Skip to main content

Tumor Dormancy, Metastasis, and Cancer Stem Cells

  • Chapter
  • First Online:
Stem Cells and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Metastatic cancer can recur months or even years after apparently successful treatment of the primary tumor. While the exact mechanisms leading to cancer recurrence remain poorly understood, failure to completely eliminate dormant micrometastases and solitary metastatic cells is believed to be a major contributor. Thus, while not of initial clinical concern, metastatic dormancy is still of significant clinical importance. The discovery of cancer stem cells (CSCs) in several solid tumor types may provide insight into better understanding the process of metastatic dormancy. In this chapter, we review the metastasis process and metastatic dormancy and discuss the parallels that exist between dormant metastatic cells and CSCs. Finally, we consider the therapeutic implications of CSCs and tumor dormancy on the treatment of metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These two authors contributed equally to the book chapter.

REFERENCES

  1. Jemal A, Siegel R, Ward E, et al Cancer statistics. CA Cancer J Clin 2007;57:43–66.

    Article  PubMed  Google Scholar 

  2. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2:563–72.

    Article  PubMed  CAS  Google Scholar 

  3. Greenberg PA, Hortobagyi GN, Smith TL, Ziegler LD, Frye DK, Buzdar AU. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol 1996;14:2197–205.

    PubMed  CAS  Google Scholar 

  4. Fisher B, Jeong J-H, Dignam J, Anderson S, et al Findings from recent National Surgical Adjuvant Breast and Bowel Project adjuvant studies in stage 1 breast cancer. J Natl Cancer Inst Monogr 2001;30:62–6.

    Article  PubMed  Google Scholar 

  5. Wallgren A, Bonetti M, Gelber RD, et al Risk factors for locoregional recurrence among breast cancer patients: Results from international breast cancer study group trials I through VII. J Clin Oncol 2003;21:1205–13.

    Article  PubMed  CAS  Google Scholar 

  6. Townson JL, Chambers AF. Dormancy of solitary metastatic cells. Cell Cycle 2006; 5:1744–50.

    Article  PubMed  CAS  Google Scholar 

  7. Brackstone M, Townson JL and Chambers AF. Tumour dormancy in breast cancer: an update. Breast Cancer Res 2007;9:208–14.

    Article  PubMed  Google Scholar 

  8. Aguirre-Ghiso JL. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007;7:834–46.

    Article  PubMed  CAS  Google Scholar 

  9. Weiss L. Metastatic inefficiency: intravascular and intraperitoneal implantation of cancer cells. Cancer Treat Res 1996;82:1–11

    Article  PubMed  CAS  Google Scholar 

  10. Luzzi KJ, MacDonald IC, Schmidt EE, et al Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 1998;153:865–73.

    Article  PubMed  CAS  Google Scholar 

  11. Koop S, MacDonald IC, Luzzi K, et al Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 1995;55:2520–23.

    PubMed  CAS  Google Scholar 

  12. Naumov GN, MacDonald IC, Weinmeister PM, et al Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 2002;62:2162–68.

    PubMed  CAS  Google Scholar 

  13. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995;1:149–53.

    Article  PubMed  CAS  Google Scholar 

  14. Psaila B, Kaplan RN, Port ER, Lyden D. Priming the “soil” for breast cancer metastasis: the pre-metastatic niche. Breast Dis 2006–2007;26:65–74.

    CAS  Google Scholar 

  15. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003;33:49–54.

    Article  PubMed  CAS  Google Scholar 

  16. Poste G, Fidler IJ. The pathogenesis of cancer metastasis. Nature 1980;283:139–46.

    Article  PubMed  CAS  Google Scholar 

  17. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–11.

    Article  PubMed  CAS  Google Scholar 

  18. Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci USA 2003;100:3547–9.

    Article  PubMed  CAS  Google Scholar 

  19. Virchow R. Editorial. Virchows Arch Pathol Anat Physiol Klin Med 1855;3:23.

    Google Scholar 

  20. Lapidot T, Sirard C, Vormoor J, et al A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 1994;367:645–48.

    Article  PubMed  CAS  Google Scholar 

  21. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–7.

    Article  PubMed  CAS  Google Scholar 

  22. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004;5:738–43.

    Article  PubMed  CAS  Google Scholar 

  23. Singh SK, Hawkins C, Clarke ID, et al Identification of human brain tumour initiating cells. Nature 2004;432:396–401.

    Article  PubMed  CAS  Google Scholar 

  24. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–88.

    Article  PubMed  CAS  Google Scholar 

  25. Patrawala L, Calhoun T, Schneider-Broussard R, et al Highly purified CD44+ prostate cancer cells from xenografts human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006;25:1696–1708.

    Article  PubMed  CAS  Google Scholar 

  26. Collins AT, Berry PA, Hyde C, et al Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65:10946–51.

    Article  PubMed  CAS  Google Scholar 

  27. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon caner cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106–10.

    Article  PubMed  Google Scholar 

  28. Li C, Heidt DG, Dalerba P, et al Identification of pancreatic cancer stem cells. Cancer Res 2007;67:1030–37.

    Article  PubMed  CAS  Google Scholar 

  29. Hermann PC, Huber SL, Herrler T, Aicher A, et al Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007;1:313–23.

    Article  PubMed  CAS  Google Scholar 

  30. Schatton T, Murphy GF, Frank NY, et al Identification of cells initiating human melanomas. Nature 2008;451:345–49.

    Article  PubMed  CAS  Google Scholar 

  31. Clarke MF, Dick JE, Dirks PB, et al Cancer stem cells – Perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 2006;66:9339–44.

    Article  PubMed  CAS  Google Scholar 

  32. Scadden DT. The stem cell niche in health and leukemic disease. Clin Hematol 2007;20:19–27.

    CAS  Google Scholar 

  33. Chepko G, Dickson RB. Ultrastructure of the putative stem cell niche in rat mammary epithelium. Tissue Cell 2003;35:83–93.

    Article  PubMed  CAS  Google Scholar 

  34. Hendrix MJC, Seftor, EA, Seftor REB, et al Reprogramming metastatic tumor cells with embryonic microenvironments. Nature 2007;7:246–55.

    CAS  Google Scholar 

  35. Johansson I, Destefanis S, Aberg DN, et al Proliferative and protective effects of growth hormone secretagogues on adult rat hippocampal progenitor cells. Endocrinology 2008;149:2191–9; Epub ahead of print, PMID: 18218693.

    Article  PubMed  CAS  Google Scholar 

  36. Inoue A, Seidel MG, Wu W, et al Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2002;2:279–88.

    Article  PubMed  Google Scholar 

  37. Gal H, Amariglio N, Trakhtenbrot L, et al Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 2006;20:2147–54.

    Article  PubMed  CAS  Google Scholar 

  38. Sperger JM, Chen X, Draper JS, et al Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci USA 2003;100:13350–55.

    Article  PubMed  CAS  Google Scholar 

  39. Jones RJ, Matsui WH, Smith BD. Cancer stem cells: are we missing the target? J Natl Cancer Inst 2004;96:583–85.

    Article  PubMed  Google Scholar 

  40. Yu F, Yao H, Zhu P, et al let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131:1109–23.

    Article  PubMed  CAS  Google Scholar 

  41. Croker AK, Allan AL. Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 2008;12:374–90; Epub ahead of print, PMID: 18182063.

    Article  PubMed  CAS  Google Scholar 

  42. Li F, Tiede B, Massagué J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 2002,17:3–14.

    Article  Google Scholar 

  43. Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer 2004;4:448–56.

    Article  PubMed  CAS  Google Scholar 

  44. Weiss L. Metastatic inefficiency. Adv Cancer Res 1990;54:159–211.

    Article  PubMed  CAS  Google Scholar 

  45. Ewing J. A treatise on tumors. In: Neoplastic Diseases. London: W.B. Saunders, 1928, pp. 77–89.

    Google Scholar 

  46. Paget S. The distribution of secondary growths in cancer of the breast (re-publication of the original 1889 Lancet article). Cancer Met Rev 1989;8:98–101.

    CAS  Google Scholar 

  47. Fidler IJ. Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am 2001;10:257–69, vii–viii.

    PubMed  CAS  Google Scholar 

  48. Weiss L. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 1992;10:191–9.

    Article  PubMed  CAS  Google Scholar 

  49. Kaplan RN, Riba RD, Zacharoulis S, et al VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438:820–26.

    Article  PubMed  CAS  Google Scholar 

  50. Kaplan RN, Raffi S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res 2006;66:11089–93.

    Article  PubMed  CAS  Google Scholar 

  51. Wang W, Eddy R, Condeelis J. The cofilin pathway in breast cancer invasion and metastasis. Nature 2007;7:429–40.

    CAS  Google Scholar 

  52. Ishikawa F, Yoshida S, Saito Y, et al Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007;25:1315–21.

    Article  PubMed  CAS  Google Scholar 

  53. Jin L, Hope KJ, Zhai Q, et al Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006;12:1167–74.

    Article  PubMed  Google Scholar 

  54. Isufi I, Seetharam M, Zhou L, et al Transforming growth factor-β signaling in normal and malignant hematopoiesis. J Interferon Cytokine Res 2007;27:543–52.

    Article  PubMed  CAS  Google Scholar 

  55. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea – a paradigm shift. Cancer Res 2006;66:1883–90; discussion 95–6.

    Article  PubMed  CAS  Google Scholar 

  56. Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 2006;66:4553–7.

    Article  PubMed  CAS  Google Scholar 

  57. Allan AL, Vantyghem SA, Tuck AB, Chambers AF. Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 2007;26:87–98.

    Google Scholar 

  58. Thayer SP, Pasca di Magliano M, Heiser PW, et al Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003;425:851–6.

    Article  PubMed  CAS  Google Scholar 

  59. Wang S, Yang D, Lippman ME. Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Semin Oncol 2003;30:133–42.

    Article  PubMed  CAS  Google Scholar 

  60. Liu S, Dontu G, Mantle ID, et al Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006;66:6063–71.

    Article  PubMed  CAS  Google Scholar 

  61. Park Y, Gerson SL. DNA repair defects in stem cell function and aging. Annu Rev Med 2005;56:495–508.

    Article  PubMed  CAS  Google Scholar 

  62. Berman DM, Karhadkar SS, Maltra A, et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003;425:846–51.

    Article  PubMed  CAS  Google Scholar 

  63. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3:895–902.

    Article  PubMed  CAS  Google Scholar 

  64. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5:275–84.

    Article  PubMed  CAS  Google Scholar 

  65. Dean M. Cancer stem cells: Redefining the paradigm of cancer treatment strategies. Mol Interv 2006;6:140–8.

    Article  PubMed  CAS  Google Scholar 

  66. Naumov GN, Townson JL, MacDonald IC, et al, Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 2003;82(3):199–206.

    Article  PubMed  CAS  Google Scholar 

  67. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002;99:507–12.

    Article  PubMed  CAS  Google Scholar 

  68. Kim M, Turnquist H, Jackson J, Sgagias M, et al The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 2002;8:22–8.

    PubMed  CAS  Google Scholar 

  69. Doyle LA, Yang W, Abruzzo LV, et al A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998;95:15665–70.

    Article  PubMed  CAS  Google Scholar 

  70. Cairns J. The cancer problem. Sci Am 1975;233:64–72.

    Article  PubMed  CAS  Google Scholar 

  71. Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci USA 2002;99:10567–70.

    Article  PubMed  CAS  Google Scholar 

  72. Potten CS, Owen G, Booth D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 2002;115:2381–8.

    PubMed  CAS  Google Scholar 

  73. Cai J, Weiss ML, Rao MS. In search of “stemness”. Exp Hematol 2004;32:585–98.

    Article  PubMed  Google Scholar 

  74. Phillips TM, McBride WH, Pajonk F. The response of CD24−/low/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006;98:1777–85.

    Article  PubMed  Google Scholar 

  75. Bao S, Wu Q, McLendon RE, et al Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756–60.

    Article  PubMed  CAS  Google Scholar 

  76. Komarova NL, Wodarz D. Stochastic modeling of cellular colonies with quiescence: an application to drug resistance in cancer. Theor Popul Biol 2007;72:523–38.

    Article  PubMed  Google Scholar 

  77. Nishikawa S-I, Osawa M. Generating quiescent stem cells. Pigment Cell Res 2007;20:263–70.

    Article  PubMed  Google Scholar 

  78. Kawamata S, Du C, Lavau C. Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations. Oncogene 2002;21:3855–63.

    Article  PubMed  CAS  Google Scholar 

  79. Jensen KB, Watt FM. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci USA 2006;103:11958–63.

    Article  PubMed  CAS  Google Scholar 

  80. Goldoni S, Iozzo RA, Kay P, et al A soluble ectodomain of LRIG1 inhibits cancer cell growth by attenuating basal and ligand-dependent EGFR activity. Oncogene 2007;26:368–81.

    Article  PubMed  CAS  Google Scholar 

  81. Shachaf CM, Kopelman AM, Arvanitis C, et al MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004;431:1112–7.

    Article  PubMed  CAS  Google Scholar 

  82. Aguirre-Ghiso JA. The problem of cancer dormancy: understanding the basic mechanisms and identifying therapeutic opportunities. Cell Cycle 2006;5:1740–3.

    Article  PubMed  CAS  Google Scholar 

  83. Wilson A, Oser GM, Jaworski M, et al Dormant and self-renewing hematopoietic stem cells and their niches. Ann N Y Acad Sci 2007;1106:64–75.

    Article  PubMed  CAS  Google Scholar 

  84. Sieburg HB, Cho RH, Dykstra B, et al The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 2006;107:2311–16.

    Article  PubMed  CAS  Google Scholar 

  85. McKenzie JL, Gan OI, Doedens M, et al Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat Immunol 2006;7:1225–33.

    Article  PubMed  CAS  Google Scholar 

  86. Holyoake TL, Nicolini FE, Eaves CJ. Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol 1999;27:1418–27.

    Article  PubMed  CAS  Google Scholar 

  87. Widera D, Kaus A, Kaltschmidt C, Kaltschmidt B. Neural stem cells, inflammation and NF-kappaB: basic principle of maintenance and repair or origin of brain tumours? J Cell Mol Med 2008;12:459–70; Epub ahead of print, PMID: 18182066.

    Article  PubMed  CAS  Google Scholar 

  88. Reynolds PA, Sigaroudinia M, Zardo G, et al Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J Biol Chem 2006;281:24790–802.

    Article  PubMed  CAS  Google Scholar 

  89. Graham SM, Jorgensen HG, Allan E, et al Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to ST1571 in vitro. Blood 2002;99:319–25.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank members of our laboratory and our collaborators for helpful discussions during preparation of this book chapter. The authors’ work on dormancy and cancer stem cells is supported in part by grants from the London Regional Cancer Program (A.L.A., A.F.C.) and by grants from the Canadian Institutes of Health Research (grant #42511 to A.F.C.) and the US Department of Defense Breast Cancer Research Program (#W81XWH-06-2-0033 to A.F.C.). A.K.C. is the recipient of a Canadian Institute of Health Research Strategic Training Program Scholarship, a Translational Breast Cancer Scholarship through the London Regional Cancer Program, and a Fellowship from the Canadian Breast Cancer Foundation-Ontario Chapter. J.L.T is supported by a Doctoral Research Award from the Canadian Institute of Health Research. A.L.A. is supported by the Imperial Oil Foundation and A.F.C. is the recipient of a Canada Research Chair in Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann F. Chambers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Croker, A.K., Townson, J.L., Allan, A.L., Chambers, A.F. (2009). Tumor Dormancy, Metastasis, and Cancer Stem Cells. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_11

Download citation

Publish with us

Policies and ethics