Skip to main content

Abstract

MicroRNAs are short non-coding RNA species that serve as post-transcriptional regulators of mRNA expression and they have a pivotal role in all cellular functions. Recently, there has been a great interest in deciphering the role of miRNAs in human diseases with a growing possibility of exploiting miRNAs in therapy as well. A miRNA can either be the primary cause of a disease, or be directly or indirectly involved in developing a pathological phenotype. Furthermore, miRNAs have been implicated in complex genetic diseases, while many researchers attempt to build miRNA expression maps characterizing specific diseases. Such findings assist in the better understanding of miRNA functions, dissect the biological background of a disease, as well as become a springboard for the development or improvement of prognostic, diagnostic and therapeutic tools. This chapter aims in providing a concise description of how miRNAs are responsible in the developing pathology of human disease, as well as provide an overview of the workflow followed in miRNA studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Dweep H, Gretz N, Sticht C (2014) miRWalk database for miRNA-target interactions. Methods Mol Biol 1182:289–305

    Article  PubMed  Google Scholar 

  5. Kumar A, Wong AK, Tizard ML, Moore RJ, Lefevre C (2012) miRNA_Targets: a database for miRNA target predictions in coding and non-coding regions of mRNAs. Genomics 100(6):352–356

    Article  CAS  PubMed  Google Scholar 

  6. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  7. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14(6):1012–1017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    Article  CAS  PubMed  Google Scholar 

  10. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12

    Article  CAS  PubMed  Google Scholar 

  12. Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34(16):e107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Kim YK, Yeo J, Kim B, Ha M, Kim VN (2012) Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell 46(6):893–895

    Article  CAS  PubMed  Google Scholar 

  14. Zeringer E, Li M, Barta T, Schageman J, Pedersen KW, Neurauter A et al (2013) Methods for the extraction and RNA profiling of exosomes. World J Methodol 3(1):11–18

    Article  PubMed Central  PubMed  Google Scholar 

  15. Schageman J, Zeringer E, Li M, Barta T, Lea K, Gu J et al (2013) The complete exosome workflow solution: from isolation to characterization of RNA cargo. Biomed Res Int 2013:253957

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Rio DC (2014) Northern blots for small RNAs and microRNAs. Cold Spring Harb Protoc 2014(7):793–797

    Article  PubMed  Google Scholar 

  17. Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11(11):1737–1744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ro S, Park C, Jin J, Sanders KM, Yan W (2006) A PCR-based method for detection and quantification of small RNAs. Biochem Biophys Res Commun 351(3):756–763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Li Y, Kowdley KV (2012) Method for microRNA isolation from clinical serum samples. Anal Biochem 431(1):69–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. McAlexander MA, Phillips MJ, Witwer KW (2013) Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Front Genet 4:83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nuovo GJ (2008) In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations. Methods 44(1):39–46

    Article  CAS  PubMed  Google Scholar 

  24. Wu M, Piccini M, Koh CY, Lam KS, Singh AK (2013) Single cell microRNA analysis using microfluidic flow cytometry. PLoS One 8(1):e55044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Porichis F, Hart MG, Griesbeck M, Everett HL, Hassan M, Baxter AE et al (2014) High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry. Nat Commun 5:5641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. de Planell-Saguer M, Rodicio MC (2011) Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta 699(2):134–152

    Article  PubMed  CAS  Google Scholar 

  27. Yin JQ, Zhao RC, Morris KV (2008) Profiling microRNA expression with microarrays. Trends Biotechnol 26(2):70–76

    Article  CAS  PubMed  Google Scholar 

  28. Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C et al (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44(1):3–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Zollner H, Hahn SA, Maghnouj A (2014) Quantitative RT-PCR specific for precursor and mature miRNAs. Methods Mol Biol 1095:121–134

    Article  PubMed  CAS  Google Scholar 

  30. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G et al (2012) Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat 33(1):254–263

    Article  CAS  PubMed  Google Scholar 

  33. Mencia A, Modamio-Hoybjor S, Redshaw N, Morin M, Mayo-Merino F, Olavarrieta L et al (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 41(5):609–613

    Article  CAS  PubMed  Google Scholar 

  34. Solda G, Robusto M, Primignani P, Castorina P, Benzoni E, Cesarani A et al (2012) A novel mutation within the MIR96 gene causes non-syndromic inherited hearing loss in an Italian family by altering pre-miRNA processing. Hum Mol Genet 21(3):577–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Dorn GW 2nd, Matkovich SJ, Eschenbacher WH, Zhang Y (2012) A human 3′ miR-499 mutation alters cardiac mRNA targeting and function. Circ Res 110(7):958–967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ryan DG, Oliveira-Fernandes M, Lavker RM (2006) MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol Vis 12:1175–1184

    CAS  PubMed  Google Scholar 

  37. Hughes AE, Bradley DT, Campbell M, Lechner J, Dash DP, Simpson DA et al (2011) Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Hum Genet 89(5):628–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Iliff BW, Riazuddin SA, Gottsch JD (2012) A single-base substitution in the seed region of miR-184 causes EDICT syndrome. Invest Ophthalmol Vis Sci 53(1):348–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Bykhovskaya Y, Caiado Canedo AL, Wright KW, Rabinowitz YS (2013) C.57 C > T Mutation in MIR 184 is Responsible for Congenital Cataracts and Corneal Abnormalities in a Five-generation Family from Galicia, Spain. Ophthalmic Genet DOI:10.3109/13816810.2013.848908

    Google Scholar 

  40. Lechner J, Bae HA, Guduric-Fuchs J, Rice A, Govindarajan G, Siddiqui S et al (2013) Mutational analysis of MIR184 in sporadic keratoconus and myopia. Invest Ophthalmol Vis Sci 54(8):5266–5272

    Article  CAS  PubMed  Google Scholar 

  41. Georges M, Clop A, Marcq F, Takeda H, Pirottin D, Hiard S et al (2006) Polymorphic microRNA-target interactions: a novel source of phenotypic variation. Cold Spring Harb Symp Quant Biol 71:343–350

    Article  CAS  PubMed  Google Scholar 

  42. Hariharan M, Scaria V, Brahmachari SK (2009) dbSMR: a novel resource of genome-wide SNPs affecting microRNA mediated regulation. BMC Bioinformatics 10:108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Bao L, Zhou M, Wu L, Lu L, Goldowitz D, Williams RW et al (2007) PolymiRTS Database: linking polymorphisms in microRNA target sites with complex traits. Nucleic Acids Res 35(Database issue):D51–D54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Liu C, Zhang F, Li T, Lu M, Wang L, Yue W et al (2012) MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 13:661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM et al (2005) Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310(5746):317–320

    Article  CAS  PubMed  Google Scholar 

  46. Beetz C, Schule R, Deconinck T, Tran-Viet KN, Zhu H, Kremer BP et al (2008) REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain 131(Pt 4):1078–1086

    Article  PubMed Central  PubMed  Google Scholar 

  47. Zuchner S, Wang G, Tran-Viet KN, Nance MA, Gaskell PC, Vance JM et al (2006) Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am J Hum Genet 79(2):365–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Gale DP, de Jorge EG, Cook HT, Martinez-Barricarte R, Hadjisavvas A, McLean AG et al (2010) Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet 376(9743):794–801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Athanasiou Y, Voskarides K, Gale DP, Damianou L, Patsias C, Zavros M et al (2011) Familial C3 glomerulopathy associated with CFHR5 mutations: clinical characteristics of 91 patients in 16 pedigrees. Clin J Am Soc Nephrol 6(6):1436–1446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Papagregoriou G, Erguler K, Dweep H, Voskarides K, Koupepidou P, Athanasiou Y et al (2012) A miR-1207-5p binding site polymorphism abolishes regulation of HBEGF and is associated with disease severity in CFHR5 nephropathy. PLoS One 7(2):e31021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Cezar-de-Mello PF, Toledo-Pinto TG, Marques CS, Arnez LE, Cardoso CC, Guerreiro LT et al (2014) Pre-miR-146a (rs2910164 G>C) single nucleotide polymorphism is genetically and functionally associated with leprosy. PLoS Negl Trop Dis 8(9):e3099

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Chae YS, Kim JG, Lee SJ, Kang BW, Lee YJ, Park JY et al (2013) A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. Anticancer Res 33(8):3233–3239

    CAS  PubMed  Google Scholar 

  53. Chen G, Umelo IA, Lv S, Teugels E, Fostier K, Kronenberger P et al (2013) miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells. PLoS One 8(3):e60317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Zhu H, Cai P, Zhu D, Xu C, Li H, Tang J et al (2014) A common polymorphism in pre-miR-146a underlies Hirschsprung disease risk in Han Chinese. Exp Mol Pathol 97(3):511–514

    Article  CAS  PubMed  Google Scholar 

  55. Wang N, Li Y, Zhou RM, Wang GY, Wang CM, Chen ZF et al (2014) Hsa-miR-196a2 functional SNP is associated with the risk of ESCC in individuals under 60 years old. Biomarkers 19(1):43–48

    Article  PubMed  CAS  Google Scholar 

  56. Buraczynska M, Zukowski P, Wacinski P, Ksiazek K, Zaluska W (2014) Polymorphism in microRNA-196a2 contributes to the risk of cardiovascular disease in type 2 diabetes patients. J Diabetes Complications 28(5):617–620

    Article  PubMed  Google Scholar 

  57. Haixia D, Hairong D, Weixian C, Min Y, Qiang W, Hang X (2012) Lack of association of polymorphism in miRNA-196a2 with Parkinson’s disease risk in a Chinese population. Neurosci Lett 514(2):194–197

    Article  PubMed  CAS  Google Scholar 

  58. Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10(6):389–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Gilam A, Edry L, Mamluk-Morag E, Bar-Ilan D, Avivi C, Golan D et al (2013) Involvement of IGF-1R regulation by miR-515-5p modifies breast cancer risk among BRCA1 carriers. Breast Cancer Res Treat 138(3):753–760

    Article  CAS  PubMed  Google Scholar 

  60. Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M et al (2010) Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 70(7):2789–2798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Cheng M, Yang L, Yang R, Yang X, Deng J, Yu B et al (2013) A microRNA-135a/b binding polymorphism in CD133 confers decreased risk and favorable prognosis of lung cancer in Chinese by reducing CD133 expression. Carcinogenesis 34(10):2292–2299

    Article  CAS  PubMed  Google Scholar 

  62. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A 104(23):9667–9672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Tsai NP, Lin YL, Wei LN (2009) MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J 424(3):411–418

    Article  CAS  PubMed  Google Scholar 

  64. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471

    Article  PubMed  CAS  Google Scholar 

  65. Forman JJ, Coller HA (2010) The code within the code: microRNAs target coding regions. Cell Cycle 9(8):1533–1541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Akhtar N, Makki MS, Haqqi TM (2015) MicroRNA-602 and microRNA-608 regulate sonic hedgehog expression via target sites in the coding region in human chondrocytes. Arthritis Rheumatol 67(2):423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mandke P, Wyatt N, Fraser J, Bates B, Berberich SJ, Markey MP (2012) MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS One 7(8):e42034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Zhou H, Rigoutsos I (2014) MiR-103a-3p targets the 5′ UTR of GPRC5A in pancreatic cells. RNA 20(9):1431–1439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Kim NH, Cha YH, Kang SE, Lee Y, Lee I, Cha SY et al (2013) p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell Cycle 12(10):1578–1587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309(5740):1577–1581

    Article  CAS  PubMed  Google Scholar 

  71. Mishra PJ, Banerjee D, Bertino JR (2008) MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle 7(7):853–858

    Article  CAS  PubMed  Google Scholar 

  72. Mishra PJ, Humeniuk R, Longo-Sorbello GS, Banerjee D, Bertino JR (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci U S A 104(33):13513–13518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Dai E, Lv Y, Meng F, Yu X, Zhang Y, Wang S et al (2014) CREAM: a database for chemotherapy resistance-associated miRSNP. Cell Death Dis 5:e1272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Ward A, Shukla K, Balwierz A, Soons Z, Konig R, Sahin O et al (2014) MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer. J Pathol 233(4):368–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    Article  CAS  PubMed  Google Scholar 

  76. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  78. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17(2):215–220

    Article  CAS  PubMed  Google Scholar 

  80. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199

    Article  CAS  PubMed  Google Scholar 

  82. Wang LQ, Kwong YL, Wong KF, Kho CS, Jin DY, Tse E et al (2014) Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic lymphocytic leukemia. J Transl Med 12:52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Wang Z, Chen Z, Gao Y, Li N, Li B, Tan F et al (2011) DNA hypermethylation of microRNA-34b/c has prognostic value for stage non-small cell lung cancer. Cancer Biol Ther 11(5):490–496

    Article  CAS  PubMed  Google Scholar 

  84. Javeri A, Ghaffarpour M, Taha MF, Houshmand M (2013) Downregulation of miR-34a in breast tumors is not associated with either p53 mutations or promoter hypermethylation while it correlates with metastasis. Med Oncol 30(1):413

    Article  PubMed  CAS  Google Scholar 

  85. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21

    Article  CAS  PubMed  Google Scholar 

  87. Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M et al (2011) Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 6(3):e17745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299(4):425–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Iorio MV, Casalini P, Tagliabue E, Menard S, Croce CM (2008) MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur J Cancer 44(18):2753–2759

    Article  CAS  PubMed  Google Scholar 

  90. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    Article  CAS  PubMed  Google Scholar 

  91. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    Article  CAS  PubMed  Google Scholar 

  92. Markou A, Liang Y, Lianidou E (2011) Prognostic, therapeutic and diagnostic potential of microRNAs in non-small cell lung cancer. Clin Chem Lab Med 49(10):1591–1603

    Article  CAS  PubMed  Google Scholar 

  93. Chen H, Lan HY, Roukos DH, Cho WC (2014) Application of microRNAs in diabetes mellitus. J Endocrinol 222(1):R1–R10

    Article  CAS  PubMed  Google Scholar 

  94. Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56(12):2938–2945

    Article  CAS  PubMed  Google Scholar 

  95. Kalis M, Bolmeson C, Esguerra JL, Gupta S, Edlund A, Tormo-Badia N et al (2011) Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One 6(12):e29166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA (2007) MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 311(2):603–612

    Article  CAS  PubMed  Google Scholar 

  97. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230

    Article  CAS  PubMed  Google Scholar 

  98. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106(14):5813–5818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57(10):2708–2717

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Latreille M, Hausser J, Stutzer I, Zhang Q, Hastoy B, Gargani S et al (2014) MicroRNA-7a regulates pancreatic beta cell function. J Clin Invest 124(6):2722–2735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, Liu ZM (2011) MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91(1):94–100

    Article  CAS  PubMed  Google Scholar 

  102. Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, Welsh N (2010) High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS One 5(5):e10843

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312

    Article  CAS  PubMed  Google Scholar 

  104. Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281(37):26932–26942

    Article  CAS  PubMed  Google Scholar 

  105. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57(10):2728–2736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365

    Article  CAS  PubMed  Google Scholar 

  107. Chen L, Hou J, Ye L, Chen Y, Cui J, Tian W et al (2014) MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling. Sci Rep 4:3819

    PubMed Central  PubMed  Google Scholar 

  108. Ling HY, Ou HS, Feng SD, Zhang XY, Tuo QH, Chen LX et al (2009) CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin Exp Pharmacol Physiol 36(9):e32–e39

    Article  CAS  PubMed  Google Scholar 

  109. Xie H, Lim B, Lodish HF (2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58(5):1050–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ (2013) Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology 154(2):603–608

    Article  CAS  PubMed  Google Scholar 

  111. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817

    Article  CAS  PubMed  Google Scholar 

  112. Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, Li R et al (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56(3):663–674

    Article  CAS  PubMed  Google Scholar 

  113. Wang X, Sundquist J, Zoller B, Memon AA, Palmer K, Sundquist K et al (2014) Determination of 14 circulating microRNAs in Swedes and Iraqis with and without diabetes mellitus type 2. PLoS One 9(1):e86792

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Kawase-Koga Y, Low R, Otaegi G, Pollock A, Deng H, Eisenhaber F et al (2010) RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. J Cell Sci 123(Pt 4):586–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Cho HJ, Liu G, Jin SM, Parisiadou L, Xie C, Yu J et al (2013) MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 22(3):608–620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Esteves AR, Swerdlow RH, Cardoso SM (2014) LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Exp Neurol 261:206–216

    Article  CAS  PubMed  Google Scholar 

  118. Gehrke S, Imai Y, Sokol N, Lu B (2010) Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466(7306):637–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E et al (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285(17):12726–12734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT et al (2008) MicroRNAs can regulate human APP levels. Mol Neurodegener 3:10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS (2013) Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 127(6):739–749

    Article  CAS  PubMed  Google Scholar 

  123. Hu YK, Wang X, Li L, Du YH, Ye HT, Li CY (2013) MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull 29(6):745–751

    Article  CAS  PubMed  Google Scholar 

  124. Smith P, Al Hashimi A, Girard J, Delay C, Hebert SS (2011) In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem 116(2):240–247

    Article  CAS  PubMed  Google Scholar 

  125. Schonrock N, Ke YD, Humphreys D, Staufenbiel M, Ittner LM, Preiss T et al (2010) Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-beta. PLoS One 5(6):e11070

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Yan R, Vassar R (2014) Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 13(3):319–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105(17):6415–6420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q et al (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28(5):1213–1223

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X et al (2009) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80(4–5):268–273

    Article  CAS  PubMed  Google Scholar 

  130. Alexandrov PN, Dua P, Lukiw WJ (2014) Up-regulation of miRNA-146a in progressive, age-related inflammatory neurodegenerative disorders of the human CNS. Front Neurol 5:181

    Article  PubMed Central  PubMed  Google Scholar 

  131. Saba R, Gushue S, Huzarewich RL, Manguiat K, Medina S, Robertson C et al (2012) MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One 7(2):e30832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Williams AE, Perry MM, Moschos SA, Larner-Svensson HM, Lindsay MA (2008) Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc Trans 36(Pt 6):1211–1215

    Article  CAS  PubMed  Google Scholar 

  133. Tan L, Yu JT, Liu QY, Tan MS, Zhang W, Hu N et al (2014) Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 336(1–2):52–56

    Article  CAS  PubMed  Google Scholar 

  134. Liu CG, Wang JL, Li L, Wang PC (2014) MicroRNA-384 regulates both amyloid precursor protein and beta-secretase expression and is a potential biomarker for Alzheimer’s disease. Int J Mol Med 34(1):160–166

    PubMed  Google Scholar 

  135. Zi Y, Yin Z, Xiao W, Liu X, Gao Z, Jiao L et al (2014) Circulating microRNA as potential source for neurodegenerative diseases biomarkers. Mol Neurobiol DOI:10.1007/s12035-014-8944-x

    Google Scholar 

  136. Ma X, Zhou J, Zhong Y, Jiang L, Mu P, Li Y et al (2014) Expression, regulation and function of microRNAs in multiple sclerosis. Int J Med Sci 11(8):810–818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Toivonen JM, Manzano R, Olivan S, Zaragoza P, Garcia-Redondo A, Osta R (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One 9(2):e89065

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  138. Bronze-da-Rocha E (2014) MicroRNAs expression profiles in cardiovascular diseases. Biomed Res Int 2014:985408

    Article  PubMed Central  PubMed  Google Scholar 

  139. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3):258–267

    Article  CAS  PubMed  Google Scholar 

  140. Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z et al (2008) Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 105(6):2111–2116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Bostjancic E, Zidar N, Stajer D, Glavac D (2010) MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115(3):163–169

    Article  CAS  PubMed  Google Scholar 

  142. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424

    Article  CAS  PubMed  Google Scholar 

  143. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM et al (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124(14):1537–1547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713

    Article  CAS  PubMed  Google Scholar 

  145. Weber M, Baker MB, Moore JP, Searles CD (2010) MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 393(4):643–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR et al (2012) MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest 122(11):4190–4202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A (2013) MicroRNA-126, −145, and −155: a therapeutic triad in atherosclerosis? Arterioscler Thromb Vasc Biol 33(3):449–454

    Article  CAS  PubMed  Google Scholar 

  148. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689

    Article  PubMed  CAS  Google Scholar 

  149. Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N et al (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985):1570–1573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Rotllan N, Ramirez CM, Aryal B, Esau CC, Fernandez-Hernando C (2013) Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr−/− mice--brief report. Arterioscler Thromb Vasc Biol 33(8):1973–1977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS et al (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105(35):13027–13032

    Article  PubMed Central  PubMed  Google Scholar 

  152. Soci UP, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT et al (2011) MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics 43(11):665–673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM et al (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110(1):71–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM et al (2011) Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124(2):175–184

    Article  CAS  PubMed  Google Scholar 

  155. Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J et al (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208(3):535–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Yang S, Banerjee S, Freitas A, Cui H, Xie N, Abraham E et al (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 302(6):L521–L529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Bostjancic E, Glavac D (2014) miRNome in myocardial infarction: future directions and perspective. World J Cardiol 6(9):939–958

    Article  PubMed Central  PubMed  Google Scholar 

  158. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L et al (2010) Circulating microRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3(6):499–506

    Article  PubMed  Google Scholar 

  159. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M et al (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454

    Article  CAS  PubMed  Google Scholar 

  160. Long G, Wang F, Duan Q, Yang S, Chen F, Gong W et al (2012) Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS One 7(12):e50926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD et al (2008) Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol 19(11):2150–2158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G et al (2008) Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19(11):2159–2169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA (2008) Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol 19(11):2069–2075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Zhdanova O, Srivastava S, Di L, Li Z, Tchelebi L, Dworkin S et al (2011) The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int 80(7):719–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM et al (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32(22):e188

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  166. Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M (2008) MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18(3):404–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Dalla Vestra M, Arboit M, Bruseghin M, Fioretto P (2009) The kidney in type 2 diabetes: focus on renal structure. Endocrinol Nutr 56(Suppl 4):18–20

    Article  PubMed  Google Scholar 

  168. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104(9):3432–3437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Wang Q, Wang Y, Minto AW, Wang J, Shi Q, Li X et al (2008) MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 22(12):4126–4135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Zhang Z, Peng H, Chen J, Chen X, Han F, Xu X et al (2009) MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett 583(12):2009–2014

    Article  CAS  PubMed  Google Scholar 

  171. Stitt-Cavanagh E, MacLeod L, Kennedy C (2009) The podocyte in diabetic kidney disease. ScientificWorldJournal 9:1127–1139

    Article  CAS  PubMed  Google Scholar 

  172. Wang G, Kwan BC, Lai FM, Choi PC, Chow KM, Li PK et al (2010) Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis. Am J Hypertens 23(1):78–84

    Article  PubMed  CAS  Google Scholar 

  173. Zhang W, Zhang C, Chen H, Li L, Tu Y, Liu C et al (2014) Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS. Clin J Am Soc Nephrol 9(9):1545–1552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  174. Denby L, Ramdas V, McBride MW, Wang J, Robinson H, McClure J et al (2011) miR-21 and miR-214 are consistently modulated during renal injury in rodent models. Am J Pathol 179(2):661–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Ichii O, Otsuka S, Sasaki N, Namiki Y, Hashimoto Y, Kon Y (2012) Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int 81(3):280–292

    Article  CAS  PubMed  Google Scholar 

  176. Lu J, Kwan BC, Lai FM, Tam LS, Li EK, Chow KM et al (2012) Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis. Nephrology (Carlton) 17(4):346–351

    Article  CAS  Google Scholar 

  177. Wang G, Kwan BC, Lai FM, Choi PC, Chow KM, Li PK et al (2010) Intrarenal expression of microRNAs in patients with IgA nephropathy. Lab Invest 90(1):98–103

    Article  CAS  PubMed  Google Scholar 

  178. Sui W, Yang M, Li F, Chen H, Chen J, Ou M et al (2014) Serum microRNAs as new diagnostic biomarkers for pre- and post-kidney transplantation. Transplant Proc 46(10):3358–3362

    Article  CAS  PubMed  Google Scholar 

  179. Deltas C, Papagregoriou G (2010) Cystic diseases of the kidney: molecular biology and genetics. Arch Pathol Lab Med 134(4):569–582

    CAS  PubMed  Google Scholar 

  180. Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope A et al (2008) MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest 118(11):3714–3724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Pandey P, Brors B, Srivastava PK, Bott A, Boehn SN, Groene HJ et al (2008) Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease. BMC Genomics 9:624

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  182. Patel V, Williams D, Hajarnis S, Hunter R, Pontoglio M, Somlo S et al (2013) miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A 110(26):10765–10770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Agostini M, Knight RA (2014) miR-34: from bench to bedside. Oncotarget 5(4):872–881

    Article  PubMed Central  PubMed  Google Scholar 

  184. Zhao X, Pan F, Holt CM, Lewis AL, Lu JR (2009) Controlled delivery of antisense oligonucleotides: a brief review of current strategies. Expert Opin Drug Deliv 6(7):673–686

    Article  CAS  PubMed  Google Scholar 

  185. Shimakami T, Yamane D, Welsch C, Hensley L, Jangra RK, Lemon SM (2012) Base pairing between hepatitis C virus RNA and microRNA 122 3′ of its seed sequence is essential for genome stabilization and production of infectious virus. J Virol 86(13):7372–7383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Lindow M, Kauppinen S (2012) Discovering the first microRNA-targeted drug. J Cell Biol 199(3):407–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452(7189):896–899

    Article  CAS  PubMed  Google Scholar 

  188. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962):198–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694

    Article  CAS  PubMed  Google Scholar 

  190. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. Craig VJ, Tzankov A, Flori M, Schmid CA, Bader AG, Muller A (2012) Systemic microRNA-34a delivery induces apoptosis and abrogates growth of diffuse large B-cell lymphoma in vivo. Leukemia 26(11):2421–2424

    Article  CAS  PubMed  Google Scholar 

  192. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D et al (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70(14):5923–5930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Bader AG (2012) miR-34 – a microRNA replacement therapy is headed to the clinic. Front Genet 3:120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Papagregoriou Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papagregoriou, G. (2015). MicroRNAs in Disease. In: Felekkis, K., Voskarides, K. (eds) Genomic Elements in Health, Disease and Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3070-8_2

Download citation

Publish with us

Policies and ethics