Skip to main content

Muscle and Bone Biology – Similarities and Differences

  • Chapter
  • First Online:
Osteosarcopenia: Bone, Muscle and Fat Interactions

Abstract

Muscle and bone are similar in many ways, and factors that can stimulate anabolism or catabolism in one of these tissues may have the same effect(s) either directly or indirectly on the other tissue. Factors that may enhance the mass and strength of both tissues include pleiotropic genes such as Methyltransferase-Like Protein 21C (METTL21C) and Myocyte Enhancer Factor 2C (MEF2C), hormones such as growth hormone (GH) and Insulin like growth factor-1 (IGF-1), dietary amino acids, resident populations of mesenchymal stem cells (e.g., satellite cells and bone marrow derived stem cells [BMSCs]) and resistance exercise early in life. Shared mechanisms of tissue loss and dysfunction include fatty infiltration, cellular senescence, and molecules such as myostatin that can drive both muscle and bone loss. Important differences between these two tissues include the decoupling of muscle and bone patterning early in limb development, contrasting mechanotransduction pathways (e.g., wnt signaling in bone and p70S6K signaling in muscle), and contrasting bone geometry between males and females and between the upper and lower limb relative to lean mass. Overall the number of similarities between muscle and bone exceed the differences. Dietary protein and resistance exercise early in life can together promote the accumulation of lean mass and bone mineral, whereas novel therapies such as senolytic agents or NAD+ repletion may potentially prevent loss of muscle and bone with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Akt:

Protein kinase b

Birc3:

Baculoviral IAP Repeat Containing 3

BMC:

Bone mineral content

BMD:

Bone mineral density

BMP:

Bone morphogenetic protein

BMSCs:

Bone marrow-derived mesenchymal stem cell

Ccl5:

C-C Motif Chemokine Ligand 5

CCR2:

C-C Motif Chemokine Receptor 2

COX:

Cyclo-oxygenase

CXCR4:

C-X-C Motif Chemokine Receptor 4

DAG:

Diacylglycerol

DC-STAMP:

Dendrocyte Expressed Seven Transmembrane Protein

DGK-z:

Diacylglycerol Kinase Zeta

ECM:

Extracellular matrix

FAM210A:

Family with sequence similarity 210, member A

FAP:

Fibro-adipogenic progenitor

FOXO:

Forkhead Box O

GH:

Growth hormone

Gpx:

glutathione peroxidase

GWAS:

Genome-wide association studies

Hox:

Homeobox

Hsp90:

Heat shock protein 90

IGF-1:

Insulin like growth factor

IGFBP:

nsulin like growth factor binding protein

IL:

Interleukin

IMAT:

intermuscular adipose tissue

Lmx1b:

LIM Homeobox Transcription Factor 1 Beta

Lrp:

LDL Receptor Related Protein

MAFbx:

Muscle Atrophy F-Box Protein

MEF2C:

Myocyte Enhancer Factor 2C

METTL21C:

Methyltransferase-Like Protein 21C

MHC:

Myosin heavy chain

MMP-12:

Matrix metalloproteinase-12

MRF:

Myogenic regulatory factor

MSCs:

Mesenchymal stem cell

mTOR:

Mechanistic Target Of Rapamycin Kinase

MuRF1:

Muscle-Specific RING Finger Protein 1

Myf5:

Myogenic factor 5

MyoD:

Myogenic differentiation

NAD+:

Nicotinamide adenine dinucleotide.

NFATc2:

Nuclear Factor Of Activated T Cells 2

NF-kB:

Nuclear Factor Kappa B

Nkx3:

NK3 Homeobox

NOX:

NADPH Oxidase

Ob-Rb:

Long isoform of leptin receptor

OPG:

osteoprotegerin

p70S6K/ S6K1:

Ribosomal Protein S6 Kinase B1

Pax3/7:

Paired box 3/7

PDGFR α/β:

Platelet Derived Growth Factor Receptor α/β

PGF2α:

Prostaglandin F2α

PI3K:

Phosphoinositide 3-kinase

PPAR gamma:

Peroxisome Proliferator Activated Receptor Gamma

RANKL:

Receptor Activator Of Nuclear Factor Kappa B Ligand

RUNX2:

Runt Related Transcription Factor 2

ROS:

Reactive oxygen species

SASP:

Senescence-Associated Secretory Phenotype

Sca-1:

Stem cell antigen 1

SDF-1:

Stromal Cell-Derived Factor 1

SNP:

Single nucleotide polymorphism

SOST:

Sclerostin

SOD1:

Superoxide dismutase

Sox9:

SRY box 9

SREBF1:

Sterol Regulatory Element Binding Transcription Factor 1

SSEA-4:

Stage-specific embryonic antigen 4

STRO-1:

Stromelysin-1

Tnf:

Tumor necrosis factor

Wnt:

Wingless

References

  • Addison O, Drummond MJ, LaStayo PC, Dibble LE, Wende AR, McClain DA, Marcus RL (2014a) Intramuscular fat and inflammation differ in older adults: the impact of frailty and inactivity. J Nutr Health Aging 18:532–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addison O, Marcus RL, Lastayo PC, Ryan AS (2014b) Intermuscular fat: a review of the consequences and causes. Int J Endocrinol 2014:309570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MD, McMillan S, Klein C, Rice C, Marsh G (2012) Differential Age-related Changes in Bone Geometry between the Humerus and the Femur in Healthy Men. Aging Dis 3:156–116

    PubMed  Google Scholar 

  • Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007) Skeletal involution by age-associated oxidative stress and its accelerationby loss of sex steroids. J Biol Chem 282:27285–27297

    Article  CAS  PubMed  Google Scholar 

  • Altindag O, Erel O, Soran N, Celik H, Selek S (2008) Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28:317–321

    Article  CAS  PubMed  Google Scholar 

  • Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12:377–389

    Article  CAS  PubMed  Google Scholar 

  • Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253

    Article  CAS  PubMed  Google Scholar 

  • Atlantis E, Martin SA, Haren MT, Taylor AW, Wittert GA, Florey (2008) Lifestyle factors associated with age-related differences in body composition: the Florey Adelaide Male Aging Study. Am J Clin Nutr 88: 95–104

    Google Scholar 

  • Baar K, Esser K (1999) Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Phys 276:C120–C127

    Article  CAS  Google Scholar 

  • Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 280:17497–17506

    Article  CAS  PubMed  Google Scholar 

  • Bark TH, McNurlan MA, Lang CH, Garlick PJ (1998) Increased protein synthesis after acute IGF-I or insulin infusion is localized to muscle in mice. Am J Phys 275(1 Pt 1):E118–E123

    CAS  Google Scholar 

  • Bartell SM, Rayalam S, Ambati S, Gaddam DR, Hartzell DL, Hamrick M, She JX, Della-Fera MA, Baile CA (2011) Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 26:1710–1720

    Article  CAS  PubMed  Google Scholar 

  • Bettis T, Kim BJ, Hamrick MW (2018) Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int. https://doi.org/10.1007/s00198-018-4570-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilkay U, Tokat C, Helvaci E, Ozek C, Zekioglu O, Onat T, Songur E (2008) Osteogenic capacities of tibial and cranial periosteum: a biochemical and histologic study. J Craniofac Surg 19:453–458

    Article  PubMed  Google Scholar 

  • Booker BM, Friedrich T, Mason MK, VanderMeer JE, Zhao J, Eckalbar WL, Logan M, Illing N, Pollard KS, Ahituv N (2016) Bat Accelerated Regions Identify a Bat Forelimb Specific Enhancer in the HoxD Locus. PLoS Genet 12:e1005738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bozal CB, Sánchez LM, Ubios AM (2012) The lacuno-canalicular system (LCS) and osteocyte network of alveolar bone by confocal laser scanning microscopy (CLSM). Acta Odontol Latinoam 25:123–131

    PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  • Cairns DM, Liu R, Sen M, Canner JP, Schindeler A, Little DG, Zeng L (2012) Interplay of Nkx3.2, Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells. PLoS One 7:e39642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H, Knothe Tate ML (2011) Structure-function relationships in the stem cell’s mechanical world B: emergent anisotropy of the cytoskeleton correlates to volume and shape changing stress exposure. Mol Cell Biomech 8:297–318

    PubMed  PubMed Central  Google Scholar 

  • Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2008) High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J Bone Miner Res 23:131–142

    Article  CAS  PubMed  Google Scholar 

  • Chikani V, Ho KK (2013) Action of GH on skeletal muscle function: molecular and metabolic mechanisms. J Mol Endocrinol 19:R107–R123

    Article  CAS  Google Scholar 

  • Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17:513–520

    Article  CAS  PubMed  Google Scholar 

  • Colasanto M et al (2016) Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3. Dis Models Mech 9:1257–1269

    Article  Google Scholar 

  • Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW, Tabin CJ (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cree MG, Paddon-Jones D, Newcomer BR, Ronsen O, Aarsland A, Wolfe RR, Ferrando A (2010) Twenty-eight-day bed rest with hypercortisolemia induces peripheral insulin resistance and increases intramuscular triglycerides. Metabolism 59(5):703–710

    Article  CAS  PubMed  Google Scholar 

  • Crespi E, Denver R (2006) Leptin (ob gene) of the South African clawed frog Xenopus laevis. Proc Natl Acad Sci U S A 103:10092–10097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Cui Q, Wang GJ, Balian G (2000) Pluripotential marrow cells produce adipocytes when transplanted into steroid-treated mice. Connect Tissue Res 41:45–56

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Wang Y, Fang L, Irwin DM, Zhu T, Zhang J, Zhang S, Wang Z (2014) Differential expression of Meis2, Mab21l2 and Tbx3 during limb development associated with diversification of limb morphology in mammals. PLoS One 9:e106100

    Article  PubMed  PubMed Central  Google Scholar 

  • Daly R (2017) Exercise and nutritional approaches to prevent frail bones, falls and fractures: an update. Climacteric 20:119–124

    Article  CAS  PubMed  Google Scholar 

  • Daly R et al (2013) Gender specific age-related changes in bone density, muscle strength and functional performance in the elderly: a 10-year prospective population-based study. BMC Geriatr 13:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Dankbar B, Fennen M, Brunert D et al (2015) Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med 21:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44:85–95

    Article  PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Vanlauwe J, Eyckmans J, Khan IM, Archer CW, Jones EA, McGonagle D, Mitsiadis TA, Pitzalis C, Luyten FP (2006) Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 54:1209–1221

    Article  CAS  Google Scholar 

  • Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499

    Article  CAS  PubMed  Google Scholar 

  • Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, Boudreau R, Manini TM, Nevitt M, Newman AB, Goodpaster BH (2009) Health, Aging, and Body. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90:1579–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Phys 259:E89–E95

    CAS  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Lopez-Alonso A, Gonzalez R, Varela H (1992) Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res 27:280–286

    Google Scholar 

  • Ding KH, Cain M, Davis M et al (2018) Amino acids as signaling molecules modulating bone turnover. Bone pii:S8756-3282(18):30087–30085

    Google Scholar 

  • Dodd SL, Gagnon BJ, Senf SM, Hain BA, Judge AR (2010) ROS-mediated activation of NF-κB and Foxo during muscle disuse. Muscle Nerve 41:110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Silva KA, Dong Y, Zhang L (2004) Glucocorticoids increase adipocytes in muscle by affecting IL-4 regulated FAP activity. FASEB J 28:4123–4132

    Article  CAS  Google Scholar 

  • Dreyer HC, Drummond MJ, Pennings B et al (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Phys Endocrinol Metab 294:E392–E400

    Article  CAS  Google Scholar 

  • Dukes A, Davis C, El Refaey M, Upadhyay S, Mork S, Arounleut P, Johnson MH, Hill WD, Isales CM, Hamrick MW (2015) The aromatic amino acid tryptophan stimulates skeletal muscle IGF1/p70s6k/mTor signaling in vivo and the expression of myogenic genes in vitro. Nutrition 31:1018–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwek JR (2010) The periosteum: what is it, where is it, and what mimics it in its absence? Skelet Radiol 39:319–323

    Article  Google Scholar 

  • Fan W, Crawford R, Xiao Y (2008) Structural and cellular differences between metaphyseal and diaphyseal periosteum in different aged rats. Bone 42:81–89

    Article  PubMed  Google Scholar 

  • Farr JN, Fraser DG, Wang H et al (2016) Identification of Senescent Cells in the Bone Microenvironment. J Bone Miner Res 31:1920–1929

    Article  CAS  PubMed  Google Scholar 

  • Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca RM, Roschel H, Tricoli V et al (2014) Changes in exercises are more effective than in loading schemes to improve muscle strength. J Strength Cond Res 28:3085–3092

    Article  PubMed  Google Scholar 

  • Frudd K, Burgoyne T, Burgoyne JR (2018) Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun 9:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuhrmann-Stroissnigg H, Ling YY, Zhao J et al (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8:422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibson MC, Schultz E (1982) The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles. Anat Rec 202:329–337

    Article  CAS  PubMed  Google Scholar 

  • Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE (2013) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 34:33–83

    Article  CAS  PubMed  Google Scholar 

  • Glass DJ (2010) PI3 Kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol 346:267–278

    CAS  PubMed  Google Scholar 

  • Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J (2011) TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A 108:1585–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman CA, McNally RM, Hoffmann FM, Hornberger T (2013) Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo. Mol Endocrinol 27:1946–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodpaster BH, Chomentowski P, Ward BK et al (2008) Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J Appl Physiol 105:1498–1503

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordeladze JO, Drevon CA, Syversen U, Reseland JE (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85:825–836

    Article  CAS  PubMed  Google Scholar 

  • Govoni KE, Lee SK, Chung YS, Behringer RR, Wergedal JE, Baylink DJ, Mohan S (2007) Disruption of insulin-like growth factor-I expression in type IIalpha collagen-expressing cells reduces bone length and width in mice. Physiol Genomics 30:354–362

    Article  CAS  PubMed  Google Scholar 

  • Granero-Moltó F, Weis JA, Miga MI et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerra-Menéndez L, Sádaba MC, Puche JE, Lavandera JL, de Castro LF, de Gortázar AR, Castilla-Cortázar I (2003) IGF-I increases markers of osteoblastic activity and reduces bone resorption via osteoprotegerin and RANK-ligand. J Transl Med 11:271

    Article  CAS  Google Scholar 

  • Gueugneau M, Coudy-Gandilhon C, Théron L et al (2015) Skeletal muscle lipid content and oxidative activity in relation to muscle fiber type in aging and metabolic syndrome. J Gerontol A Biol Sci Med Sci 70:566–576

    Article  CAS  PubMed  Google Scholar 

  • Ha H, Kwak HB, Lee SW, Jin HM, Kim HM, Kim HH, Lee ZH (2004) Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res 301:119–127

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW (2012) The developmental origins of mosaic evolution in the primate limb skeleton. Evol Biol 39:447–455

    Article  Google Scholar 

  • Hamrick MW, Ferrari SL (2008) Leptin and the sympathetic connection of fat to bone. Osteoporos Int 19:905–912

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hartzell D, Baile CA (2005) Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res 20:994–1001

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW, Dukes A, Arounleut P et al (2015) The adipokine leptin mediates muscle- and liver-derived IGF-1 in aged mice. Exp Gerontol 70:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamrick MW, McGee-Lawrence ME, Frechette DM (2016) Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front Endocrinol (Lausanne) 7:69

    Article  Google Scholar 

  • Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94:258–263

    Article  CAS  PubMed  Google Scholar 

  • Hellmuth AE, Allbrook DB (1971) Muscle satellite cell numbers during the postnatal period. J Anat 110:503

    CAS  PubMed  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257

    Article  CAS  PubMed  Google Scholar 

  • Hess R, Pino AM, Ríos S, Fernández M, Rodríguez JP (2005) High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors. J Cell Biochem 94:50–57

    Article  CAS  PubMed  Google Scholar 

  • Hipmair G, Böhler N, Maschek W, Soriguer F, Rojo-Martínez G, Schimetta W, Pichler R (2010) Serum leptin is correlated to high turnover in osteoporosis. Neuro Endocrinol Lett 31:155–160

    CAS  PubMed  Google Scholar 

  • Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner 17:200–209

    Article  CAS  Google Scholar 

  • Hornberger TA (2011) Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int J Biochem Cell Biol 43:1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380(Pt 3):795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci U S A 103:4741–4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang A (2017) Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton. Dev Biol 429:420–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Hsu YH, Mo C, Abreu E, Kiel DP, Bonewald LF, Brotto M, Karasik D (2014) METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NF-κB signaling pathway. J Bone Miner Res 29:1531–1540

    Article  CAS  PubMed  Google Scholar 

  • Iresjö BM, Svensson J, Ohlsson C, Lundholm K (2013) Liver-derived endocrine IGF-I is not critical for activation of skeletal muscle protein synthesis following oral feeding. BMC Physiol 13:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    CAS  PubMed  Google Scholar 

  • Judex S, Rubin C (2003) Mechanical influences on bone mass and morphology. In: Orwoll ES, Bliziotes M (eds) Osteoporosis. Contemporary endocrinology. Humana Press, Totowa

    Google Scholar 

  • Judex S, Zernicke RF (2000) High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation. J Appl Physiol (1985) 88:2183–2191

    Article  CAS  PubMed  Google Scholar 

  • Karasik D, Cohen-Zinder M (2012) The genetic pleiotropy of musculoskeletal aging. Front Physiol 3:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Karsenty G (2006) Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 4:341–348

    Article  CAS  PubMed  Google Scholar 

  • Kassem M, Blum W, Ristelli J, Mosekilde L, Eriksen EF (1993) Growth hormone stimulates proliferation and differentiation of normal human osteoblast-like cells in vitro. Calcif Tissue Int 52:222–226

    Article  CAS  PubMed  Google Scholar 

  • Kassem M, Mosekilde L, Eriksen EF (1994) Growth hormone stimulates proliferation of normal human bone marrow stromal osteoblast precursor cells in vitro. Growth Regul 4:131–135

    CAS  PubMed  Google Scholar 

  • Khosla S, Farr JN, Kirkland JL (2018) Inhibiting cellular senescence: a new therapeutic paradigm for age-related osteoporosis. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2017-02694

    Article  Google Scholar 

  • Kim BJ, Lee SH, Isales CM, Koh JM, Hamrick MW (2018) The positive association of total protein intake with femoral neck strength (KNHANES IV). Osteoporos Int. https://doi.org/10.1007/s00198-018-4451-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Knez WL, Jenkins DG, Coombes JS (2014) The effect of an increased training volume on oxidative stress. Int J Sports Med 35:8–13

    CAS  PubMed  Google Scholar 

  • Knothe Tate ML, Falls TD, McBride SH, Atit R, Knothe U (2008) Mechanical modulation of osteochondroprogenitor cell fate. Int J Biochem Cell Biol 40:2720–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohrt WM, Ehsani AA, Birge SJ Jr (1997) Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. J Bone Miner Res 12:1253–1261

    Article  CAS  PubMed  Google Scholar 

  • Kohrt WM, Barry DW, Schwartz RS (2009) Muscle forces or gravity: what predominates mechanical loading on bone? Med Sci Sports Exerc 41:2050–2055

    Article  PubMed  PubMed Central  Google Scholar 

  • Komatsu DE, Mary MN, Schroeder RJ, Robling AG, Turner CH, Warden SJ (2010) Modulation of Wnt signaling influences fracture repair. J Orthop Res 28:928–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni RN, Voglewede PA, Liu D (2013) Mechanical vibration inhibits osteoclast formation by reducing DC-stamp receptor expression in osteoclast precursor cells. Bone 57:493–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    Article  CAS  PubMed  Google Scholar 

  • Lang T (2011) The bone-muscle relationship in men and women. J Osteopor 2011:702735

    Google Scholar 

  • Laviola L, Natalicchio A, Giorgino F (2007) The IGF-I signaling pathway. Curr Pharm Dis 13:663–669

    Article  CAS  Google Scholar 

  • Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35:9–16

    Article  CAS  PubMed  Google Scholar 

  • Lean JM, Jagger CJ, Kirstein B, Fuller K, Chambers TJ (2005) Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology 146:728–735

    Article  CAS  PubMed  Google Scholar 

  • Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859

    Article  CAS  PubMed  Google Scholar 

  • Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Cui Q, Kao C, Wang GJ, Balian G (2003) Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARgamma2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33:652–659

    Article  CAS  PubMed  Google Scholar 

  • Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl) 86:1113–1126

    Article  CAS  Google Scholar 

  • Li C, Xing Q, Yu B, Xie H, Wang W, Shi C, Crane JL, Cao X, Wan M (2013) Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH. J Bone Miner Res 28:2094–2108

    Article  CAS  PubMed  Google Scholar 

  • Linares GR, Xing W, Govoni KE, Chen ST, Mohan S (2009) Glutaredoxin 5 regulates osteoblast apoptosis by protecting against oxidative stress. Bone 44:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu AL, Zhang ZM, Zhu BF, Liao ZH, Liu Z (2004) Metallothionein protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. Cell Biol Int 28:905–911

    Article  CAS  PubMed  Google Scholar 

  • Lorenz K, Sicker M, Schmelzer E, Rupf T, Salvetter J, Schulz-Siegmund M, Bader A (2008) Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol 17:925–932

    Article  CAS  PubMed  Google Scholar 

  • Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, Hamnvik OP, Koniaris A (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301:E567–E584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC (2010) Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging 14:362–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marędziak M, Śmieszek A, Chrząstek K, Basinska K, Marycz K (2015) Physical activity increases the total number of bone-marrow-derived mesenchymal stem cells, enhances their osteogenic potential, and inhibits their adipogenic properties. Stem Cells Int 2015:379093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markworth JF, Cameron-Smith D (2011) Prostaglandin F2α; stimulates PI3K/ERK/mTOR signaling and skeletal myotube hypertrophy. Am J Physiol Cell Physiol 300:C671–C682

    Article  CAS  PubMed  Google Scholar 

  • Mastaloudis A, Leonard SW, Traber MG (2001) Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med 31:911–922

    Article  CAS  PubMed  Google Scholar 

  • Medina-Gomez C, Kemp J, Dimou N et al (2017) Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat Commun 8:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meema S, Reid DB, Meema HE (1973) Age trends of bone mineral mass, muscle width, and subcutaneous fat in normals and osteoporotics. Calcif Tissue Res 12:101–112

    Article  CAS  PubMed  Google Scholar 

  • Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147–154

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Miyamoto T, Fujita N et al (2007) Reactiveoxygen species induce chondrocyte hypertrophy in endochondral ossification. J Exp Med 204:1613–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthusami S, Ramachandran I, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, Jagadeesan A, Narasimhan S (2005) Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta 360:81–86

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Aoki K, Masuda W, Alles N et al (2013) Disruption of NF-κB1 prevents bone loss caused by mechanical unloading. J Bone Miner Res 28:1457–1467

    Article  CAS  PubMed  Google Scholar 

  • Nassari S, Duprez D, Fournier-Thibault C (2017) Non-myogenic contribution to muscle development and homeostasis: The role of connective tissues. Front Cell Dev Biol 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieves J, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535

    Article  PubMed  Google Scholar 

  • Novotny SA, Warren GL, Hamrick MW (2015) Aging and the muscle-bone relationship. Physiology (Bethesda) 30:8–16

    CAS  Google Scholar 

  • Ochareon P, Herring SW (2007) Growing the mandible: role of the periosteum and its Cells. Anat Rec (Hoboken) 290:1366–1376

    Article  Google Scholar 

  • Ogasawara R, Fujita S, Hornberger TA, Kitaoka Y, Makanae Y, Nakazato K, Naokata I (2016) The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep 6:31142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto T, Torii S, Machida S (2011) Differential gene expression of muscle-specific ubiquitin ligase MAFbx/Atrogin-1 and MuRF1 in response to immobilization-induced atrophy of slow-twitch and fast-twitch muscles. J Physiol Sci 61:537–546

    Article  CAS  PubMed  Google Scholar 

  • Olney RC (2003) Regulation of bone mass by growth hormone. Med Pediatr Oncol 41:228–234

    Article  PubMed  Google Scholar 

  • Ormsbee MJ, Prado CM, Ilich JZ (2014) Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle 5:183–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z (2007) Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 295:45–52

    Article  CAS  PubMed  Google Scholar 

  • Prior SJ, Joseph LJ, Brandauer J, Katzel LI, Hagberg JM, Ryan AS (2007) Reduction in midthigh low-density muscle with aerobic exercise training and weight loss impacts glucose tolerance in older men. J Clin Endocrinol Metab 92:880–886

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Fang Q, Xu T, Wu C, Xu L, Wang L, Yang X, Yu S, Zhang Q, Ding F, Sun H (2018) Mechanistic role of reactive oxygen species and therapeutic potential of antioxidants in denervation- or fasting-induced skeletal muscle atrophy. Front Physiol 9:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, Janowska-Wieczorek A (2003) Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells 21:363–371

    Article  CAS  PubMed  Google Scholar 

  • Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R (2004) The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 34:771–775

    Article  PubMed  Google Scholar 

  • Reno PL, McCollum MA, Cohn MJ, Meindl RS, Hamrick M, Lovejoy CO (2008) Patterns of correlation and covariation of anthropoid distal forelimb segments correspond to Hoxd expression territories. J Exp Zool B Mol Dev Evol 310:240–258

    Article  PubMed  Google Scholar 

  • Rivadeneira F, Styrkársdottir U, Estrada K, Genetic Factors for Osteoporosis (GEFOS) Consortium et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robling AG, Niziolek PJ, Baldridge LA et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    Article  CAS  PubMed  Google Scholar 

  • Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402

    Article  CAS  PubMed  Google Scholar 

  • Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417

    Article  CAS  PubMed  Google Scholar 

  • Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O’Connor KC (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798

    Article  CAS  PubMed  Google Scholar 

  • Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Gómez-Ambrosi J, Frühbeck G (2009) Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1alpha in ob/ob mice. PLoS One 4:e6808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–3656

    Article  CAS  PubMed  Google Scholar 

  • Sanders K, Stuart A, Williamson E et al (2010) Annual high-dose oral vitamin D and falls and fractures in older women. JAMA 303:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Sawakami K, Robling AG, Ai M et al (2006) The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 281:23698–23711

    Article  CAS  PubMed  Google Scholar 

  • Saxon LK, Jackson BF, Sugiyama T, Lanyon LE, Price JS (2011) Analysis of multiple bone responses to graded strains above functional levels, and to disuse, in mice in vivo show that the human Lrp5 G171 V High Bone Mass mutation increases the osteogenic response to loading but that lack of Lrp5 activity reduces it. Bone 49:184–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schett G, Kiechl S, Bonora E et al (2004) Serum leptin level and the risk of nontraumatic fracture. Am J Med 117:952–956

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa H, Matsumura N, Shimoda M, Oki S, Yoda M, Tohmonda T, Kanai Y, Matsumoto M, Nakamura M, Horiuchi K (2017). Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice. Sci. Rep. 7, 41552. https://doi.org/10.1038/srep41552

  • Simon TM, Van Sickle DC, Kunishima DH, Jackson DW (2003) Cambium cell stimulation from surgical release of the periosteum. J Orthop Res 21:470–480

    Article  PubMed  Google Scholar 

  • Sotiropoulos A, Ohanna M, Kedzia C, Menon RK, Kopchick JJ, Kelly PA, Pende M (2006) Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proc Natl Acad Sci U S A 103:7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spangenburg EE, Le Roith D, Ward CW, Bodine SC (2008) A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol 586:283–291

    Article  CAS  PubMed  Google Scholar 

  • Squier CA, Ghoneim S, Kremenak CR (1990) Ultrastructure of the periosteum from membrane bone. J Anat 171:233–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens AS, Stephens SR, Hobbs C, Hutmacher DW, Bacic-Welsh D, Woodruff MA, Morrison NA (2011) Myocyte enhancer factor 2c, an osteoblast transcription factor identified by dimethyl sulfoxide (DMSO)-enhanced mineralization. J Biol Chem 286:30071–30086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stich S, Loch A, Leinhase I, Neumann K, Kaps C, Sittinger M, Ringe J (2008) Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13. Eur J Cell Biol 87:365–376

    Article  CAS  PubMed  Google Scholar 

  • Stich S, Loch A, Park SJ, Häupl T, Ringe J, Sittinger M (2017) Characterization of single cell derived cultures of periosteal progenitor cells to ensure the cell quality for clinical application. PLoS One 12:e0178560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sullivan-Gunn MJ, Lewandowski PA (2013) Elevated hydrogen peroxide and decreased catalase and glutathione peroxidase protection are associated with aging sarcopenia. BMC Geriatr 13:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syed FA, Oursler MJ, Hefferanm TE, Peterson JM, Riggs BL, Khosla S (2008) Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int 19:1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Xue Y, Nguyen-Yamamoto L et al (2018) FAM210A is a novel determinant of bone and muscle structure and strength. Proc Natl Acad Sci U S A 115:E3759–E3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawonsawatruk T, West CC, Murray IR, Soo C, Péault B, Simpson AH (2016) Adipose derived pericytes rescue fractures from a failure of healing--non-union. Sci Rep 6:22779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140(4):1630–1638

    Article  CAS  PubMed  Google Scholar 

  • Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, Iwaniec UT (2013) Peripheral leptin regulates bone formation. J Bone Miner Res 28:22–34

    Article  CAS  PubMed  Google Scholar 

  • Tuttle LJ, Sinacore DR, Mueller MJ (2012) Intermuscular adipose tissue is muscle specific and associated with poor functional performance. J Aging Res 2012:172957

    Google Scholar 

  • Uezumi A, Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152

    Article  CAS  PubMed  Google Scholar 

  • Van Remmen H, Williams MD, Guo Z, Estlack L, Yang H, Carlson EJ, Epstein CJ, Huang TT, Wang DZ, Valdez MR, McAnally J, Richardson J, Olson EN (2001) The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128:4623–4633

    Google Scholar 

  • Wang Q, Seeman E (2008) Skeletal growth and peak bone strength. Best Pract Res Clin Endocrinol Metab 22:687–700

    Article  PubMed  Google Scholar 

  • Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, Fuchs RK (2014) Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A 111:5337–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanobe H, Habu S (2002) Leptin regulates growth hormone-releasing factor, somatostatin, and alpha-melanocyte-stimulating hormone but not neuropeptide Y release in rat hypothalamus in vivo: relation with growth hormone secretion. J Neurosci 22:6265–6271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GA, Callon KE, Watson M, Costa JL, Ding Y, Dickinson M, Wang Y, Naot D, Reid IR, Cornish J (2011) Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res 26:1698–1709

    Article  CAS  PubMed  Google Scholar 

  • Wilson RA, Liu J, Xu L et al (2016) Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases. Sci Rep 6:20376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SM, Shih LH, Lee JY, Shen YJ, Lee HH (2015) Estrogen enhances activity of Wnt signaling during osteogenesis by inducing Fhl1 expression. J Cell Biochem 116:1419–1430

    Article  CAS  PubMed  Google Scholar 

  • Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T et al (2012) Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 18:1095–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Wu Z (2000) The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J Biol Chem 275:36750–36757

    Article  CAS  PubMed  Google Scholar 

  • Yakar S, Isaksson O (2016) Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models. Growth Hormon IGF Res 28:26–42

    Article  CAS  Google Scholar 

  • Yakar S, Rosen CJ, Beamer WG et al (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 110:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi M, Sugimoto T, Yamaguchi T, Nakaoka D, Kanzawa M, Yano S, Ozuru R, Sugishita T, Chihara K (2001) Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol 55:341–347

    Article  CAS  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu YY, Lieu S, Lu C, Miclau T, Marcucio RS, Colnot C (2010) Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair. Bone 46:841–851

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ryu D, Wu Y et al (2016) NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352:1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Zoidis E, Ghirlanda-Keller C, Schmid C (2011) Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol Cell Biochem 348:33–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the National Institute on Aging, US National Institutes of Health (AG 036675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Hamrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elphingstone, J., Hamrick, M.W. (2019). Muscle and Bone Biology – Similarities and Differences. In: Duque, G. (eds) Osteosarcopenia: Bone, Muscle and Fat Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25890-0_1

Download citation

Publish with us

Policies and ethics