Skip to main content

Non-pharmacological Interventions for Osteosarcopenia

  • Chapter
  • First Online:
Osteosarcopenia: Bone, Muscle and Fat Interactions

Abstract

Locomotion, walking, and running are part of our evolutionary history and the sedentary lifestyle of modern world betrays the evolutionary history encoded in our genes. Humans need a future where physical activities will be, like in our ancestral past, a main component of daily life. Physical inactivity is responsible for many chronic diseases and musculoskeletal disorders, such as osteosarcopenia, and it represents one of the main global risks for mortality. Osteoporosis and sarcopenia impose an immense health and social services cost burden on countries. During the last two decades, several leading international organizations have recognized the ability of physical activity to ameliorate the growing burden of chronic diseases and have issued calls to action to make physical exercise a priority for world population. Therefore, physical activity represents a potent non-pharmacological intervention to promote global health and the objective of the present chapter is to present and discuss evidence-based physical activity programs that are able to prevent and counteract both osteoporosis and sarcopenia in our older population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akune T, Muraki S, Oka S et al (2014) Exercise habits during middle age are associated with lower prevalence of sarcopenia: the ROAD study. Osteoporos Int 25(3):1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Bano G, Trevisan C, Carraro C et al (2017) Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas 96:10–15

    Article  PubMed  Google Scholar 

  • Binder EF, Yarasheski KE, Steger-May K (2005) Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. J Gerontol A Biol Sci Med Sci 60(11):1425–1431

    Article  PubMed  Google Scholar 

  • Blair SN, Sallis RE, Hutber A et al (2012) Exercise therapy – the public health message. Scand J Med Sci Sports 22(4):e24–e28

    Article  CAS  PubMed  Google Scholar 

  • Bocalini DS, Serra AJ, dos Santos L et al (2009) Strength training preserves the bone mineral density of postmenopausal women without hormone replacement therapy. J Aging Health 21(3):519–527

    Article  PubMed  Google Scholar 

  • Bramble DM, Lieberman DE (2004) Endurance running and the evolution of Homo. Nature 432:345–352

    Article  CAS  PubMed  Google Scholar 

  • Brenner DR, Poirier AE, Grundy A et al (2017) Cancer incidence attributable to inadequate physical activity in Alberta in 2012. CMAJ Open 5:E338–E344

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadore EL, Pinto RS, Bottaro M et al (2014) Strength and endurance training prescription in healthy and frail elderly. Aging Dis 5(3):183–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvani R, Joseph A-M, Adhihetty PJ et al (2013) Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem 394(3):393–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanaugh DJ, Cann CE (1988) Brisk walking does not stop bone loss in postmenopausal women. Bone 9(4):201–204

    Article  CAS  PubMed  Google Scholar 

  • Chien MY, Wu YT, Hsu AT et al (2000) Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women. Calcif Tissue Int 67(6):443–448

    Article  CAS  PubMed  Google Scholar 

  • Conn VS, Koopman RJ, Ruppar TM et al (2014) Insulin sensitivity following exercise interventions: systematic review and meta-analysis of outcomes among healthy adults. J Prim Care Community Health 5(3):211–222

    Article  PubMed  Google Scholar 

  • De Matos O, Lopes da Silva DJ, Martinez de Oliveira J et al (2009) Effect of specific exercise training on bone mineral density in women with postmenopausal osteopenia or osteoporosis. Gynecol Endocrinol 25(9):616–620

    Article  PubMed  Google Scholar 

  • Derbré F, Gratas-Delamarche A, Gómez-Cabrera MC et al (2014) Inactivity-induced oxidative stress: a central role in age-related sarcopenia? Eur J Sport Sci 14(1):S98–S108

    Article  PubMed  Google Scholar 

  • Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57(5):344–358

    Article  CAS  PubMed  Google Scholar 

  • Duque G (2013) Osteoporosis in older persons: current pharmacotherapy and future directions. Expert Opin Pharmacother 14(14):1949–1958

    Article  CAS  PubMed  Google Scholar 

  • Duque G, Boersma D, Loza-Diaz G et al (2013) Effects of balance training using a virtual-reality system in older fallers. Clin Interv Aging 8:257–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Eaglehouse YL, Koh WP, Wang R et al (2017) Physical activity, sedentary time, and risk of colorectal cancer: the Singapore Chinese Health Study. Eur J Cancer Prev 26:469–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Fielding RA, LeBrasseur NK, Cuoco A et al (2002) High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc 50(4):655–662

    Article  PubMed  Google Scholar 

  • Francesco C, Ferro G, Basile C et al (2016) Biomarkers in sarcopenia: a multifactorial approach. Exp Gerontol 85:1–8

    Article  CAS  Google Scholar 

  • Fyfe JJ, Bishop DJ, Stepto NK (2014) Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med 44(6):743–762

    Article  PubMed  Google Scholar 

  • Gabriel DA, Kamen G, Frost G (2006) Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 36(2):133–149

    Article  PubMed  Google Scholar 

  • Garber CE, Blissmer B, Deschenes MR et al (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359

    Article  PubMed  Google Scholar 

  • Gómez-Cabello A, Ara I, González-Agüero A et al (2012) Effects of training on bone mass in older adults: a systematic review. Sports Med 42(4):301–325

    Article  PubMed  Google Scholar 

  • Gunter K, Baxter-Jones ADG, Mirwald RL et al (2008) Impact exercise increases BMC during growth: an 8-year longitudinal study. J Bone Miner Res 23:986–993

    Article  PubMed  Google Scholar 

  • Hassan EB, Duque G (2017) Osteosarcopenia: a new geriatric syndrome. Aust Fam Physician 46(11):849–853

    PubMed  Google Scholar 

  • Hatori M, Hasegawa A, Adachi H et al (1993) The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women. Calcif Tissue Int 52(6):411–414

    Article  CAS  PubMed  Google Scholar 

  • Hong K-S, Kim K (2017) Skeletal muscle contraction-induced vasodilation in the microcirculation. J Exer Rehabilit 13(5):502–507

    Article  Google Scholar 

  • Horsburgh S, Robson-Ansley P, Adams R et al (2015) Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exercise Immunol Rev 21:26–41

    Google Scholar 

  • Isbell LA, Pruetz JD, Lewis M et al (1998) Locomotor activity differences between sympatric patas monkeys (Erythrocebus patas) and vervet monkeys (Cercopithecus aethiops): implications for the evolution of long hind limb length in Homo. Am J Physical Anthropol 105:199–207

    Article  CAS  Google Scholar 

  • Izquierdo M, Ibañez J, HAkkinen K et al (2004) Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc 36(3):435–443

    Article  PubMed  Google Scholar 

  • Jeffery N, Spoor F (2004) Prenatal growth and development of the modern human labyrinth. J Anat 204:71–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Joanisse S, Nederveen JP, Snijders T et al (2017) Skeletal muscle regeneration, repair and Remodelling in aging: the importance of muscle stem cells and vascularization. Gerontology 63(1):91–100

    Article  PubMed  Google Scholar 

  • Khosla S, Shane EA (2016) Crisis in the treatment of osteoporosis. J Bone Miner Res 31:1485–1487

    Article  PubMed  Google Scholar 

  • Khosla S, Cauley JA, Compston J et al (2016) Addressing the crisis in the treatment of osteoporosis: a path forward. J Bone Miner Res 32:424–430

    Article  PubMed  Google Scholar 

  • Krahl H, Michaelis U, Pieper H-G et al (1994) Stimulation of bone growth through sports. Am J Sports Med 22:751–757

    Article  CAS  PubMed  Google Scholar 

  • Lieberman DE, Bramble DM, Raichlen DA et al (2009) Brawn, and the evolution of human endurance running capabilities. In: The first humans – origin and early evolution of the genus Homo. Springer, Guildford

    Google Scholar 

  • LIFE Study Investigators, Pahor M, Blair SN et al (2006) Effects of a physical activity intervention on measures of physical performance: results of the lifestyle interventions and Independence for elders pilot (LIFE-P) study. J Gerontol A Biol Sci Med Sci 61(11):1157–1165

    Article  Google Scholar 

  • Marques EA, Mota J, Machado L et al (2011) Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif Tissue Int 88(2):117–129

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2012). Evolutionary aspects of human exercise–born to run purposefully. Ageing Res Rev;11(3):347–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Amat A, Aibar-Almazán A, Fábrega-Cuadros R et al (2018) Exercise alone or combined with dietary supplements for Sarcopenic obesity in community-dwelling older people: a systematic review of randomized controlled trials. Maturitas 110:92–103

    Article  PubMed  CAS  Google Scholar 

  • McMillan LB, Zengin A, Ebeling PR et al (2017) Prescribing physical activity for the prevention and treatment of osteoporosis in older adults. Healthcare (Basel) 5(4):85

    Article  Google Scholar 

  • Molina KI, Aquaroni Ricci N, Albuquerque de Moraes S et al (2014) Virtual reality using games for improving physical functioning in older adults: a systematic review. J Neuroeng Rehabil 11:156

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien MK, Shawen N, Mummidisetty CK et al (2017) Activity recognition for persons with stroke using Mobile phone technology: toward improved performance in a home setting. J Med Internet Res 19(5):e184

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen BK, Saltin B (2006) Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 16:3–63

    Article  PubMed  Google Scholar 

  • Phillips SM (2000) Short-term training: when do repeated bouts of resistance exercise become training? Can J Appl Physiol 25(3):185–193

    Article  CAS  PubMed  Google Scholar 

  • Phu S, Boersma D, Duque G (2015) Exercise and sarcopenia. J Clin Densitom 18(4):488–492

    Article  PubMed  Google Scholar 

  • Pontzer H (2017) Economy and endurance in human evolution. Curr Biol 27:R613–R621

    Article  CAS  PubMed  Google Scholar 

  • Rolian C, Lieberman DE, Hamill J et al (2009) Walking, running and the evolution of short toes in humans. J Exp Biol 212:713–721

    Article  PubMed  Google Scholar 

  • Sakuma K, Yamaguchi A (2012) Sarcopenia and age-related endocrine function. Int J Endocrinol (Article ID 127362):10

    Google Scholar 

  • Sallis R (2015) Exercise is medicine: a call to action for physicians to assess and prescribe exercise. Phys Sportsmed 43:22–26

    Article  PubMed  Google Scholar 

  • Salthouse TA (2003) Memory aging from 18 to 80. Alzheimer Dis Assoc Disord 17:162–167

    Article  PubMed  Google Scholar 

  • Sansoni V, Vernillo G, Perego S et al (2017) Bone turnover response is linked to both acute and established metabolic changes in ultra-marathon runners. Endocrine 56:196–204

    Article  CAS  PubMed  Google Scholar 

  • Santos-Lozano A, Lucia A, Ruilope L et al (2017) Born to run: our future depends on it. Lancet 390(10095):635–636

    Article  PubMed  Google Scholar 

  • Scott RA, Callisaya ML, Duque G et al (2018) Assistive technologies to overcome sarcopenia in ageing. Maturitas 112:78–84

    Article  PubMed  Google Scholar 

  • Snijders T, Parise G (2017) Role of muscle stem cells in sarcopenia. Curr Opin Clin Nutr Metab Care 20(3):186–190

    Article  CAS  PubMed  Google Scholar 

  • Sprager S, Juric MB (2015) Inertial sensor-based gait recognition: a review. Sensors 15(9):22089–22127

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoecker WV, Carson A, Nguyen VH et al (2017) Addressing the crisis in the treatment of osteoporosis: better paths forward. J Bone Miner Res 32(6):1386–1387

    Article  PubMed  Google Scholar 

  • Suetta C, Andersen JL, Dalgas U et al (2008) Resistance training induces qualitative changes in muscle morphology, muscle architecture, and muscle function in elderly postoperative patients. J Appl Physiol 105(1):180–186

    Article  PubMed  Google Scholar 

  • Sugden MC, Zariwala MC, Holness MJ (2009) PPARs and the orchestration of metabolic fuel selection. Pharmacol Res 60(3):141–150

    Article  CAS  PubMed  Google Scholar 

  • Tan VP, Macdonald HM, Kim S et al (2014) Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res 29:2161–2181

    Article  PubMed  Google Scholar 

  • Taylor D (2014) Physical activity is medicine for older adults. Postgrad Med J 90(1059):26–32

    Article  PubMed  Google Scholar 

  • Taylor CR, Heglund NC, Maloiy GM (1982) Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J Exp Biol 97:1–21

    CAS  PubMed  Google Scholar 

  • Troy KL, Mancuso ME, Butler TA et al (2018) Exercise early and often: effects of physical activity and exercise on women’s bone health. Int J Environ Res Public Health 28:15(5)

    Google Scholar 

  • Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3:346–355

    Article  CAS  PubMed  Google Scholar 

  • van Kan A (2009) Epidemiology and consequences of sarcopenia. J Nutr Health Aging 13:708–712

    Article  Google Scholar 

  • Varahra A, Rodrigues IB, MacDermid JC et al (2018) Exercise to improve functional outcomes in persons with osteoporosis: a systematic review and meta-analysis. Osteoporos Int 29(2):265–286

    Article  CAS  PubMed  Google Scholar 

  • Villareal DT, Binder EF, Yarasheski KE et al (2003) Effects of exercise training added to ongoing hormone replacement therapy on bone mineral density in frail elderly women. J Am Geriatr Soc 51(7):985–990

    Article  PubMed  Google Scholar 

  • Villareal DT, Aguirre L, Burke Gurney A et al (2017) Aerobic or resistance exercise, or both, in dieting obese older adults. N Engl J Med 376(20):1943–1955

    Article  PubMed  PubMed Central  Google Scholar 

  • Warden SJ, Hurst JA, Sanders MS et al (2004) Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res 20:809–816

    Article  PubMed  Google Scholar 

  • Watson K, Baar K (2014) mTOR and the health benefits of exercise. Semin Cell Dev Biol 36:130–139

    Article  CAS  PubMed  Google Scholar 

  • Welsh L, Rutherford OM (1996) Hip bone mineral density is improved by high-impact aerobic exercise in postmenopausal women and men over 50 years. Eur J Appl Physiol Occup Physiol 74(6):511–517

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SB, Tarnopolsky MA, Grant EJ et al (2006) Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol 98(6):546–555

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Marin PJ, Rhea MR et al (2012) Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res 26(8):2293–2307

    Article  PubMed  Google Scholar 

  • World Health Organization (2007) WHO scientific group on the assessment of osteoporosis at primary health care level. World Health Organization, Sheffield

    Google Scholar 

  • World Health Organization (2009) Global health risks: mortality and burden of disease attributable to selected major risks. http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf

  • World Health Organization (2010) Global recommendations on physical activity for health. World Health Organization, Geneva

    Google Scholar 

  • Xiang X, Zhao J, Xu G et al (2011) mTOR and the differentiation of mesenchymal stem cells. Acta Biochim Biophys Sin 43(7):501–510

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Lombardi G, Jiao W, Banfi G (2016) Effects of exercise on bone status in female subjects, from Young girls to postmenopausal women: an overview of systematic reviews and meta-analyses. Sports Med 46(8):1165–1182

    Article  PubMed  Google Scholar 

  • Yoon MS (2017) mTOR as a key regulator in maintaining skeletal muscle mass. Front Physiol 8:788

    Article  PubMed  PubMed Central  Google Scholar 

  • Young N, Formica C, Szmuckler G et al (1994) Bone density at weight-bearing and nonweight bearing sites in ballet dancers: the effects of exercise, hypogonadism, and body weight. J Clin Endocrinol Metab 78:449–454

    CAS  PubMed  Google Scholar 

  • Zamboni M, Mazzali G, Fantin F et al (2008) Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 18(5):388–395

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Antonino Vitale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vitale, J.A., Negrini, F., Banfi, G. (2019). Non-pharmacological Interventions for Osteosarcopenia. In: Duque, G. (eds) Osteosarcopenia: Bone, Muscle and Fat Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25890-0_15

Download citation

Publish with us

Policies and ethics