Skip to main content

Mini- and Micro-Satellite Markers in Health, Disease and Evolution

  • Chapter
Genomic Elements in Health, Disease and Evolution

Abstract

DNA repeat motifs are common in eukaryotic and in prokaryotic organisms classified as interspersed, which originate mainly from transposons and tandem repeats. Tandem repeats (TRs) occur in DNA when a pattern of one, two or more nucleotides is repeated in a sequential and consistent way. Among the most prominent TRs with involvement in evolution, health and disease are the microsatellites and the minisatellites. They differ from the other repetitive DNA sequences in many ways that provide them with properties useful for medical genetic diagnosis, prognosis and screening. Paternity testing and linkage to genes were among the most frequent applications of satellite repeat length determination. During the last three decades other very significant applications of microsatellites emerged for the diagnosis of abnormal expansions in mental retardation and in the neurodegenerative disorders. The human genome project also provided information for more TRs that can be used in cancer DNA and other analyses concerning inter- and intra- individual variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNS:

Central nervous system

CNVs:

Copy number variations

DSBs:

Double strand breaks

FSHD:

Facioscapulohumeral muscular dystrophy

G4:

G-quadruplex

HD or HTT:

Huntington disease

HERVs:

Human endogenous retroviruses

HNPCC:

Hereditary non-polyposis colorectal cancer

HVR:

Hypervariable

LINEs:

Long interspersed elements

LP-BER:

Long-patch base excision repair

LTRs:

Long repetitive sequences

MD:

Myotonic dystrophy

MMR:

Mismatch repair

MSI:

Microsatellite instability

NAHR:

Non-allelic homologous recombination

Nt:

Nucleotides

ORFs:

Open reading frames

PABPs:

Poly(A) binding proteins

SBMA:

Spinobulbar muscular atrophy or Kennedy disease

SCA:

Spinocerebellar ataxia

SCA8:

Spinocerebellar ataxia type 8

SINEs:

Short interspersed elements

SN-BER:

Single nucleotide-base excision repair

SNPs:

Single nucleotide polymorphisms

SSRs:

Simple sequence repeats or STRs: short tandem repeats

SVAs:

SINE-VNTR -ALUs

TEs:

Transposable elements

TNR:

Trinucleotide repeat

TREDs:

Trinucleotide repeat expansion disorders

TRs:

Tandem repeats

VNTRs:

Variable number tandem repeats

References

  1. Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72(4):686–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Gemayel R, Vinces MD, Legendre M, Verstrepen KJ (2010) Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 44:445–477

    Article  CAS  PubMed  Google Scholar 

  3. Lim KG, Kwoh CK, Hsu LY, Wirawan A (2013) Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance. Brief Bioinform 14(1):67–81

    Article  PubMed  Google Scholar 

  4. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  5. Szybalski W (1968) Use of cesium sulfate for equilibrium density gradient centrifugation. Methods Enzymol 12(Pt B):330–360

    Article  CAS  Google Scholar 

  6. Palomeque T, Lorite P (2008) Satellite DNA, in insects: a review. Heredity 100(6):564–573

    Article  CAS  PubMed  Google Scholar 

  7. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371(6494):215–220

    Article  CAS  PubMed  Google Scholar 

  8. Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A 86:7049–7056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bourgain FM, Katinka MD (1991) Telomeres inhibit end to end fusion and enhance maintenance of linear DNA molecules injected into the Paramecium primaurelia macronucleus. Nucleic Acids Res 19:1541–1547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. van Steensel B, Smorgorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413

    Article  PubMed  Google Scholar 

  11. Ashley T (1994) Mammalian meiotic recombination: a reexamination. Hum Genet 94:587–593

    Article  CAS  PubMed  Google Scholar 

  12. Gromak N, Talotti G, Proudfoot NJ, Pagani F (2008) Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA. RNA 14(2):359–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Thierry A, Bouchier C, Dujon B, Richard GF (2008) Megasatellites: a peculiar class of giant minisatellites in genes involved in cell adhesion and pathogenicity in Candida glabrata. Nucleic Acids Res 36(18):5970–5982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5(6):435–445

    Article  CAS  PubMed  Google Scholar 

  15. Ohno S (1972) So much “junk” DNA in our genome. Brookhaven Symp Biol 23:366–370

    CAS  PubMed  Google Scholar 

  16. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284(5757):601–603

    Article  CAS  PubMed  Google Scholar 

  17. Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284(5757):604–607

    Article  CAS  PubMed  Google Scholar 

  18. Edelman I, Culbertson MR (1991) Exceptional codon recognition by the glutamine tRNAs in Saccharomyces cerevisiae. EMBO J 10(6):1481–1491

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Bachtrog D, Weiss S, Zangerl B, Brem G, Schlötterer C (1999) Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Mol Biol Evol 16(5):602–610

    Article  CAS  PubMed  Google Scholar 

  20. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P et al (2002) Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    Article  CAS  PubMed  Google Scholar 

  21. Arcot SS, Wang Z, Weber JL, Deininger PL, Batzer MA (1995) Alu repeats: a source for the genesis of primate microsatellites. Genomics 29(1):136–144

    Article  CAS  PubMed  Google Scholar 

  22. Schlötterer C (1998) Genome evolution: are microsatellites really simple sequences? Curr Biol 8(4):R132–R134

    Article  PubMed  Google Scholar 

  23. Debrauwere H, Gendrel CG, Lechat S, Dutreix M (1997) Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites. Biochimie 79(9–10):577–586

    Article  CAS  PubMed  Google Scholar 

  24. Pâques F, Leung WY, Haber JE (1998) Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol Cell Biol 18(4):2045–2054

    Article  PubMed Central  PubMed  Google Scholar 

  25. Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37(9):986–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Richard GF, Pâques F (2000) Mini- and microsatellite expansions: the recombination connection. EMBO Rep 1(2):122–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA ‘fingerprints’. Nature 318(6046):577–579

    Article  CAS  PubMed  Google Scholar 

  28. Jeffreys AJ, Brookfield JF, Semeonoff R (1985) Positive identification of an immigration test-case using human DNA fingerprints. Nature 317(6040):818–819

    Article  CAS  PubMed  Google Scholar 

  29. Jeffreys AJ, Wilson V, Thein SL (1985) Individual-specific ‘fingerprints’ of human DNA. Nature 316(6023):76–79

    Article  CAS  PubMed  Google Scholar 

  30. Tracey M (2001) Short tandem repeat-based identification of individuals and parents. Croat Med J 42(3):233–238

    CAS  PubMed  Google Scholar 

  31. Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays 28(10):1040–1050

    Article  CAS  PubMed  Google Scholar 

  32. Royle NJ, Clarkson RE, Wong Z, Jeffreys AJ (1988) Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3(4):352–360

    Article  CAS  PubMed  Google Scholar 

  33. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314(6006):67–73

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T, Culver M et al (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235(4796):1616–1622

    Article  CAS  PubMed  Google Scholar 

  35. Armour JA, Anttinen T, May CA, Vega EE, Sajantila A, Kidd JR et al (1996) Minisatellite diversity supports a recent African origin for modern humans. Nat Genet 13(2):154–160

    Article  CAS  PubMed  Google Scholar 

  36. Bois P, Jeffreys AJ (1999) Minisatellite instability and germline mutation. Cell Mol Life Sci 55(12):1636–1648

    Article  CAS  PubMed  Google Scholar 

  37. Sutherland GR, Baker E, Richards RI (1998) Fragile sites still breaking. Trends Genet 14(12):501–506

    Article  CAS  PubMed  Google Scholar 

  38. Wahls WP, Wallace LJ, Moore PD (1990) Hypervariable minisatellite DNA, is a hotspot for homologous recombination in human cells. Cell 60(1):95–103

    Article  CAS  PubMed  Google Scholar 

  39. Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109(6):365–371

    Article  PubMed  Google Scholar 

  40. Epstein ND, Karlsson S, O'Brien S, Modi W, Moulton A, Nienhuis AW (1987) A new moderately repetitive DNA sequence family of novel organization. Nucleic Acids Res 15(5):2327–2341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Giacalone J, Friedes J, Francke U (1992) A novel GC-rich human macrosatellite VNTR in Xq24 is differentially methylated on active and inactive X chromosomes. Nat Genet 1(2):137–143

    Article  CAS  PubMed  Google Scholar 

  42. Van Deutekom JC, Wijmenga C, van Tienhoven EA, Gruter AM, Hewitt JE, Padberg GW et al (1993) FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum Mol Genet 2(12):2037–2042

    Article  PubMed  Google Scholar 

  43. Lopez JV, Yuhki N, Masuda R, Modi W, O'Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol 39(2):174–190

    CAS  PubMed  Google Scholar 

  44. Gondo Y, Okada T, Matsuyama N, Saitoh Y, Yanagisawa Y, Ikeda JE (1998) Human megasatellite DNA RS447: copy-number polymorphisms and interspecies conservation. Genomics 54(1):39–49

    Article  CAS  PubMed  Google Scholar 

  45. Kogi M, Fukushige S, Lefevre C, Hadano S, Ikeda JE (1997) A novel tandem repeat sequence located on human chromosome 4p: isolation and characterization. Genomics 42(2):278–283

    Article  CAS  PubMed  Google Scholar 

  46. Saitoh Y, Miyamoto N, Okada T, Gondo Y, Showguchi-Miyata J, Hadano S et al (2000) The RS447 human megasatellite tandem repetitive sequence encodes a novel deubiquitinating enzyme with a functional promoter. Genomics 67(3):291–300

    Article  CAS  PubMed  Google Scholar 

  47. Okada T, Gondo Y, Goto J, Kanazawa I, Hadano S, Ikeda JE (2002) Unstable transmission of the RS447 human megasatellite tandem repetitive sequence that contains the USP17 deubiquitinating enzyme gene. Hum Genet 110(4):302–313

    Article  CAS  PubMed  Google Scholar 

  48. Chadwick BP (2008) DXZ4 chromatin adopts an opposing conformation to that of the surrounding chromosome and acquires a novel inactive X-specific role involving CTCF and antisense transcripts. Genome Res 18(8):1259–1269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Usdin K (2008) The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 18(7):1011–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wierdl M, Greene CN, Datta A, Jinks-Robertson S, Petes TD (1996) Destabilization of simple repetitive DNA sequences by transcription in yeast. Genetics 143(2):713–721

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2(8):1123–1128

    Article  CAS  PubMed  Google Scholar 

  52. Brinkmann B, Klintschar M, Neuhuber F, Hühne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62(6):1408–1415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Legendre M, Pochet N, Pak T, Verstrepen KJ (2007) Sequence-based estimation of minisatellite and microsatellite repeat variability. Genome Res 17(12):1787–1796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Fu YH, Kuhl DP, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S et al (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67(6):1047–1058

    Article  CAS  PubMed  Google Scholar 

  55. Eichler EE, Holden JJ, Popovich BW, Reiss AL, Snow K, Thibodeau SN et al (1994) Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet 8(1):88–94

    Article  CAS  PubMed  Google Scholar 

  56. Strom CM, Crossley B, Redman JB, Buller A, Quan F, Peng M et al (2007) Molecular testing for Fragile X Syndrome: lessons learned from 119,232 tests performed in a clinical laboratory. Genet Med 9(1):46–51

    Article  CAS  PubMed  Google Scholar 

  57. Crawford DC, Acuña JM, Sherman SL (2001) FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med 3(5):359–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hagerman PJ, Hagerman RJ (2004) Fragile X-associated tremor/ataxia syndrome (FXTAS). Ment Retard Dev Disabil Res Rev 10(1):25–30

    Article  PubMed  Google Scholar 

  59. Murray A (2000) Premature ovarian failure and the FMR1 gene. Semin Reprod Med 18(1):59–66

    Article  CAS  PubMed  Google Scholar 

  60. Sherman SL (2000) Premature ovarian failure in the fragile X syndrome. Am J Med Genet 97(3):189–194

    Article  CAS  PubMed  Google Scholar 

  61. Hagerman RJ (2006) Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. J Dev Behav Pediatr 27(1):63–74

    Article  PubMed  Google Scholar 

  62. Goula AV, Merienne K (2013) Abnormal base excision repair at trinucleotide repeats associated with diseases: a tissue-selective mechanism. Genes (Basel) 4(3):375–387

    Google Scholar 

  63. Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11(12):2453–2465

    Article  CAS  PubMed  Google Scholar 

  64. Ranum LP, Day JW (2002) Dominantly inherited, non-coding microsatellite expansion disorders. Curr Opin Genet Dev 12(3):266–271

    Article  CAS  PubMed  Google Scholar 

  65. Karlin S, Burge C (1996) Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc Natl Acad Sci U S A 93(4):1560–1565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Cummings CJ, Zoghbi HY (2000) Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet 9(6):909–916

    Article  CAS  PubMed  Google Scholar 

  67. Pearson CE, Nichol Edamura K, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6(10):729–742

    Article  CAS  PubMed  Google Scholar 

  68. Shelbourne PF, Keller-McGandy C, Bi WL, Yoon SR, Dubeau L, Veitch NJ et al (2007) Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain. Hum Mol Genet 16(10):1133–1142

    Article  CAS  PubMed  Google Scholar 

  69. Tirosh I, Barkai N, Verstrepen KJ (2009) Promoter architecture and the evolvability of gene expression. J Biol 8(11):95

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Brahmachari SK, Meera G, Sarkar PS, Balagurumoorthy P, Tripathi J, Raghavan S et al (1995) Simple repetitive sequences in the genome: structure and functional significance. Electrophoresis 16(9):1705–1714

    Article  CAS  PubMed  Google Scholar 

  71. Bacolla A, Larson JE, Collins JR, Li J, Milosavljevic A, Stenson PD et al (2008) Abundance and length of simple repeats in vertebrate genomes are determined by their structural properties. Genome Res 18(10):1545–1553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA et al (2013) Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One 8(2):e54710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Sawaya SM, Lennon D, Buschiazzo E, Gemmell N, Minin VN (2012) Measuring microsatellite conservation in mammalian evolution with a phylogenetic birth-death model. Genome Biol Evol 4(6):636–647

    Article  PubMed  CAS  Google Scholar 

  74. Herdewyn S, Zhao H, Moisse M, Race V, Matthijs G, Reumers J et al (2012) Whole-genome sequencing reveals a coding non-pathogenic variant tagging a non-coding pathogenic hexanucleotide repeat expansion in C9orf72 as cause of amyotrophic lateral sclerosis. Hum Mol Genet 21(11):2412–2419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. King DG, Kashi Y (2007) Indirect selection for mutability. Heredity (Edinb) 99(2):123–124

    Article  CAS  Google Scholar 

  76. Kouzine F, Levens D (2007) Supercoil-driven DNA, structures regulate genetic transactions. Front Biosci 12:4409–4423

    Article  CAS  PubMed  Google Scholar 

  77. Wang G, Vasquez KM (2007) Z-DNA, an active element in the genome. Front Biosci 12:4424–4438

    Article  CAS  PubMed  Google Scholar 

  78. Beaulieu M, Barbeau B, Rassart E (1997) Triplex-forming oligonucleotides with unexpected affinity for a nontargeted GA repeat sequence. Antisense Nucleic Acid Drug Dev 7(2):125–130

    Article  CAS  PubMed  Google Scholar 

  79. Rustighi A, Tessari MA, Vascotto F, Sgarra R, Giancotti V, Manfioletti G (2002) A polypyrimidine/polypurine tract within the Hmga2 minimal promoter: a common feature of many growth-related genes. Biochemistry 41(4):1229–1240

    Article  CAS  PubMed  Google Scholar 

  80. Han YJ, de Lanerolle P (2008) Naturally extended CT. AG repeats increase H-DNA structures and promoter activity in the smooth muscle myosin light chain kinase gene. Mol Cell Biol 28(2):863–872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Qin Y, Hurley LH (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90(8):1149–1171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Du Z, Zhao Y, Li N (2009) Genome-wide colonization of gene regulatory elements by G4 DNA motifs. Nucleic Acids Res 37(20):6784–6798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S (2008) QuadBase: genome-wide database of G4 DNA--occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res 36(Database issue):D381–D385

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Du Z, Zhao Y, Li N (2008) Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription. Genome Res 18(2):233–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Eddy J, Maizels N (2008) Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes. Nucleic Acids Res 36(4):1321–1333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Eddy J, Vallur AC, Varma S, Liu H, Reinhold WC, Pommier Y et al (2011) G4 motifs correlate with promoter-proximal transcriptional pausing in human genes. Nucleic Acids Res 39(12):4975–4983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Kumari S, Bugaut A, Huppert JL, Balasubramanian S, An RNA (2007) G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3(4):218–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Wieland M, Hartig JS (2007) RNA quadruplex-based modulation of gene expression. Chem Biol 14(7):757–763

    Article  CAS  PubMed  Google Scholar 

  89. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Halder R, Halder K, Sharma P, Garg G, Sengupta S, Chowdhury S (2010) Guanine quadruplex DNA structure restricts methylation of CpG dinucleotides genome-wide. Mol Biosyst 6(12):2439–2447

    Article  CAS  PubMed  Google Scholar 

  91. Bacolla A, Pradhan S, Larson JE, Roberts RJ, Wells RD (2001) Recombinant human DNA (cytosine-5) methyltransferase. III. Allosteric control, reaction order, and influence of plasmid topology and triplet repeat length on methylation of the fragile X CGG.CCG sequence. J Biol Chem 276(21):18605–18613

    Article  CAS  PubMed  Google Scholar 

  92. Riley DE, Krieger JN (2009) UTR dinucleotide simple sequence repeat evolution exhibits recurring patterns including regulatory sequence motif replacements. Gene 429(1–2):80–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Rothenburg S, Koch-Nolte F, Haag F (2001) DNA methylation and Z-DNA formation as mediators of quantitative differences in the expression of alleles. Immunol Rev 184:286–298

    Article  CAS  PubMed  Google Scholar 

  94. Wells RD, Dere R, Hebert ML, Napierala M, Son LS (2005) Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res 33(12):3785–3798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Subirana JA, Messeguer X (2008) Structural families of genomic microsatellites. Gene 408(1–2):124–132

    Article  CAS  PubMed  Google Scholar 

  96. Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE et al (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2(9):E259

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Liebich I, Bode J, Reuter I, Wingender E (2002) Evaluation of sequence motifs found in scaffold/matrix-attached regions (S/MARs). Nucleic Acids Res 30(15):3433–3442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Millasseau P et al (1992) A second-generation linkage map of the human genome. Nature 359(6398):794–801

    Article  CAS  PubMed  Google Scholar 

  99. Heyer E, Puymirat J, Dieltjes P, Bakker E, de Knijff P (1997) Estimating Y chromosome specific microsatellite mutation frequencies using deep rooting pedigrees. Hum Mol Genet 6(5):799–803

    Article  CAS  PubMed  Google Scholar 

  100. Mahtani MM, Willard HF (1993) A polymorphic X-linked tetranucleotide repeat locus displaying a high rate of new mutation: implications for mechanisms of mutation at short tandem repeat loci. Hum Mol Genet 2(4):431–437

    Article  CAS  PubMed  Google Scholar 

  101. Richards RI, Sutherland GR (1992) Dynamic mutations: a new class of mutations causing human disease. Cell 70(5):709–712

    Article  CAS  PubMed  Google Scholar 

  102. Kennedy GC, German MS, Rutter WJ (1995) The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nat Genet 9(3):293–298

    Article  CAS  PubMed  Google Scholar 

  103. Turri MG, Cuin KA, Porter AC (1995) Characterisation of a novel minisatellite that provides multiple splice donor sites in an interferon-induced transcript. Nucleic Acids Res 23(11):1854–1861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Chaillet JR, Bader DS, Leder P (1995) Regulation of genomic imprinting by gametic and embryonic processes. Genes Dev 9(10):1177–1187

    Article  CAS  PubMed  Google Scholar 

  105. Neumann B, Kubicka P, Barlow DP (1995) Characteristics of imprinted genes. Nat Genet 9(1):12–13

    Article  CAS  PubMed  Google Scholar 

  106. Sybenga J (1999) What makes homologous chromosomes find each other in meiosis? A review and an hypothesis. Chromosoma 108(4):209–219

    Article  CAS  PubMed  Google Scholar 

  107. Brusco A, Saviozzi S, Cinque F, Bottaro A, DeMarchi M (1999) A recurrent breakpoint in the most common deletion of the Ig heavy chain locus (del A1-GP-G2-G4-E). J Immunol 163(8):4392–4398

    CAS  PubMed  Google Scholar 

  108. Bennett P (2000) Demystified …microsatellites. Mol Pathol 53(4):177–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Okazaki S, Tsuchida K, Maekawa H, Ishikawa H, Fujiwara H (1993) Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyxmori and in other insects. Mol Cell Biol 13(3):1424–1432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Wooster R, Cleton-Jansen AM, Collins N, Mangion J, Cornelis RS, Cooper CS et al (1994) Instability of short tandem repeats (microsatellites) in human cancers. Nat Genet 6(2):152–156

    Article  CAS  PubMed  Google Scholar 

  111. Eshleman JR, Lang EZ, Bowerfind GK, Parsons R, Vogelstein B, Willson JK et al (1995) Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene 10(1):33–37

    CAS  PubMed  Google Scholar 

  112. Hatzistamou J, Kiaris H, Ergazaki M, Spandidos DA (1996) Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun 225(1):186–190

    Article  CAS  PubMed  Google Scholar 

  113. Dubrova YE, Jeffreys AJ, Malashenko AM (1993) Mouse minisatellite mutations induced by ionizing radiation. Nat Genet 5(1):92–94

    Article  CAS  PubMed  Google Scholar 

  114. Jeffreys AJ, Bois P, Buard J, Collick A, Dubrova Y, Hollies CR et al (1997) Spontaneous and induced minisatellite instability. Electrophoresis 18(9):1501–1511

    Article  CAS  PubMed  Google Scholar 

  115. Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14(10):417–422

    Article  CAS  PubMed  Google Scholar 

  116. Laird CD (1990) Proposed genetic basis of Huntington’s disease. Trends Genet 6(8):242–247

    Article  CAS  PubMed  Google Scholar 

  117. Sabl JF, Laird CD (1992) Epigene conversion: a proposal with implications for gene mapping in humans. Am J Hum Genet 50(6):1171–1177

    PubMed Central  CAS  PubMed  Google Scholar 

  118. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2(8):589–594

    Article  CAS  PubMed  Google Scholar 

  119. Jakupciak JP, Wells RD (2000) Genetic instabilities of triplet repeat sequences by recombination. IUBMB Life 50(6):355–359

    Article  CAS  PubMed  Google Scholar 

  120. Riley DE, Krieger JN (2009) Embryonic nervous system genes predominate in searches for dinucleotide simple sequence repeats flanked by conserved sequences. Gene 429(1–2):74–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Neale MJ (2010) PRDM9 points the zinc finger at meiotic recombination hotspots. Genome Biol 11(2):104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Kauppi L, Jeffreys AJ, Keeney S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5(6):413–424

    Article  CAS  PubMed  Google Scholar 

  123. Ségurel L, Leffler EM, Przeworski M (2011) The case of the fickle fingers: how the PRDM9 zinc finger protein specifies meiotic recombination hotspots in humans. PLoS Biol 9(12):e1001211

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Berg IL, Neumann R, Lam KW, Sarbajna S, Odenthal-Hesse L, May CA et al (2010) PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat Genet 42(10):859–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Biet E, Sun J, Dutreix M (1999) Conserved sequence preference in DNA binding among recombination proteins: an effect of ssDNA secondary structure. Nucleic Acids Res 27(2):596–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Guo WJ, Ling J, Li P (2009) Consensus features of microsatellite distribution: microsatellite contents are universally correlated with recombination rates and are preferentially depressed by centromeres in multicellular eukaryotic genomes. Genomics 93(4):323–331

    Article  CAS  PubMed  Google Scholar 

  127. Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson BA et al (2002) A high-resolution recombination map of the human genome. Nat Genet 31(3):241–247

    CAS  PubMed  Google Scholar 

  128. Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10(7):967–981

    Article  PubMed Central  PubMed  Google Scholar 

  129. Payseur BA, Nachman MW (2000) Microsatellite variation and recombination rate in the human genome. Genetics 156(3):1285–1298

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310(5746):321–324

    Article  CAS  PubMed  Google Scholar 

  131. Brandström M, Bagshaw AT, Gemmell NJ, Ellegren H (2008) The relationship between microsatellite polymorphism and recombination hot spots in the human genome. Mol Biol Evol 25(12):2579–2587

    Article  PubMed  CAS  Google Scholar 

  132. Varela MA, Amos W (2010) Heterogeneous distribution of SNPs in the human genome: microsatellites as predictors of nucleotide diversity and divergence. Genomics 95(3):151–159

    Article  CAS  PubMed  Google Scholar 

  133. Bannert N, Kurth R (2004) Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A 5:101

    Google Scholar 

  134. Kelkar YD, Eckert KA, Chiaromonte F, Makova KD (2011) A matter of life or death: how microsatellites emerge in and vanish from the human genome. Genome Res 21(12):2038–2048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13(6):651–658

    Article  CAS  PubMed  Google Scholar 

  136. Boeke JD (1997) LINEs and Alus--the polyA connection. Nat Genet 16(1):6–7

    Article  CAS  PubMed  Google Scholar 

  137. BatzerMA CR (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703

    Article  CAS  Google Scholar 

  138. Dai L, Taylor MS, O'Donnell KA, Boeke JD (2012) Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation. Mol Cell Biol 32(21):4323–4336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. West N, Roy-Engel AM, Imataka H, Sonenberg N, Deininger P (2002) Shared protein components of SINE RNPs. J Mol Biol 321(3):423–432

    Article  CAS  PubMed  Google Scholar 

  140. Nadir E, Margalit H, Gallily T, Ben-Sasson SA (1996) Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc Natl Acad Sci U S A 93(13):6470–6475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Clark RM, Dalgliesh GL, Endres D, Gomez M, Taylor J, Bidichandani SI (2004) Expansion of GAA triplet repeats in the human genome: unique origin of the FRDA mutation at the center of an Alu. Genomics 83(3):373–383

    Article  CAS  PubMed  Google Scholar 

  142. Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA et al (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354(4):994–1007

    Article  CAS  PubMed  Google Scholar 

  143. Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr (2003) SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73(6):1444–1451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11(11):786–799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. La Spada AR, Taylor JP (2010) Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat Rev Genet 11(4):247–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Dion V, Wilson JH (2009) Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet 25(7):288–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Pearson CE, Wang YH, Griffith JD, Sinden RR (1998) Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res 26(3):816–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Gacy AM, Goellner GM, Spiro C, Chen X, Gupta G, Bradbury EM et al (1998) GAA instability in Friedreich’s Ataxia shares a common, DNA-directed and intraallelic mechanism with other trinucleotide diseases. Mol Cell 1(4):583–593

    Article  CAS  PubMed  Google Scholar 

  149. Pearson CE, Tam M, Wang YH, Montgomery SE, Dar AC, Cleary JD et al (2002) Slipped-strand DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions. Nucleic Acids Res 30(20):4534–4547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Pearson CE (2003) Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol Med 9(11):490–495

    Article  CAS  PubMed  Google Scholar 

  151. Richardson LL, Pedigo C, Ann Handel M (2000) Expression of deoxyribonucleic acid repair enzymes during spermatogenesis in mice. Biol Reprod 62(3):789–796

    Article  CAS  PubMed  Google Scholar 

  152. Yoon SR, Dubeau L, de Young M, Wexler NS, Arnheim N (2003) PNAS Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc Natl Acad Sci U S A 100(15):8834–8838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Malter HE, Iber JC, Willemsen R, de Graaff E, Tarleton JC, Leisti J et al (1997) Characterization of the full fragile X syndrome mutation in fetal gametes. Nat Genet 15(2):165–169

    Article  CAS  PubMed  Google Scholar 

  154. Moseley ML, Schut LJ, Bird TD, Koob MD, Day JW, Ranum LP (2000) SCA8 CTG repeat: en masse contractionsin sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet 9(14):2125–2130

    Article  CAS  PubMed  Google Scholar 

  155. Telenius H, Kremer B, Goldberg YP, Theilmann J, Andrew SE, Zeisler J et al (1994) Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet 6(4):409–414

    Article  CAS  PubMed  Google Scholar 

  156. Cleary JD, Tomé S, López Castel A, Panigrahi GB, Foiry L, Hagerman KA et al (2010) Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1. Nat Struct Mol Biol 17(9):1079–1087

    Article  CAS  PubMed  Google Scholar 

  157. Morales F, Couto JM, Higham CF, Hogg G, Cuenca P, Braida C et al (2012) Somatic instability of the expanded CTG triplet repeat in myotonicdystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum Mol Genet 21(16):3558–3567

    Article  CAS  PubMed  Google Scholar 

  158. Fischer HG, Morawski M, Brückner MK, Mittag A, Tarnok A, Arendt T (2012) Changes in neuronal DNA content variation in the human brain during aging. Aging Cell 11(4):628–633

    Article  CAS  PubMed  Google Scholar 

  159. Gacy AM, Goellner G, Juranić N, Macura S, McMurray CT (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81(4):533–540

    Article  CAS  PubMed  Google Scholar 

  160. Panigrahi GB, Lau R, Montgomery SE, Leonard MR, Pearson CE (2005) Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Nat Struct Mol Biol 12(8):654–662

    Article  CAS  PubMed  Google Scholar 

  161. Slean MM, Reddy K, Wu B, NicholEdamura K, Kekis M, Nelissen FH et al (2013) Interconverting conformations of slipped-DNA junctions formed by trinucleotide repeats affect repair outcome. Biochemistry 52(5):773–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Reddy K, Tam M, Bowater RP, Barber M, Tomlinson M, Nichol Edamura K et al (2011) Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res 39(5):1749–1762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Wheeler VC, Lebel LA, Vrbanac V, Teed A, te Riele H, MacDonald ME (2003) Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum Mol Genet 12(3):273–281

    Article  CAS  PubMed  Google Scholar 

  164. Savouret C, Garcia-Cordier C, Megret J, te Riele H, Junien C, Gourdon G (2004) MSH2-dependent germinal CTG repeat expansions are produced continuously in spermatogonia from DM1 transgenic mice. Mol Cell Biol 24(2):629–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Kovtun IV, Liu Y, Bjoras M, Klungland A, Wilson SH, McMurray CT (2007) OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447(7143):447–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Hubert L Jr, Lin Y, Dion V, Wilson JH (2011) Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1. Hum Mol Genet 20(24):4822–4830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Lindahl T (2000) Suppression of spontaneous mutagenesis in human cells by DNA base excision-repair. Mutat Res 462(2–3):129–135

    Article  CAS  PubMed  Google Scholar 

  168. Fortini P, Dogliotti E (2007) Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair 6(4):398–409

    Article  CAS  PubMed  Google Scholar 

  169. López Castel A, Tomkinson AE, Pearson CE (2009) CTG/CAG repeat instability is modulated by the levels of human DNA ligase I and its interaction with proliferating cell nuclear antigen: a distinction between replication and slipped-DNA repair. J Biol Chem 284(39):26631–26645

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  170. Tomé S, Panigrahi GB, López Castel A, Foiry L, Melton DW, Gourdon G et al (2011) Maternal germline-specific effect of DNA ligase I on CTG/CAG instability. Hum Mol Genet 20(11):2131–2143

    Article  PubMed  CAS  Google Scholar 

  171. van den Broek WJ, Nelen MR, van der Heijden GW, Wansink DG, Wieringa B (2006) Fen1 does not control somatic hypermutability of the (CTG)(n)*(CAG)(n) repeat in a knock-in mouse model for DM1. FEBS Lett 580(22):5208–5214

    Article  PubMed  CAS  Google Scholar 

  172. Møllersen L, Rowe AD, Illuzzi JL, Hildrestrand GA, Gerhold KJ, Tveterås L et al (2012) Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice. Hum Mol Genet 21(22):4939–4947

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  173. Entezam A, Lokanga AR, Le W, Hoffman G, Usdin K (2010) Potassium bromate, a potent DNA oxidizing agent, exacerbates germline repeat expansion in a fragile X premutation mouse model. Hum Mutat 31(5):611–616

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Goula AV, Berquist BR, Wilson DM 3rd, Wheeler VC, Trottier Y, Merienne K (2009) Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet 5(12):e1000749

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  175. Jarem DA, Wilson NR, Delaney S (2009) Structure-dependent DNA, damage and repair in a trinucleotide repeat sequence. Biochemistry 48(28):6655–6663

    Article  CAS  PubMed  Google Scholar 

  176. Duval A, Hamelin R (2002) Genetic instability in human mismatch repair deficient cancers. Ann Genet 45(2):71–75

    Article  PubMed  Google Scholar 

  177. Shah SN, Hile SE, Eckert KA (2010) Defective mismatch repair, microsatellite mutation bias, and variability in clinical cancer phenotypes. Cancer Res 70(2):431–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Coleman MG, Gough AC, Bunyan DJ, Braham D, Eccles DM, Primrose JN (2001) Minisatellite instability is found in colorectal tumours with mismatch repair deficiency. Br J Cancer 85(10):1486–1491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Mirkin SM (2007) Expandable DNA, repeats and human disease. Nature 447(7147):932–940

    Article  CAS  PubMed  Google Scholar 

  180. Swami M, Hendricks AE, Gillis T, Massood T, Mysore J, Myers RH (2009) Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum Mol Genet 18(16):3039–3047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Drousiotou A, Stylianidou G, Anastasiadou V, Christopoulos G, Mavrikiou E, Georgiou T et al (2000) Sandhoff disease in Cyprus: population screening by biochemical and DNA analysis indicates a high frequency of carriers in the Maronite community. Hum Genet 107(1):12–17

    Article  CAS  PubMed  Google Scholar 

  182. Lunkes A, Trottier Y, Mandel JL (1998) Pathological mechanisms in Huntington’s disease and other polyglutamine expansion diseases. Essays Biochem 33:149–163

    Article  CAS  PubMed  Google Scholar 

  183. Kooy RF, Willemsen R, Oostra BA (2000) Fragile X syndrome at the turn of the century. Mol Med Today 6(5):193–198

    Article  CAS  PubMed  Google Scholar 

  184. Mansfield ES (1993) Diagnosis of down syndrome and other aneuploidies using quantitative polymerase chain reaction and small tandem repeat polymorphisms. Hum Mol Genet 2(1):43–50

    Article  CAS  PubMed  Google Scholar 

  185. Zhou JL, Wei HY, Wu H, Hu YL, Liang WL (2012) Application of STR genetic marker system in the detection of hemophilia A carriers in Guangxi, China [Chinese]. Zhongguo Dang Dai Er Ke Za Zhi 14(12):951–955

    CAS  PubMed  Google Scholar 

  186. Liu X, Wang X, Fan Q, Chu H, Fang Y, Wang H (2002) Gene diagnosis of hemophilia B by multiple STR analysis [Chinese]. Zhonghua Xue Ye Xue Za Zhi 23(3):147–150

    CAS  PubMed  Google Scholar 

  187. Pfeifer JD, Singleton MN, Gregory MH, Lambert DL, Kymes SM (2012) Development of a decision-analytic model for the application of STR-based provenance testing of transrectal prostate biopsy specimens. Value Health 15(6):860–867

    Article  PubMed  Google Scholar 

  188. Jongpiputvanich S, Norapucsunton T, Mutirangura A (1996) Diagnosis and carrier detection in a Duchenne muscular dystrophy family by multiplex polymerase chain reaction and microsatellite analysis. J Med Assoc Thai 79(Suppl 1):S15–S21

    PubMed  Google Scholar 

  189. Guzzetta V, Santoro L, Gasparo-Rippa P, Ragno M, Vita G, Caruso G et al (1995) Charcot-Marie-Tooth disease: molecular characterization of patients from central and southern Italy. Clin Genet 47(1):27–32

    Article  CAS  PubMed  Google Scholar 

  190. Lander ES, Botstein D (1987) Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236(4808):1567–1570

    Article  CAS  PubMed  Google Scholar 

  191. Kobayashi K, Nakahori Y, Mizuno K, Miyake M, Kumagai T, Honma A et al (1998) Founder-haplotype analysis in Fukuyama-type congenital muscular dystrophy (FCMD). Hum Genet 103(3):323–327

    Article  CAS  PubMed  Google Scholar 

  192. Tsujikawa M, Kurahashi H, Tanaka T, Nishida K, Shimomura Y, Tano Y et al (1999) Identification of the gene responsible for gelatinous drop-like corneal dystrophy. Nat Genet 21(4):420–423

    Article  CAS  PubMed  Google Scholar 

  193. Riley DE, Krieger JN (2001) Short tandem repeat polymorphism linkage to the androgen receptor gene in prostate carcinoma. Cancer 92(10):2603–2608

    Article  CAS  PubMed  Google Scholar 

  194. Thomson JA, Pilotti V, Stevens P, Ayres KL, Debenham PG (1999) Validation of short tandem repeat analysis for the investigation of cases of disputed paternity. Forensic Sci Int 100(1–2):1–16

    Article  CAS  PubMed  Google Scholar 

  195. Rodig H, Roewer L, Gross A, Richter T, de Knijff P, Kayser M et al (2008) Evaluation of haplotype discrimination capacity of 35 Y-chromosomal short tandem repeat loci. Forensic Sci Int 174(2–3):182–188

    Article  CAS  PubMed  Google Scholar 

  196. Torroni A, Achilli A, Macaulay V, Richards M, Bandelt HJ (2006) Harvesting the fruit of the human mtDNA tree. Trends Genet 22(6):339–345

    Article  CAS  PubMed  Google Scholar 

  197. Gill P, Ivanov PL, Kimpton C, Piercy R, Benson N, Tully G et al (1994) Identification of the remains of the Romanov family by DNA analysis. Nat Genet 6(2):130–135

    Article  CAS  PubMed  Google Scholar 

  198. Clayton TM, Whitaker JP, Maguire CN (1995) Identification of bodies from the scene of a mass disaster using DNA amplification of short tandem repeat (STR) loci. Forensic Sci Int 76(1):7–15

    Article  CAS  PubMed  Google Scholar 

  199. Kayser M, Sajantila A (2001) Mutations at Y-STR loci: implications for paternity testing and forensic analysis. Forensic Sci Int 118(2–3):116–121

    Article  CAS  PubMed  Google Scholar 

  200. Kopelman NM, Stone L, Wang C, Gefel D, Feldman MW, Hillel J et al (2009) Genomic microsatellites identify shared Jewish ancestry intermediate between Middle Eastern and European populations. BMC Genet 10:80

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  201. Pope AM, Carr SM, Smith KN, Marshall HD (2011) Mitogenomic and microsatellite variation in descendants of the founder population of Newfoundland: high genetic diversity in an historically isolated population. Genome 54(2):110–119

    Article  CAS  PubMed  Google Scholar 

  202. Greenwood CM, Bureau A, Loredo-Osti JC, Roslin NM, Crumley MJ, Brewer CG et al (2001) Pedigree selection and tests of linkage in a Hutterite asthma pedigree. Genet Epidemiol 21(Suppl 1):S244–S251

    PubMed  Google Scholar 

  203. Myerowitz R (2001) The search for the genetic lesion in Ashkenazi Jews with Classic Tay-Sachs disease. Adv Genet 44:137–143

    Article  CAS  PubMed  Google Scholar 

  204. Frankel W, Chan A, Corringham RE, Shepherd S, Rearden A, Wang-Rodriguez J (1996) Detection of chimerism and early engraftment after allogeneic peripheral blood stem cell or bone marrow transplantation by short tandem repeats. Am J Hematol 52(4):281–287

    Article  CAS  PubMed  Google Scholar 

  205. Molloy K, Goulden N, Lawler M, Cornish J, Oakhill A, Pamphilon D et al (1996) Patterns of hematopoietic chimerism following bone marrow transplantation for childhood acute lymphoblastic leukemia from volunteer unrelated donors. Blood 87(7):3027–3031

    CAS  PubMed  Google Scholar 

  206. Gardiner N, Lawler M, O'Riordan J, De'Arce M, McCann SR (1997) Donor chimaerism is a strong indicator of disease free survival following bone marrow transplantation for chronic myeloid leukaemia. Leukemia 11(Suppl 3):512–515

    PubMed  Google Scholar 

  207. Blau IW, Basara N, Serr A, Seidl C, Seifried E, Fuchs M et al (1999) A second unrelated bone marrow transplant: successful quantitative monitoring of mixed chimerism using a highly discriminative PCR-STR system. Clin Lab Haematol 21(2):133–138

    Article  CAS  PubMed  Google Scholar 

  208. Odelberg SJ, Plaetke R, Eldridge JR, Ballard L, O’Connell P, Nakamura Y et al (1989) Characterization of eight VNTR loci by agarose gel electrophoresis: implications for parentage testing and forensic individualization. Genomics 5:915–924

    Article  CAS  PubMed  Google Scholar 

  209. Raina A, Dogra TD (2002) Application of DNA fingerprinting in medicolegal practice. J Indian Med Assoc 100(12):688–694

    PubMed  Google Scholar 

  210. Tsopanomichalou M, Sourvinos G, Arvanitis D, Michalodimitrakis M (2000) Analysis of eight polymorphic human genetic markers in a well-defined Greek population. Am J Forensic Med Pathol 21(2):172–177

    Article  CAS  PubMed  Google Scholar 

  211. Chakraborty R, Stivers DN, Zhong Y (1996) Estimation of mutation rates from parentage exclusion data: applications to STR and VNTR loci. Mutat Res 354(1):41–48

    Article  PubMed  Google Scholar 

  212. Lothe RA, Nakamura Y, Woodward S, Gedde-Dahl T Jr, White R (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. Cytogenet Cell Genet 48(3):167–169

    Article  CAS  PubMed  Google Scholar 

  213. Thompson AM, Steel CM, Chetty U, Hawkins RA, Miller WR, Carter DC et al (1990) p53 gene mRNA expression and chromosome 17p allele loss in breast cancer. Br J Cancer 61(1):74–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  214. Queimado L, Seruca R, Costa-Pereira A, Castedo S (1995) Identification of two distinct regions of deletion at 6q in gastric carcinoma. Genes Chromosomes Cancer 14(1):28–34

    Article  CAS  PubMed  Google Scholar 

  215. Ohtsu K, Hiyama E, Ichikawa T, Matsuura Y, Yokoyama T (1997) Clinical investigation of neuroblastoma with partial deletion in the short arm of chromosome 1. Clin Cancer Res 3(7):1221–1228

    CAS  PubMed  Google Scholar 

  216. Hauptschein RS, Gamberi B, Rao PH, Frigeri F, Scotto L, Venkatraj VS et al (1998) Cloning and mapping of human chromosome 6q26-q27 deleted in B-cell non-Hodgkin lymphoma and multiple tumor types. Genomics 50(2):170–186

    Article  CAS  PubMed  Google Scholar 

  217. Mancini UM, Estécio MR, Góis JF, Fukuyama EE, Valentim PJ, Cury PM et al (2003) The chromosome 5q21 band minisatellite and head and neck cancer. Cancer Genet Cytogenet 147(1):87–88

    Article  CAS  PubMed  Google Scholar 

  218. Sakamoto T, Ogino M, Yamamoto T, Mori H, Okinaga S, Sonoda T et al (1993) Allelic losses of tumor suppressor gene on chromosome 17 in ovarian cancer [Japanese]. Nihon Sanka Fujinka Gakkai Zasshi 45(5):457–463

    CAS  PubMed  Google Scholar 

  219. Gosse-Brun S, Sauvaigo S, Daver A, Page M, Lortholary A, Larra F et al (1999) Specific H-Ras minisatellite alleles in breast cancer susceptibility. Anticancer Res 19(6B):5191–5196

    CAS  PubMed  Google Scholar 

  220. Xing EP, Yang GY, Wang LD, Shi ST, Yang CS (1999) Loss of heterozygosity of the Rb gene correlates with pRb protein expression and associates with p53 alteration in human esophageal cancer. Clin Cancer Res 5(5):1231–1240

    CAS  PubMed  Google Scholar 

  221. Scharf SJ, Bowcock AM, McClure G, Klitz W, Yandell DW, Erlich HA (1992) Amplification and characterization of the retinoblastoma gene VNTR by PCR. Am J Hum Genet 50(2):371–381

    PubMed Central  CAS  PubMed  Google Scholar 

  222. Virtaneva K, D'Amato E, Miao J, Koskiniemi M, Norio R, Avanzini G et al (1997) Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1. Nat Genet 15(4):393–396

    Article  CAS  PubMed  Google Scholar 

  223. Waterworth DM, Bennett ST, Gharani N, McCarthy MI, Hague S, Batty S et al (1997) Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. Lancet 349(9057):986–990

    Article  CAS  PubMed  Google Scholar 

  224. Bennett ST, Wilson AJ, Esposito L, Bouzekri N, Undlien DE, Cucca F et al (1997) Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. The IMDIAB Group. Nat Genet 17(3):350–352

    Article  CAS  PubMed  Google Scholar 

  225. Diz-Kucukkaya R, Inanc M, Afshar-Kharghan V, Zhang QE, López JA, Pekcelen Y (2007) P-selectin glycoprotein ligand-1 VNTR polymorphisms and risk of thrombosis in the antiphospholipid syndrome. Ann Rheum Dis 66(10):1378–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  226. Gromadzka G, Członkowska A (2011) Influence of IL-1RN intron 2 variable number of tandem repeats (VNTR) polymorphism on the age at onset of neuropsychiatric symptoms in Wilson’s disease. Int J Neurosci 121(1):8–15

    Article  CAS  PubMed  Google Scholar 

  227. Batanian JR, Ledbetter DH, Fenwick RG (1998) A simple VNTR-PCR method for detecting maternal cell contamination in prenatal diagnosis. Genet Test 2(4):347–350

    Article  CAS  PubMed  Google Scholar 

  228. Kanavakis E, Traeger-Synodinos J, Vrettou C, Maragoudaki E, Tzetis M, Kattamis C (1997) Prenatal diagnosis of the thalassaemia syndromes by rapid DNA analytical methods. Mol Hum Reprod 3(6):523–528

    Article  CAS  PubMed  Google Scholar 

  229. Romano V, Dianzani I, Ponzone A, Zammarchi E, Eisensmith R, Ceratto N et al (1994) Prenatal diagnosis by minisatellite analysis in Italian families with phenylketonuria. Prenat Diagn 14(10):959–962

    Article  CAS  PubMed  Google Scholar 

  230. Hussein IR, El-Beshlawy A, Salem A, Mosaad R, Zaghloul N, Ragab L et al (2008) The use of DNA markers for carrier detection and prenatal diagnosis of haemophilia A in Egyptian families. Haemophilia 14(5):1082–1087

    Article  CAS  PubMed  Google Scholar 

  231. Gatti RA, Nakamura Y, Nussmeier M, Susi E, Shan W, Grody WW (1989) Informativeness of VNTR genetic markers for detecting chimerism after bone marrow transplantation. Dis Markers 7(2):105–112

    CAS  PubMed  Google Scholar 

  232. Kletzel M, Huang W, Olszewski M, Khan S (2013) Validation of chimerism in pediatric recipients of allogeneic hematopoietic stem cell transplantation (HSCT) a comparison between two methods: real-time PCR (qPCR) vs. variable number tandem repeats PCR (VNTR PCR). Chimerism 4(1):1–8

    Article  PubMed Central  PubMed  Google Scholar 

  233. Gymrek M, Golan D, Rosset S, Erlich Y (2012) lobSTR: a short tandem repeat profiler for personal genomes. Genome Res 22:1154–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  234. Highnam G, Franck C, Martin A, Stephens C, Puthige A, Mittelman D (2013) Accurate human microsatellite genotypes from high-throughput resequencing data using informed error profiles. Nucleic Acids Res 41:e32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  235. Duitama J, Zablotskaya A, Gemayel R, Jansen A, Belet S, Vermeesch JR et al (2014) Large-scale analysis of tandem repeat variability in the human genome. Nucleic Acids Res 42(9):5728–5741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Georgiou Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Galani, V.A., Markoula, S., Lazaros, L., Ladias, P., Georgiou, I. (2015). Mini- and Micro-Satellite Markers in Health, Disease and Evolution. In: Felekkis, K., Voskarides, K. (eds) Genomic Elements in Health, Disease and Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3070-8_7

Download citation

Publish with us

Policies and ethics