Skip to main content

Interactions of Nitric Oxide and Cardiac Ion Channels

  • Chapter
Signal Transduction and the Gasotransmitters

Summary

Nitric oxide (NO) is a uniquely diffusible and reactive molecular messenger that is found in abundance and plays important regulatory roles in the cardiovascular system. NO modulates a wide variety of ion channels in different systems as diverse as neurons, vascular smooth muscles, carotid bodies, pancreatic cells, and hair cells in the inner ear. Indeed, the modulation of ion channels represents one of the important functional effects of NO. In the cardiovascular system, NO significantly modulates the cardiac ryanodine receptor channel, L-type Ca2+ channel, and Na+ channel. The actions of NO are exceedingly multifaceted. There are at least two distinct downstream signaling actions for NO: an indirect pathway via cyclic guanosine 5′-monophosphate (cGMP) production and a direct pathway via protein thiol nitrosylation (S-nitrosylation). In addition, a low level of cGMP can mediate the inactivation of phosphodiesterase type 3, leading to an increased level of cyclic adenosine monophosphate. For example, Ca2+ channels can be stimulated or inhibited under different conditions by different concentrations of NO via indirect or direct pathways. Furthermore, NO modulations can be biphasic and highly sensitive to experimental conditions, such as redox state of the cells, concentrations of NO, temperature, and oxygen tension. More recently, it has been suggested that spatial confinement of different NO synthase (NOS) isoforms may allow NO signaling to have independent, and even opposite, effects on cardiac function. Therefore, a precise knowledge of various pathways and multiple effectors of different NOS enzymes is critical to the development of diagnostic and therapeutic strategies for heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992;258:1898–1902.

    Article  PubMed  CAS  Google Scholar 

  2. Stamler JS, Loscalzo J. Endothelium-derived relaxing factor modulates the atherothrombogenic effects of homocysteine. J Cardiovasc Pharmacol 1992;20:S202–S204.

    Article  PubMed  CAS  Google Scholar 

  3. von der Leyen HE, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 1995;92: 1137–1141.

    Article  PubMed  Google Scholar 

  4. Brady AJ, Warren JB, Poole-Wilson PA, et al. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 1993;265:H176–H182.

    PubMed  CAS  Google Scholar 

  5. Hare JM, Colucci WS. Role of nitric oxide in the regulation of myocardial function. Prog Cardiovasc Dis 1995;38:155–166.

    Article  PubMed  CAS  Google Scholar 

  6. Hare JM. Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol 2003;35:719–729.

    Article  PubMed  CAS  Google Scholar 

  7. Shah AM. Paracrine modulation of heart cell function by endothelial cells. Cardiovasc Res 1996;31: 847–867.

    PubMed  CAS  Google Scholar 

  8. Balligand JL, Kelly RA, Marsden PA, et al. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA 1993;90:347–351.

    Article  PubMed  CAS  Google Scholar 

  9. Barouch LA, Harrison RW, Skaf MW, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 2002;416:337–339.

    Article  PubMed  CAS  Google Scholar 

  10. Mery PF, Pavoine C, Belhassen L, et al. Nitric oxide regulates cardiac Ca2+ current: involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem 1993;268:26,286–26,295.

    CAS  Google Scholar 

  11. Han X, Kobzik L, Balligand JL, et al. Nitric oxide synthase (NOS3)-mediated cholinergic modulation of Ca2+ current in adult rabbit atrioventricular nodal cells. Circ Res 1996;78:998–1008.

    Article  PubMed  CAS  Google Scholar 

  12. Wahler GM; Dollinger SJ. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol 1995;268:C45—054.

    Google Scholar 

  13. Levi RC, Alloatti G, Penna C, et al. Guanylate-cyclase-mediated inhibition of cardiac ICa by carbachol and sodium nitroprusside. Pflugers Arch 1994;426:419–426.

    Article  PubMed  CAS  Google Scholar 

  14. Campbell DL, Stamler JS, Strauss HC. Redox modulation of L-type calcium channels in ferret ventricular myocytes: dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 1996;108:277–293.

    Article  PubMed  CAS  Google Scholar 

  15. Hu H, Chiamvimonvat N, Yamagishi T, et al. Direct inhibition of expressed cardiac L-type Ca2+ channels by S-nitrosothiol nitric oxide donors. Circ Res 1997:81:742–752.

    Article  PubMed  CAS  Google Scholar 

  16. Bers DM. Cardiac excitation-contraction coupling. Nature 2002;415:198–205.

    Article  PubMed  CAS  Google Scholar 

  17. Bers DM. Calcium and cardiac rhythms: physiological and pathophysiological. Circ Res 2002;90:14–17.

    PubMed  CAS  Google Scholar 

  18. Senzaki H, Smith CJ, Juang GJ, et al. Cardiac phosphodiesterase 5 (cGMP-specific) modulates betaadrenergic signaling in vivo and is down-regulated in heart failure. FASEB J 2001;15:1718–1726.

    Article  PubMed  CAS  Google Scholar 

  19. Schuh K, Uldrijan S, Telkamp M, et al. The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol 2001;155:201–205.

    Article  PubMed  CAS  Google Scholar 

  20. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992;6:3051–3064.

    PubMed  CAS  Google Scholar 

  21. Michel T, Xie Q-W, Nathan C. Molecular biological analysis of nitric oxide synthase. John Wiley: Chichester, UK, 1996.

    Google Scholar 

  22. Michel T, Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest 1997;100: 2146–2152.

    Article  PubMed  CAS  Google Scholar 

  23. Michel T, Smith TW. Nitric oxide synthases and cardiovascular signaling. Am J Cardiol 1993;72: 33C-38C.

    Article  PubMed  CAS  Google Scholar 

  24. Xu KY, Huso DL, Dawson TM, et al. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 1999;96:657–662.

    Article  PubMed  CAS  Google Scholar 

  25. de Belder AJ, Radomski MW, Why HJ, et al. Nitric oxide synthase activities in human myocardium. Lancet 1993;341:84, 85.

    Article  PubMed  Google Scholar 

  26. Balligand JL, Ungureanu-Longrois D, Simmons WW, et al. Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem 1994;269:27,580–27,588.

    CAS  Google Scholar 

  27. Kobzik L, Reid MB, Bredt DS, et al. Nitric oxide in skeletal muscle. Nature 1994;372:546–548.

    Article  PubMed  CAS  Google Scholar 

  28. Brenman JE, Chao DS, Gee SH, et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alphal-syntrophin mediated by PDZ domains. Cell 1996;84:757–767.

    Article  PubMed  CAS  Google Scholar 

  29. Brenman JE, Chao DS, Xia H, et al. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 1995;82:743–752.

    Article  PubMed  CAS  Google Scholar 

  30. Feron O, Dessy C, Opel DJ, et al. Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes: implications for the autonomic regulation of heart rate. J Biol Chem 1998;273:30,249–30,254.

    CAS  Google Scholar 

  31. Feron O, Smith TW, Michel T, et al. Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 1997;272:17,744–17,748.

    CAS  Google Scholar 

  32. Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999;399:597–601.

    Article  PubMed  CAS  Google Scholar 

  33. Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999:399:601–605.

    Article  PubMed  CAS  Google Scholar 

  34. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 1990;87:682–685.

    Article  PubMed  CAS  Google Scholar 

  35. Stamler JS, Lamas S, Fang FC. Nitrosylation: the prototypic redox-based signaling mechanism. Cell 2001;106:675–683.

    Article  PubMed  CAS  Google Scholar 

  36. Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 1998;25:434–456.

    Article  PubMed  CAS  Google Scholar 

  37. Layland J, Li JM, Shah AM. Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 2002;540:457–467.

    Article  PubMed  CAS  Google Scholar 

  38. Feelisch M, Stamler JS. Donors of nitrogen oxides. In: Feelisch M, Stamler JS, eds. Methods in Nitric Oxide Research. John Wiley: New York, 1996, pp. 69–114.

    Google Scholar 

  39. Wink DA, Cook JA, Kim SY, et al. Superoxide modulates the oxidation and nitrosation of thiols by nitric oxide-derived reactive intermediates: chemical aspects involved in the balance between oxidative and nitrosative stress. J Biol Chem 1997;272:11,147–11,151.

    CAS  Google Scholar 

  40. Scharfstein JS, Keaney JF Jr., Slivka A, et al. In vivo transfer of nitric oxide between a plasma proteinbound reservoir and low molecular weight thiols. J Clin Invest 1994;94:1432–1439.

    Article  PubMed  CAS  Google Scholar 

  41. Sun J, Xin C, Eu JP, et al. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci USA 2001;98:11158–11162.

    Article  PubMed  CAS  Google Scholar 

  42. Simon DI, Mullins ME, Jia L, et al. Polynitrosylated proteins: characterization, bioactivity, and functional consequences. Proc Natl Acad Sci USA 1996;93:4736–4741.

    Article  PubMed  CAS  Google Scholar 

  43. Xu L, Eu JP, Meissner G, et al. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 1998;279:234–237.

    Article  PubMed  CAS  Google Scholar 

  44. Eu JP, Sun J, Xu L, et al. The skeletal muscle calcium release channel: coupled 02 sensor and NO signaling functions. Cell 2000;102:499–509.

    Article  PubMed  CAS  Google Scholar 

  45. Chesnais JM, Fischmeister R, Mery PF. Positive and negative inotropic effects of NO donors in atrial and ventricular fibres of the frog heart. J Physiol 1999;518(pt 2):449–461.

    Article  PubMed  CAS  Google Scholar 

  46. Vila-Petroff MG, Younes A, Egan J, et al. Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 1999;84:1020–1031.

    Article  PubMed  CAS  Google Scholar 

  47. Bang L, Boesgaard S, Nielsen-Kudsk JE, et al. Nitroglycerin-mediated vasorelaxation is modulated by endothelial calcium-activated potassium channels. Cardiovasc Res 1999;43:772–778.

    Article  PubMed  CAS  Google Scholar 

  48. Li Z, Chapleau MW, Bates JN, et al. Nitric oxide as an autocrine regulator of sodium currents in baroreceptor neurons. Neuron 1998;20:1039–1049.

    Article  PubMed  CAS  Google Scholar 

  49. Zahradnikova A, Minarovic I, Venema RC, et al. Inactivation of the cardiac ryanodine receptor calcium release channel by nitric oxide. Cell Calcium 1997,22:447–454.

    Article  PubMed  CAS  Google Scholar 

  50. Ahmmed GU, Xu Y, Hong Dong P, et al. Nitric oxide modulates cardiac Na+ channel via protein kinase A and protein kinase G. Circ Res 2001;89:1005–1013.

    Article  PubMed  CAS  Google Scholar 

  51. Han X, Shimoni Y, Giles WR. A cellular mechanism for nitric oxide-mediated cholineric control of mammalian heart rate. J Gen Physiol 1995;106:45–65.

    Article  PubMed  CAS  Google Scholar 

  52. Hartzell HC, Fischmeister R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 1986;323:273–275.

    Article  PubMed  CAS  Google Scholar 

  53. Levi RC, Alloatti G, Fischmeister R. Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflügers Arch 1989;413:685–687.

    Article  PubMed  CAS  Google Scholar 

  54. Mery PF, Lohmann SM, Walter U, et al. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 1991;88:1197–1201.

    Article  PubMed  CAS  Google Scholar 

  55. Chiamvimonvat N, O’Rourke B, et al. Functional consequences of sulfhydryl modification in the poreforming subunits of cardiovascular Ca2+ and Na+ channels. Circ Res 1995;76:325–334.

    Article  PubMed  CAS  Google Scholar 

  56. Catterall WA. Structure and function of voltage-gated ion channels. Annu Rev Biochenn 1995;64: 493–531.

    Article  CAS  Google Scholar 

  57. Catterall WA. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 1998;24:307–323.

    Article  PubMed  CAS  Google Scholar 

  58. Walker D, De Waard M. Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci 1998;21:148–154.

    Article  PubMed  CAS  Google Scholar 

  59. Lipton SA, Choi YB, Pan ZH, et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 1993;364:626–632.

    Article  PubMed  CAS  Google Scholar 

  60. Arnelle DR, Stamler JS. NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 1995;318:279–285.

    Article  PubMed  CAS  Google Scholar 

  61. Hess P, Lansman JB, Tsien RW. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 1984;311:538–544.

    Article  PubMed  CAS  Google Scholar 

  62. Pietrobon D, Hess P. Novel mechanism of voltage-dependent gating in L-type calcium channels. Nature 1990;346:651–655.

    Article  PubMed  CAS  Google Scholar 

  63. Murphy BJ, Washkurak AW, Tuana BS. Dihydropyridine binding to the L-type Ca2+ channel in rabbit heart sarcolemma and skeletal muscle transverse-tubules: role of disulfide, sulfhydryl and phosphate groups. Biochim Biophys Acta 1990;1052:333–339.

    Article  PubMed  CAS  Google Scholar 

  64. Mohan P, Brutsaert DL, Paulus WJ, et al. Myocardial contractile response to nitric oxide and cGMP. Circulation 1996;93:1223–1229.

    Article  PubMed  CAS  Google Scholar 

  65. Heuze-Joubert I, Mennecier P, Simonet S, et al. Effect of vasodilators, including nitric oxide, on the release of cGMP and cAMP in the isolated perfused rat kidney. Eur J Pharmacol 1992;220:161–171.

    Article  PubMed  CAS  Google Scholar 

  66. Lander HM, Sehajpal PK, Novogrodsky A. Nitric oxide signaling: a possible role for G proteins. J Immunol 1993;151:7182–7187.

    PubMed  CAS  Google Scholar 

  67. Miyamoto A, Laufs U, Pardo C, et al. Modulation of bradykinin receptor ligand binding aftinity and its coupled G-proteins by nitric oxide. J Biol Chem 1997;272:19,601–19,608.

    CAS  Google Scholar 

  68. Ruppersberg JP, Stocker M, Pongs O, et al. Regulation of fast inactivation of cloned mammalian 1K(A) channels by cysteine oxidation. Nature 1991;352:711–714.

    Article  PubMed  CAS  Google Scholar 

  69. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994;78:931–936

    Article  PubMed  CAS  Google Scholar 

  70. Islam MS, Berggren PO, Larsson O. Sulfhydryl oxidation induces rapid and reversible closure of the ATP-regulated K+ channel in the pancreatic beta-cell. FEBS Lett 1993;319:128–132.

    Article  PubMed  CAS  Google Scholar 

  71. Bolotina VM, Najibi S, Palacino JJ, et al. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994;368:850–853.

    Article  PubMed  CAS  Google Scholar 

  72. Zaidi NF, Lagenaur CF, Abramson JJ, et al. Reactive disulfides trigger Ca2+ release from sarcoplasmic reticulum via an oxidation reaction. J Biol Chem 1989;264:21,725–21,736.

    CAS  Google Scholar 

  73. Stoyanovsky DA, Salama G, Kagan VE. Ascorbate/iron activates Ca2+-release channels of skeletal sarcoplasmic reticulum vesicles reconstituted in lipid bilayers. Arch Biochem Biophys 1994;308: 214–221.

    Article  PubMed  CAS  Google Scholar 

  74. Salama G, Abramson JJ, Pike GK. Sulphydryl reagents trigger Ca2+ release from the sarcoplasmic reticulum of skinned rabbit psoas fibres. J Physiol 1992;454:389–420.

    PubMed  CAS  Google Scholar 

  75. Malinski T, Taha Z, Grunfeld S, et al. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun 1993;193:1076–1082.

    Article  PubMed  CAS  Google Scholar 

  76. Malinski T, Radomski MW, Taha Z, et al. Direct electrochemical measurement of nitric oxide released from human platelets. Biochem Biophys Res Commun 1993;194:960–965.

    Article  PubMed  CAS  Google Scholar 

  77. MacKenzie IM, Garrard CS, Young JD. Indices of nitric oxide synthesis and outcome in critically ill patients. Anaesthesia 2001;56:326–330.

    Article  PubMed  CAS  Google Scholar 

  78. Kojda G, Kottenberg K, Nix P, et al. Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 1996;78:91–101.

    Article  PubMed  CAS  Google Scholar 

  79. Liu L, Hausladen A, Zeng M, et al. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 2001;410:490–494.

    Article  PubMed  CAS  Google Scholar 

  80. Saavedra WF, Paolocci N, St John ME, et al. Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res 2002;90:297–304.

    Article  PubMed  CAS  Google Scholar 

  81. Hare JM, Stamler JS. NOS: modulator, not mediator of cardiac performance. Nat Med 1999;5:273, 274.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, Z., Glatter, K.A., Chiamvimonvat, N. (2004). Interactions of Nitric Oxide and Cardiac Ion Channels. In: Wang, R. (eds) Signal Transduction and the Gasotransmitters. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-806-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-806-9_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-512-5

  • Online ISBN: 978-1-59259-806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics