Deng Z, Campbell AE, Lieberman PM (2010) TERRA, CpG methylation and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle 9(1):69–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  366. Ji G, Ruan W, Liu K, Wang F, Sakellariou D, Chen J et al (2013) Telomere reprogramming and maintenance in porcine iPS cells. PLoS One 8(9):e74202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  367. Bailey SM, Brenneman MA, Goodwin EH (2004) Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells. Nucleic Acids Res 32(12):3743–3751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  368. Morrish TA, Greider CW (2009) Short telomeres initiate telomere recombination in primary and tumor cells. PLoS Genet 5(1):e1000357

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarantis Gagos Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kroustallaki, P., Gagos, S. (2015). Structure and Functions of Telomeres in Organismal Homeostasis and Disease. In: Felekkis, K., Voskarides, K. (eds) Genomic Elements in Health, Disease and Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3070-8_10

Download citation

Publish with us

Policies and ethics