Skip to main content

S-Nitrosylation of Cyclic Nucleotide-Gated Channels

  • Chapter
Signal Transduction and the Gasotransmitters
  • 229 Accesses

Summary

The activation of cyclic nucleotide-gated (CNG) channels is the final step in olfactory and visual transduction. Over the past several years, CNG channels have been found in various other cell types where they might fulfill various physiological functions. CNG channels rely on the binding of at least two molecules of cyclic adenosine monophosphate or cyclic guanosine 5′-monophosphate at intracellular sites on the channel protein to open a nonspecific cation conductance with a significant permeability to Ca ions. In addition to their activation by cyclic nucleotides, nitric oxide (NO)-generating compounds can directly open the olfactory CNG channels through a redox reaction that results in the S-nitrosylation of a free SH group on a cysteine residue. This cysteine is located in the C-linker region of the channel, which is known to be important in channel gating. Kinetic analyses suggest that at least two of these cysteine residues on different channel subunits are involved in the direct activation by NO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen XZ, Vassilev PM, Basora N, et al. Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 1999;401:383–386.

    PubMed  CAS  Google Scholar 

  2. Fesenko EE, Kolesnikov SS, Lyubarsky AL. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 1985;313:310–313.

    Article  PubMed  CAS  Google Scholar 

  3. Nakamura T, Gold GH. A cyclic-nucleotide gated conductance in olfactory receptor cilia. Nature 1987;325:442–444.

    Article  PubMed  CAS  Google Scholar 

  4. Kaupp UB. Family of cyclic nucleotide gated ion channels. Curr Opin Neurobiol 1995;5:434–442.

    Article  PubMed  CAS  Google Scholar 

  5. Finn JT, Yau KW. Cyclic nucleotide-gated channels: an extended family with diverse functions. Annu Rev Physiol 1996;58:395–426.

    Article  PubMed  CAS  Google Scholar 

  6. Zagotta WN, Siegelbaum SA. Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci 1996;19:235–263.

    Article  PubMed  CAS  Google Scholar 

  7. Wei JY, Roy DS, Leconte L, et al. Molecular and pharmacological analysis of cyclic nucleotide-gated channel function in the central nervous system. Prog Neurobiol 1998;56:37–64.

    Article  PubMed  Google Scholar 

  8. Leinders-Zufall T, Rand MN, Shepherd GM, et al. Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory recentor cells: snatiotemporal dynamics. J Neurosci 1997:17:4136–4148.

    PubMed  CAS  Google Scholar 

  9. Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev 2002;82:769–824.

    PubMed  CAS  Google Scholar 

  10. Jan LY, Jan YN. A superfamily of ion channels. Nature 1990;345:672.

    Article  PubMed  CAS  Google Scholar 

  11. Goulding EH, Tibbs GR, Liu D, et al. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels. Nature 1993;364:61–64.

    Article  PubMed  CAS  Google Scholar 

  12. Goulding EH, Tibbs GR, Siegelbaum SA. Molecular mechanism of cyclic nucleotide-gated channel activation. Nature 1994;372:369–374.

    Article  PubMed  CAS  Google Scholar 

  13. Gordon SE, Zagotta WN. A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors. Neuron 1995;14:177–183.

    Article  PubMed  CAS  Google Scholar 

  14. Gordon SE, Zagotta WN. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron 1995;14:857–864.

    Article  PubMed  CAS  Google Scholar 

  15. Root MJ, MacKinnon R. Identification of an external divalent cation-binding site in the pore of a cGMP-activated chanel. Neuron 1993;11:459–466.

    Article  PubMed  CAS  Google Scholar 

  16. Root MJ, MacKinnon R. Two identical noninteracting sites on an ion channel revealed by proton transfer. Science 1994;265:1852–1856

    Article  PubMed  CAS  Google Scholar 

  17. Park CS, MacKinnon R. Divalent cation selectivity in a cyclic nucleotide-gated ion channel. Biochemistry 1995;34:13,328–13,333.

    Article  CAS  Google Scholar 

  18. Sun Z, Akabas MH, Goulding EH, et al. Exposure of residues in the cyclic nucleotide-gated channel pore: P-region structure and function in gating. Neuron 1996;16:141–149.

    Article  PubMed  CAS  Google Scholar 

  19. Liu DT, Tibbs GR, Paoletti P, et al. Constraining ligand-binding site stoichiometry suggests that a cyclic nucleotide-gated channel is composed of two functional dimers. Neuron 1998;21:235–248.

    Article  PubMed  CAS  Google Scholar 

  20. Brown LA, Snow SD, Haley TL. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. Biophys J 1998;75:825–833.

    Article  PubMed  CAS  Google Scholar 

  21. Gavazzo P, Picco C, Eismann E, et al. A point mutation in the pore region alters gating, Ca2+ blockage, and permeation of olfactory cyclic nucleotide-gated channels. J Gen Physiol 2000;116:311–326.

    Article  PubMed  CAS  Google Scholar 

  22. Broillet M-C, Firestein S. Cyclic nucleotide-gated channel: molecular mechanisms of activation. In: Rudy B, Seeburg P, eds. Molecular and Functional Diversity of Ion Channels and Receptors. vol. 868. New York: The New York Academy of Sciences, 1999, pp. 730–740.

    Google Scholar 

  23. Kaupp UB, Niidome T, Tanabe T, et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 1989;342:762–766.

    Article  PubMed  CAS  Google Scholar 

  24. Dhallan RS, Yau KW, Schrader KA, et al. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 1990;347:184–187.

    Article  PubMed  CAS  Google Scholar 

  25. Bonigk W, Altenhofen W, Muller F, et al. Rod and cone photoreceptor cells express distinct genes for cGMP-gated channels. Neuron 1993;10:865–877.

    Article  PubMed  CAS  Google Scholar 

  26. Weyand I, Godde M, Frings S, et al. Cloning and functional expression of a cyclic-nucleotide-gated channel from mammalian sperm. Nature 1994;368:859–863.

    Article  PubMed  CAS  Google Scholar 

  27. Chen T-Y, Illing M, Molday LL, et al. Subunit 2 (or beta) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates Ca2+-calmodulin modulation. PNAS 1994;91:11,757–11,761.

    CAS  Google Scholar 

  28. Bradley J, Li J, Davidson N, et al. Heteromeric olfactory cyclic nucleotide-gated channels: a subunit that confers increased sensitivity to cAMP. PNAS 1994;91:8890–8894.

    Article  PubMed  CAS  Google Scholar 

  29. Liman ER, Buck LB. A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron 1994;13:611–621.

    Article  PubMed  CAS  Google Scholar 

  30. Bonigk W, Bradley J, Muller F, et al. The native rat olfactory cyclic nucleotide -gated channel is composed of three distinct subunits. J Neuroscie 1999;19:5332–5347.

    CAS  Google Scholar 

  31. Gerstner A, Zong X, Hofmann F, et al. Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated subunit from mouse retina. J Neurosci 2000;20:1324–1332.

    PubMed  CAS  Google Scholar 

  32. Zheng J, Trudeau MC, Zagotta WN. Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 2002;36:891–896.

    Article  PubMed  CAS  Google Scholar 

  33. Weitz D, Ficek N, Kremmer E, et al. Subunit stoichiometry of the CNG channel of rod photoreceptors. Neuron 2002;36:881–889.

    Article  PubMed  CAS  Google Scholar 

  34. Zhong H, Molday LL, Molday RS, et al. The heteromeric cyclic nucleotide-gated channel adopts a 3A: 1B stoichiometry. Nature 2002;420:193–198.

    Article  PubMed  CAS  Google Scholar 

  35. Sautter A, Zong X, Hofmann F, et al. An isoform of the rod photoreceptor cyclic nucleotide-gated channel β subunit expressed in olfactory neurons. Proc Natl Acad Sci USA 1998;95:4696–4701.

    Article  PubMed  CAS  Google Scholar 

  36. Frings S, Seifert R, Godde M, et al. Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron 1995;15:169–179.

    Article  PubMed  CAS  Google Scholar 

  37. Dzeja C, Hagen V, Kaupp UB, et al. Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 1999;18:131–144.

    Article  PubMed  CAS  Google Scholar 

  38. Firestein S, Zufall F. The cyclic nucleotide gated channel of olfactory receptor neurons. Semin Cell Biol 1994;5:39–46.

    Article  PubMed  CAS  Google Scholar 

  39. Shepherd GM. Discrimination of molecular signals by the olfactory receptor neuron. Neuron 1994;13:771–790.

    Article  PubMed  CAS  Google Scholar 

  40. Hibert MF, Trump-Kallmeyer S, Bruinvels A, et al. Three-dimensional models of neurotransmitter G-binding protein coupled receptors. Mol Pharmacol 1991;40:8–15.

    PubMed  CAS  Google Scholar 

  41. Lowe G, Gold GH. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 1993;366:283–286.

    Article  PubMed  CAS  Google Scholar 

  42. Brown RL, Gramling R, Bert RJ, et al. Identification by photoaffinity labeling of peptide regions within retinal rod cGMP-activated channel subunits involved in cGMP binding. Invest Ophthalmol Vis Sci 1994;35:1473–1477.

    Google Scholar 

  43. Tucker JE, Winkfein RJ, Cooper CB, et al. cDNA cloning of the human retinal rod Na-Ca+ K exchanger: comparison with a revised bovine sequence. Invest Ophthalmol Vis Sci 1998;39:435–440.

    PubMed  CAS  Google Scholar 

  44. Yau KW. Phototransduction mechanism in retinal rods and cones: The Friedenwald Lecture. Invest Ophthalmol Vis Sci 1994;35:9–32.

    PubMed  CAS  Google Scholar 

  45. Hsu YT, Molday RS. Interaction of calmodulin with the cyclic GMP-gated channel of rod photoreceptor cells: modulation of activity, affinity purification, and localization. J Biol Chem 1994;269: 29,765–29,770.

    CAS  Google Scholar 

  46. Bradley J, Zhang Y, Bakin R, et al. Functional expression of the heteromeric “olfactory” cyclic nucleotide-gated channel in the hippocampus: A potential effector of synaptic plasticity in brain neurons. J Neurosci 1997;17:1993–2005.

    PubMed  CAS  Google Scholar 

  47. Kingston PA, Zufall F, Barnstable CJ. Rat hippocampal neurons express genes for both rod retinal and olfactory cyclic nucleotide-gated channels: novel targets for cAMP/cGMP function. Proc Nat! Acad Sci USA 1996;93:10,440–10,445.

    Article  CAS  Google Scholar 

  48. Coburn CM, Bargmann CI. A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 1996;17:695–706.

    Article  PubMed  CAS  Google Scholar 

  49. Zufall F, Shepherd GM, Barnstable CJ. Cyclic nucleotide gated channels as regulators of CNS development and plasticity. Curr Opin Neurobiol 1997;7:404–412.

    Article  PubMed  CAS  Google Scholar 

  50. Strijbos PJ, Pratt GD, Khan S, et al. Molecular characterization and in situ localization of a full-length cyclic nucleotide-gated channel in rat brain. Eur J Neurosci 1999;11:4463–4467.

    Article  PubMed  CAS  Google Scholar 

  51. DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 1991;351:145–147.

    Article  PubMed  CAS  Google Scholar 

  52. Ruiz ML, London B, Nadal-Ginard B. Cloning and characterization of an olfactory cyclic nucleotidegated channel expressed in mouse heart. J Mol Cell Cardiol 1996;28:1453–1461.

    Article  PubMed  CAS  Google Scholar 

  53. Breer H, Shepherd GM. Implications of the NO/cGMP system for olfaction. TINS 1993;16:5–9.

    PubMed  CAS  Google Scholar 

  54. Kurenny DE, Moroz LL, Turner RW, et al. Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron 1994;13:315–324.

    Article  PubMed  CAS  Google Scholar 

  55. Ignarro L. Nitric oxide. Hypertension 1990;16:477–483.

    Article  PubMed  CAS  Google Scholar 

  56. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 1991;43:109–142.

    PubMed  CAS  Google Scholar 

  57. Snyder SH. Nitric oxide: first in a new class of neurotransmitters? Science 1992;257:494–496.

    Article  PubMed  CAS  Google Scholar 

  58. Lischka FW, Schild D. Effects of nitric oxide upon olfactory receptor neurones in Xenopus laevis. NeuroReport 1993;4:582–584.

    Article  PubMed  CAS  Google Scholar 

  59. Schmachtenberg O, Diaz J, Bacigalupo J. NO activates the olfactory cyclic nucleotide-gated conductance independent from cGMP in isolated rat olfactory receptor neurons. Brain Res 2003;980:146–150.

    Article  PubMed  CAS  Google Scholar 

  60. Broillet M-C, Firestein S. Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds. Neuron 1996;16:377–385.

    Article  PubMed  CAS  Google Scholar 

  61. Lynch JW. Nitric oxide inhibition of the rat olfactory cyclic nucleotide-gated cation channel. J Membr Biol 1998;65:227–234.

    Google Scholar 

  62. Broillet M-C. S-Nitrosylation of proteins. Cell Mol Life Sci 1999;55:1036–1042.

    Article  PubMed  CAS  Google Scholar 

  63. Xu L, Eu JP, Meissner G, et al. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 1998;279:234–236.

    Article  PubMed  CAS  Google Scholar 

  64. Stamler JS, Toone EJ, Lipton SA, et al. (S)NO signals: translocation, regulation, and a consensus motif. Neuron 1997;18:691–696.

    Article  PubMed  CAS  Google Scholar 

  65. Broillet M-C. A single intracellular cysteine residue is responsible for the activation of the olfactory cyclic nucleotide-gated channel by NO. J Biol Chem 2000;275:15,135–15,141.

    Article  CAS  Google Scholar 

  66. Baumann A, Frings S, Godde M, et al. Primary structure and functional expression of a drosophila cyclic nucleotide-gated channel present in eyes and antennae. EMBO J 1994;13:5040–5050.

    PubMed  CAS  Google Scholar 

  67. Broillet M-C, Firestein S. β subunits of the olfactory cyclic nucleotide-gated channel form a nitric oxide activated Ca2+ channel. Neuron 1997;18:951–958.

    Article  PubMed  CAS  Google Scholar 

  68. Liu DT, Tibbs GR, Siegelbaum SA. Subunit stoichiometry of cyclic nucleotide-gated channels and effects of subunit order on channel function. Neuron 1996;16:983–990.

    Article  PubMed  CAS  Google Scholar 

  69. Gordon SE, Varnum MD, Zagotta WN. Direct interaction between amino- and carboxyl-terminal domains of cyclic nucleotide-gated channels. Neuron 1997;19:431–441.

    Article  PubMed  CAS  Google Scholar 

  70. Roskams AJ, Bredt DS, Dawson TM, et al. Nitric oxide mediates the formation of synaptic connections in developing and regenerating olfactory receptor neurons. Neuron 1994;13:289–299.

    Article  PubMed  CAS  Google Scholar 

  71. Zhao H, Firestein S, Greer CA. NADPH-diaphorase localization in the olfactory system. Neuro Report 1994;6:149–152.

    CAS  Google Scholar 

  72. Trivedi B, Kramer RH. Patch cramming reveals the mechanism of long-term suppression of cyclic nucleotides in intact neurons. J Neurosci 2002;22:8819–8826.

    PubMed  CAS  Google Scholar 

  73. Savchenko A, Barnes S, Kramer RH. Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide. Nature 1997;390:694–698.

    PubMed  CAS  Google Scholar 

  74. Ahmad I, Barnstable CJ. Differential laminar expression of particulate and soluble guanylate cyclase genes in rat retina. Exp Eye Res 1993;56:51–62.

    Article  PubMed  CAS  Google Scholar 

  75. Blute TA, Velasco P, Eldred WD. Functional localization of soluble guanylate cyclase in turtle retina: modulation of cGMP by nitric oxide donors. Vis Neurosci 1998;15:485–498.

    Article  PubMed  CAS  Google Scholar 

  76. Blute TA, Lee HK, Huffmaster T, et al. Localization of natriuretic peptides and their activation of particulate guanylate cyclase and nitric oxide synthase in the retina. J Comp Neurol 2000;424:689–700.

    Article  PubMed  CAS  Google Scholar 

  77. Ahmad I, Leinders-Zufall T, Kocsis JD, et al. Retinal ganglion cells express a cGMP-gated cation conductance activatable by nitric oxide donors. Neuron 1994;12:155–165.

    Article  PubMed  CAS  Google Scholar 

  78. Henry D, Burke S, Shishido E, et al. Retinal bipolar neurons express the cyclic nucleotide-gated channel of cone photoreceptors. J Neurophysiol 2003;89:754–761.

    Article  PubMed  CAS  Google Scholar 

  79. Hoon MA, Adler E, Lindemeier J, et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 1999;96:541–551.

    Article  PubMed  CAS  Google Scholar 

  80. Adler E, Hoon MA, Mueller KL, et al. A novel family of mammalian taste receptors. Cell 2000;100: 693–702.

    Article  PubMed  CAS  Google Scholar 

  81. Chandrashekar J, Mueller KL, Hoon MA, et al. T2Rs function as bitter taste receptor. Cell 2000;100: 703–711.

    Article  PubMed  CAS  Google Scholar 

  82. Rodriguez I, Greer CA, Mok MY, et al. A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 2000;26:18–19.

    Article  PubMed  CAS  Google Scholar 

  83. Zhang J, Xia SL, Block ER, et al. NO upregulation of a cyclic nucleotide-gated channel contributes to calcium elevation in endothelial cells. Am J Physiol Cell Physiol 2002;283:C1080–C1089.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Broillet, MC. (2004). S-Nitrosylation of Cyclic Nucleotide-Gated Channels. In: Wang, R. (eds) Signal Transduction and the Gasotransmitters. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-806-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-806-9_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-512-5

  • Online ISBN: 978-1-59259-806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics