Skip to main content

Carbon Monoxide and Signal Transduction Pathways

  • Chapter
Signal Transduction and the Gasotransmitters

Summary

Carbon monoxide (CO) is emerging as an important signaling molecule that exerts a myriad of biological effects that are only recently being uncovered. CO is a diatomic gas that is generated predominantly from heme degradation by the enzyme heme oxygenase. Traditionally considered a biological “waste product” of heme metabolism and, at high doses, lethal, CO clearly has diverse functions including the modulation of neural signals, inflammation, cell proliferation, cell death, and smooth muscle contractility. Interestingly, at concentrations well below those that would otherwise create toxic effects, CO has beneficial effects in various models of injury and inflammation. The precise mechanisms of these CO-mediated effects are yet unknown but are becoming the focus of intense investigations. This chapter reviews the known signal transduction pathways of CO with a special emphasis on the roles of guanylate cyclase, the mitogen-activated protein kinases, and nuclear factor-κB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Miyakawa S, Yamanashi H, Kobayashi K, et al. Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci USA 2002;99:14,628–14,631.

    Article  CAS  Google Scholar 

  2. Paredi P, Kharitonov SA, Barnes PJ. Exhaled carbon monoxide in lung disease. Eur Respir J 2003; 21:197,198.

    Google Scholar 

  3. Zegdi R, Perrin D, Burdin M, et al. Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Med 2002;28:793–796.

    Article  PubMed  Google Scholar 

  4. Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 2002;3:214–220.

    Article  PubMed  CAS  Google Scholar 

  5. Beltran B, Quintero M, Garcia-Zaragoza E, et al. Inhibition of mitochondrial respiration by endogenous nitric oxide: a critical step in Fas signaling. Proc Natl Acad Sci USA 2002;99:8892–8897

    Article  PubMed  CAS  Google Scholar 

  6. Matsumoto A, Comatas KE, Liu L, et al. Screening for nitric oxide-dependent protein-protein interactions. Science 2003;301:657–661.

    Article  PubMed  CAS  Google Scholar 

  7. Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 1968;61:748–755.

    Article  PubMed  CAS  Google Scholar 

  8. Keyse SM, Tyrrell RM. Induction of the heme oxygenase gene in human skin fibroblasts by hydrogen peroxide and UVA (365 nm) radiation: evidence for the involvement of the hydroxyl radical. Carcinogenesis 1989;11:787–789.

    Article  Google Scholar 

  9. Keyse SM, Tyrrell RM. Herne oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci USA 1989;86:99–103.

    Article  PubMed  CAS  Google Scholar 

  10. Otterbein LE, Soares MP, Yamashita K, et al. Hemne oxygenase-1:unleashing the protective properties of heme. Trends Immunol 2003;24:449–455.

    Article  PubMed  CAS  Google Scholar 

  11. Kim YM, Bergonia HA, Muller C, et al. Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem 1995;270(11):5710–5713.

    Article  PubMed  CAS  Google Scholar 

  12. Naughton P, Foresti R, Bains SK, et al. Induction of heme oxygenase 1 by nitrosative stress: a role for nitroxyl anion. J Biol Chem 2002;277:40,666–40,674.

    Article  CAS  Google Scholar 

  13. Choi BM, Pae HO, Kim YM, et al. Nitric oxide-mediated cytoprotection of hepatocytes from glucose deprivation-induced cytotoxicity: involvement of heme oxygenase-1. Hepatology 2003;37:810–823.

    Article  PubMed  CAS  Google Scholar 

  14. Watts RN, Ponka P, Richardson DR. Effects of nitrogen monoxide and carbon monoxide on molecular and cellular iron metabolism: mirror-image effector molecules that target iron. Biochem J 2003; 369:429–440.

    Article  PubMed  CAS  Google Scholar 

  15. Maines JD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 1997;37:517–554.

    Article  PubMed  CAS  Google Scholar 

  16. Brune B, Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 1987;32:497–504.

    PubMed  CAS  Google Scholar 

  17. Utz J, Ullrich V. Carbon monoxoide relaxes ilial smooth muscle through activation of guanylate cyclase. Biochem Pharmacol 1991;41:1195–2001.

    Article  PubMed  CAS  Google Scholar 

  18. Ingi T, Cheng J, Ronnett GV. Carbon monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signaling system. Neuron 1996;16:835–842.

    Article  PubMed  CAS  Google Scholar 

  19. Maines MD. Carbon monoxide: an emerging regulator of cGMP in the brain. Mol Cell Neurosci 1993;4:389–397.

    Article  PubMed  CAS  Google Scholar 

  20. Morita T, Perrella MS, Lee M, et al. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci USA 1995;92:1475–1479.

    Article  PubMed  CAS  Google Scholar 

  21. Morita T, Mitsialis, SA, Koike H, et al. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 1997;272:32,804–32,809.

    CAS  Google Scholar 

  22. Durante, W. Carbon monoxide and vascular smooth muscle cell growth. In: Carbon Monoxide and Cardiovascular Functions. (Wang R, ed.) CRC Press: Boca Raton, FL, 2001, pp. 45–65.

    Chapter  Google Scholar 

  23. Cardell LO, Ueki IF, Stjarne P, et al. Bronchodilation in vivo by carbon monoxide, a cyclic GMP related messenger. Br J Pharmacol 1998;124:1065–1068.

    Article  PubMed  CAS  Google Scholar 

  24. Liu X, Chapman GB, Peyton KJ, et al. Carbon monoxide inhibits apoptosis in vascular smooth muscle cells. Cardiovasc Res 2002;55:396–405.

    Article  PubMed  CAS  Google Scholar 

  25. Liu XM, Chapman GB, Peyton KJ, et al. Antiapoptotic action of carbon monoxide on cultured vascular smooth muscle cells. Exp Biol Med 2003;228:572–575.

    CAS  Google Scholar 

  26. Fugita T, Toda K, Karimova A, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide by derepression of fibrinolysis. Nat Med 2001;7:598–604.

    Article  Google Scholar 

  27. Cobb MH. MAP kinase pathways. Prog Biophys Mol Biol 1999;71:479–500.

    Article  PubMed  CAS  Google Scholar 

  28. Song R, Mahidhara RS, Liu F, et al. Carbon monoxide inhibits human airway smooth muscle cell proliferation via mitogen-activated protein kinase pathway. Am J Respir Cell Mol Biol 2002;27:603–610.

    PubMed  CAS  Google Scholar 

  29. Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2002;6:422–428.

    Google Scholar 

  30. Sato K, Balla J, Otterbein L, et al. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 2001;166:4185–4194.

    PubMed  CAS  Google Scholar 

  31. Otterbein LE. Carbon monoxide: innovative anti-inflammatory properties of an age-old gas molecule. Antioxid Redox Signal 2002;4:309–319.

    Article  PubMed  CAS  Google Scholar 

  32. Chapman JT, Otterbein LE, Elias JA, et al. Carbon monoxide attenuates aeroallergen-induced inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2001;281:L209–L216.

    PubMed  CAS  Google Scholar 

  33. Otterbein LE, Mantell LL, Choi AMK. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol 1999;276:L688–L694.

    PubMed  CAS  Google Scholar 

  34. Morse D, Pischke SE, Zhou Z, et al. Suppression of inflammatory cytokine production by carbon monoxide involves the c-Jun NH2 terminal kinase (JNK) pathway and activator protein-1 (AP-1) J Biol Chem 2003;278:36,993–36,998.

    Article  CAS  Google Scholar 

  35. Brouard S, Otterbein LE, AnratherJ, et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 2002;192:1015–1026.

    Article  Google Scholar 

  36. Amersi F, Shen XD, Anselmo D, et al. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/ reperfusion injury through p38 MAP kinase pathway. Hepatology 2002;35:815–823.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang X, Shan P, Otterbein LE, et al. Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen activated protein kinase pathway and involves caspase 3. J Biol Chem 2003;278:1248–1258.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang X, Shan P, Alam J, et al. Carbon monoxide modulates Fas/Fas ligand caspases and Bcl-2 family proteins via the p38alpha mitogen-activated protein kinase pathway during ischemia-reperfusion lung injury. J Biol Chem 2003;278:22,061–22,070.

    CAS  Google Scholar 

  39. Braz JC, Bueno OF, Liang Q, et al. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J Clin Invest 2003;111:1475–1486.

    PubMed  CAS  Google Scholar 

  40. Herlaar E, Brown Z. p38 MAPK signalling cascades in inflammatory disease. Mol Med Today 1999;5:439–447.

    Article  PubMed  CAS  Google Scholar 

  41. Sethi JM, Otterbein LE, Choi AM. Differential modulation by exogenous carbon monoxide of TNF-alpha stimulated mitogen-activated protein kinases in rat pulmonary artery endothelial cells. Antioxid Redox Signal 2002;4:241–248.

    Article  PubMed  CAS  Google Scholar 

  42. Thom S, Fisher D, Xu YA, et al. Adaptive responses and apoptosis in endothelial cells exposed to carbon monoxide. Proc Natl Acad Sci USA 2000;97:1305–1310.

    Article  PubMed  CAS  Google Scholar 

  43. Brouard S, Berberat PO , Tobiasch E, et al. Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem 2002;277:17,950–17,961.

    Article  CAS  Google Scholar 

  44. Karin M. The beginning of the end: IκB kinase (Ikk) and NFkB activation. J Biol Chem 1999;183: 27,339–27,342.

    Google Scholar 

  45. Read MA, Whitley MZ, Williams AJ, et al. NFkB and IkBa: an inducible regulatory system in endothelial activation. J Exp Med 1994;179:503–512.

    Article  PubMed  CAS  Google Scholar 

  46. Zechner D, Craig R, Hanford DS, et al. MKK6 activates myocardial cell NF-kB and inhibits apoptosis in a p38 mitogen-activated protein kinase dependent manner. J Biol Chem 1998;273:8232–8239.

    Article  PubMed  CAS  Google Scholar 

  47. Vandenberghe W, Plaisance S, Boone E, et al. p38 and extracellular signal regulating kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 1998;273:3285–3290.

    Article  CAS  Google Scholar 

  48. Lee FS, Peters RT, Dang LC, et al. MEKK1 activates both IkB kinase alpha and IkB beta. Proc Natl Acad Sci USA 1998;95:9319–9324.

    Article  PubMed  CAS  Google Scholar 

  49. Bender K, Gottlicher M, Whiteside S, et al. Sequential DNA damage-independent and -dependent activation of NF-kB by UV. EMBO J 1998;17:5170–5181.

    Article  PubMed  CAS  Google Scholar 

  50. Altavilla D, Saitta A, Guarini S, et al. Oxidative stress causes nuclear factor-kappaB activation in acute hypovolemic hemorrhagic shock. Free Radic Biol Med 2001;30:1055–1066.

    Article  PubMed  CAS  Google Scholar 

  51. Tamatani M, Che YH, Matsuzaki H, et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J Biol Chem 1999;274:8531–8538.

    Article  PubMed  CAS  Google Scholar 

  52. Bach FH, Hancock WW, Ferran C. Protective genes expressed in endothelial cells—a regulatory response to injury. Immunol Today 1997;18:483–486.

    Article  PubMed  CAS  Google Scholar 

  53. Sarady JK, Otterbein SL, Liu F, et al. Carbon monoxide modulates endotoxin-induced production of granulocyte macrophage colony-stimulating factor in macrophages. Am J Respir Cell Mol Biol 2002;27:739–745.

    PubMed  CAS  Google Scholar 

  54. Zuckerbraun BS, Billiar TR, Otterbein SL, et al. Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. J Exp Med 2003;198(11):1707–1716.

    Article  PubMed  CAS  Google Scholar 

  55. Coceani F, Kelsey L, Seidlitz E. Carbon monoxide-induced relaxation of the ductus arteriosus in the lamb: evidence against the prime role of guanylate cyclase. Br J Pharmacol 1996;118:1689–1696.

    Article  PubMed  CAS  Google Scholar 

  56. Wang R, Wu L, Wang Z. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Eur J Physiol 1997;434:285–291.

    Article  CAS  Google Scholar 

  57. Kaide JI, Zhang F, Wei Y, et al. Carbon monoxide of vascular origin attenuates the sensitivity of renal arterial vessels to vasoconstrictors. J Clin Invest 2001;107:1163–1171.

    Article  PubMed  CAS  Google Scholar 

  58. Jaggar JH, Leffler CW, Cheranov SY, et al. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels. Circ Res 2002;91:610–617.

    Article  PubMed  CAS  Google Scholar 

  59. Piantadosi CA. Biological chemistry of carbon monoxide. Antioxid Redox Signal 2003;4:259–270.

    Article  Google Scholar 

  60. Frankel D, Mehindate K, Schipper HM. Role of heme oxygenase-1 in the regulation of manganese superoxide dismutase gene expression in oxidatively-challenged astroglia. Cell Physiol 2000;185:80–86.

    Article  CAS  Google Scholar 

  61. Dioum EM, Rutter J, Tuckerman JR, et al. NPAS2: a gas-responsive transcription factor. Science 2002;298:2385–2387.

    Article  PubMed  CAS  Google Scholar 

  62. Liu Y, Christou H, Morita T, et al. Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial growth factor gene via the 5’ enhancer. J Biol Chem 1998;273:15,257–15,262.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, P.J., Otterbein, L.E. (2004). Carbon Monoxide and Signal Transduction Pathways. In: Wang, R. (eds) Signal Transduction and the Gasotransmitters. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-806-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-806-9_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-512-5

  • Online ISBN: 978-1-59259-806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics