Skip to main content

The Hypothalamus, the Preoptic Area, and Hypothalamohypophysial Systems

  • Chapter
  • First Online:
Clinical Neuroanatomy

Abstract

The rather small hypothalamus and preoptic area contain a large number of more or less well-defined cell groups that are of utmost importance for preserving the individual and the species. From a developmental point of view, the hypothalamus and preoptic area have different origins but, despite ontogenetical differences, the hypothalamus and preoptic area are usually seen as a continuum. The hypothalamus is involved in a wide variety of functions in the brain and is characterized by numerous connections with practically every major part of the central nervous system (CNS), including the cerebral cortex, the hippocampus, the amygdala, the thalamus, the cerebellum, the brain stem and the spinal cord. Alterations in hypothalamic nuclei are found in various endocrine diseases such as diabetes insipidus and Wolfram and Prader-Willi syndromes and in various neurodegenerative diseases such as Alzheimer, Parkinson and Huntington diseases.

Through its intimate neuronal and vascular relationships with the pituitary gland, the hypothalamus controls the release of the pituitary hormones, thereby bringing the entire endocrine system under the control of the CNS. The magnocellular secretory system, composed of supraoptic and paraventricular neurons, gives rise to axons that innervate the posterior lobe of the pituitary via the tuberohypophysial tract. All other hypothalamic control of pituitary function is achieved through neurohumoral mechanisms via the portal plexus in the external zone of the median eminence. Neurosecretory neurons throughout the hypothalamus, more in particular the arcuate nucleus, project to the median eminence. This parvocellular secretory system controls the anterior pituitary.

The hypothalamus is concerned with generalized response patterns that often involve autonomic, somatomotor and endocrine systems. Following a brief description of the development of the hypothalamus and preoptic area (► Sect. 13.2), their boundaries and subdivision (► Sect. 13.3), their fibre connections with the CNS (► Sect. 13.4) and with the hypophysis (► Sect. 13.5) and aspects of the functional organization of the hypothalamus such as the control of feeding, reproduction, thermoregulation and sleep (► Sect. 13.6) will be discussed. Damage to different parts of the hypothalamohypophysial system may result in various neuroendocrine disturbances. Autonomic dysfunctions in the respiratory, cardiovascular and gastrointestinal systems are commonly seen, as are disturbances in temperature regulation, water balance, sexual behaviour and food intake. Some examples are presented as Clinical cases. The English terms of the Terminologia Neuroanatomica are used throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akert K, Potter HD, Anderson JW (1961) The subfornical organ in mammals. J Comp Neurol 116:1–14

    Article  CAS  PubMed  Google Scholar 

  • Allen LS, Hines M, Shryne JE, Gorski RA (1989) Two sexually dimorphic cell groups in the human brain. J Neurosci 9:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178

    Article  CAS  PubMed  Google Scholar 

  • Anderson JW, Washburn DLS, Ferguson AV (2000) Intrinsic osmosensitivity of osmosensitivity of subfornical organ neurons. Neuroscience 100:539–547

    Article  CAS  PubMed  Google Scholar 

  • Angevine JB Jr (1970) Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J Comp Neurol 139:129–188

    Article  PubMed  Google Scholar 

  • Arendash GW, Gorski RA (1983) Effects of discrete lesions of the sexually dimorphic nucleus of the preoptic area or other medial preoptic regions on the sexual behavior of male rats. Brain Res Bull 10:147–154

    Article  CAS  PubMed  Google Scholar 

  • Ariëns Kappers J (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal gland organ of vertebrates. Prog Brain Res 10:87–151

    Article  Google Scholar 

  • Asa SL, Kovacs K, Laszlo FA, Domokos I, Ezrin C (1986) Human fetal adenohypophysis. Histologic and immunohistochemical analysis. Neuroendocrinology 43:308–316

    Article  CAS  PubMed  Google Scholar 

  • Asa SL, Kovacs K, Horvath E, Losinski NE, Laszlo FA, Domokos I, Halliday WC (1988) Human fetal adenohypophysis. Electron microscopic and ultrastructural immunocytochemical analysis. Neuroendocrinology 48:423–431

    Article  CAS  PubMed  Google Scholar 

  • Auo S, Oomura Y, Yoshimatsu H (1988) Neuron activity of the ventromedial hypothalamus and the medial preoptic area of the female monkey during sexual behavior. Brain Res 455:65–71

    Article  Google Scholar 

  • Bahnsen U, Oosting P, Swaab DF, Nahke P, Richter D, Schmale H (1992) A missense mutation in the vasopressin-neurophysin precursor gene congregates with human autosomal dominant neurohypophyseal diabetes insipidus. EMBO J 11:19–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM (1996) Leptin enters the brain by a saturable system independent of insulin. Peptides 17:305–311

    Article  CAS  PubMed  Google Scholar 

  • Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Phys 84:490–515

    Article  Google Scholar 

  • Bard P (1929) The central representation of the sympathetic nervous system as indicated by certain physiologic observations. Arch Neurol Psychiatr 22:230–246

    Article  Google Scholar 

  • Bargmann W (1949) Über die neurosekretorische Verknüpfung von Hypothalamus and Neurohypophyse. Z Zellforsch 34:610–634

    CAS  PubMed  Google Scholar 

  • Barry J (1977) Immunofluorescence study of LRF neurons in man. Cell Tissue Res 181:1–14

    Article  CAS  PubMed  Google Scholar 

  • Beitz AJ (1982) The organization of afferent projections to the midbrain periaqueductal gray of the rat. Neuroscience 7:133–159

    Article  CAS  PubMed  Google Scholar 

  • Bergeron C, Kovacs K, Ezrin C, Mizzen C (1991) Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol (Berl) 81:345–348

    Article  CAS  Google Scholar 

  • Bloch B, Gaillard RG, Brazeau P, Lin HD, Ling N (1984) Topographical and ontogenetic study of the neurons producing growth hormone-releasing factor in human hypothalamus. Regul Peptides 8:21–31

    Article  CAS  Google Scholar 

  • Bouras C, Magistretti PJ, Morrison JH, Constantinidis J (1987) An immunohistochemical study of pro-somatostatin-derived peptides in the human brain. Neuroscience 22:781–800

    Article  CAS  PubMed  Google Scholar 

  • Bourque CW (2008) Central mechanisms of osmosensation and systemic osmoreception. Nat Rev Neurosci 9:519–531

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1987) The hypothalamus of the human adult: Chiasmatic region. Anat Embryol (Berl) 176:315–330

    Article  Google Scholar 

  • Braak H, Braak E (1992) Anatomy of the human hypothalamus (chiasmatic and tuberal regions). Prog Brain Res 93:3–16

    Article  CAS  PubMed  Google Scholar 

  • Breverman LE, Mancini JP, McGoldrick DM (1965) Hereditary idiopathic diabetes insipidus. A case report with autopsy findings. Ann Int Med 63:503–508

    Article  Google Scholar 

  • Broadwell RD, Brightman MW (1976) Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp Neurol 166:257–283

    Article  CAS  PubMed  Google Scholar 

  • Broberger C (1999) Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: Histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res 848:101–113

    Article  CAS  PubMed  Google Scholar 

  • Brockhaus H (1942) Beitrag zur normalen Anatomie des Hypothalamus und der Zona incerta beim Menschen. J Psychol Neurol (Lpz) 51:96–196

    Google Scholar 

  • Brunetti M, Babiloni C, Ferretti A, Del Grafta C, Merla A, Olivetti Belardelli M, Romani GL (2008) Hypothalamus, sexual arousal and psychosexual identity in human males: a functional magnetic imaging study. Eur J Neurosci 27:2922–2927

    Article  CAS  PubMed  Google Scholar 

  • Buijs RM, Swaab DF, Dogterom J, van Leeuwen FW (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186:423–433

    Article  CAS  PubMed  Google Scholar 

  • Burstein R (1996) Somatosensory and visceral input to the hypothalamus and limbic system. Prog Brain Res 107:257–267

    Article  CAS  PubMed  Google Scholar 

  • Burstein R, Cliffer KD, Giesler GJ Jr (1987) Direct somatosensory projections from the spinal cord to the hypothalamus and telencephalon. J Neurosci 7:4159–4164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burstein R, Falkowsky O, Borsook D, Strassman A (1996) Distinct lateral and medial projections of the spinohypothalamic tract of the cat. J Comp Neurol 373:549–574

    Article  CAS  PubMed  Google Scholar 

  • Camacho A, Phillips MI (1981) Horseradish peroxidase study in the rat of the neural connections of the organum vasculosum of the lamina terminalis. Neurosci Lett 25:201–204

    Article  CAS  PubMed  Google Scholar 

  • Canteras NS, Simerly RB, Swanson LW (1994) Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:41–79

    Article  CAS  PubMed  Google Scholar 

  • Carson MJ, Slager UT, Steinberg RM (1977) Simultaneous occurrence of diabetes mellitus, diabetes insipidus, and optic atrophy in a brother and sister. Am J Dis Child 131:1382–1385

    CAS  PubMed  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    Article  CAS  PubMed  Google Scholar 

  • Chen XM, Hosono T, Yoda T, Fukuda Y, Kanosue K (1998) Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J Physiol Lond 512:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciriello J (2013) Caudal ventrolateral medulla mediates baroreceptor afferent inputs to subfornical organ angiotensin II responsive neurons. Brain Res 1491:127–135

    Article  CAS  PubMed  Google Scholar 

  • Ciriello J, Calaresu FR (1980a) Autoradiographic study of ascending projections from cardiovascular sites in the nucleus tractus solitarii in the rat. Brain Res 180:448–453

    Article  Google Scholar 

  • Ciriello J, Calaresu FR (1980b) Monosynaptic pathway from cardiovascular neurons in the nucleus tractus solitarii in the rat. Brain Res 193:529–533

    Article  CAS  PubMed  Google Scholar 

  • Ciriello J, Caverson MM (1984) Direct pathway from neurons in the ventrolateral medulla relaying cardiovascular afferent information to the supraoptic nucleus in the cat. Brain Res 292:221–228

    Article  CAS  PubMed  Google Scholar 

  • Cohen RA, Albers HE (1991) Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurology 41:726–729

    Article  CAS  PubMed  Google Scholar 

  • Coolen LJMM (1995) The neural organization of sexual behavior in the male rat. Thesis, University of Nijmegen

    Google Scholar 

  • Cowan WM, Guillery RW, Powell TPS (1964) The origin of the mammillary peduncle and other hypothalamic connexions from the midbrain. J Anat (Lond) 98:345–363

    CAS  Google Scholar 

  • Cremers CWRJ, Wijdeveld PGAB, Pinckers AJLG (1977) Juvenile diabetes mellitus, optic atrophy, hearing loss, diabetes insipidus, atonia of the urinary tract and bladder, and other abnormalities (Wolfram syndrome). Acta Paediatr Scand Suppl 246:3–16

    Google Scholar 

  • Crompton MR (1963) Hypothalamic lesions following the rupture of cerebral berry aneurysms. Brain 86:301–314

    Article  CAS  PubMed  Google Scholar 

  • Crosby EC, Woodburne RT (1940) The comparative anatomy of the preoptic area and the hypothalamus. Proc Assoc Res Nerv Ment Dis 20:52–169

    Google Scholar 

  • Cruce JAF (1977) An autoradiographic study of the descending connections of the mammillary nuclei of the rat. J Comp Neurol 176:631–644

    Article  CAS  PubMed  Google Scholar 

  • Dai J, van der Vliet J, Swaab DF, Buijs RM (1998) Human retinohypothalamic tract as revealed by in vitro postmortem tracing. J Comp Neurol 397:357–370

    Article  CAS  PubMed  Google Scholar 

  • Daniel PM, Pritchard MML (1975) Studies of the hypothalamus and the pituitary gland with special reference to the effects of the pituitary stalk. Acta Endocrinol (Copenhagen) 80(Suppl 201):1–210

    Google Scholar 

  • de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    Article  PubMed  CAS  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327

    Article  PubMed  PubMed Central  Google Scholar 

  • de Olmos J, Ingram WR (1972) The projection fields of the stria terminalis in the rat brain. An experimental study. J Comp Neurol 146:303–334

    Article  PubMed  Google Scholar 

  • Dierickx K, Vandesande F (1977) Immunocytochemical localization of the vasopressinergic and oxytocinergic neurons in the human hypothalamus. Cell Tissue Res 184:15–27

    Article  CAS  PubMed  Google Scholar 

  • Dierickx K, Vandesande F (1979) Immunocytochemical demonstration of separate vasopressin-neurophysin and oxytocin-neurophysin neurons in the human hypothalamus. Cell Tissue Res 196:203–212

    Article  CAS  PubMed  Google Scholar 

  • Dietrichs E, Haines DE (1989) Interconnections between hypothalamus and cerebellum. Anat Embryol (Berl) 179:207–220

    Article  CAS  Google Scholar 

  • Dietrichs E, Wiklund L, Haines DE (1992) The hypothalamocerebellar projection in the rat: origin and transmitter. Arch Ital Biol 130:203–211

    CAS  PubMed  Google Scholar 

  • Dudas B, Mihaly A, Merchenthaler I (2000) Topography and associations of luteinizing hormone-releasing hormone and neuropeptide Y-immunoreactive neuronal systems in the human diencephalon. J Comp Neurol 427:593–603

    Article  CAS  PubMed  Google Scholar 

  • Duvernoy H (1972) The vascular architecture of the median eminence. In: Knigge KM, Scott DE, Weindle A (eds) Brain endocrine interaction. Karger, Basel, pp 79–108

    Google Scholar 

  • Duvernoy H, Koritké JG (1969) Concerning the relationships of the circumventricular organs and their vessels with the cavity of the ventricles. In: Sterba G (ed) Zirkumventriculäre Organe and Liquor. Fischer, Jena, pp 113–115

    Google Scholar 

  • Duvernoy H, Koritké JG, Monnier G (1969) Sur la vascularisation de la lame terminale humaine. Z Zellforsch Mikrosk Anat 102:49–77

    Article  CAS  PubMed  Google Scholar 

  • Duvernoy H, Parratte B, Tatu L, Vuillier F (2000) The human pineal gland: relationships with surrounding structures and blood supply. Neurol Res 22:747–790

    Article  CAS  PubMed  Google Scholar 

  • Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J et al (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 402:442–459

    Article  CAS  PubMed  Google Scholar 

  • Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C et al (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23:775–786

    Article  CAS  PubMed  Google Scholar 

  • Elias CF, Kelly JF, Lee CE, Ahima RS, Drucker DJ, Saper CB et al (2000) Chemical characterization of leptin-activated neurons in the rat brain. J Comp Neurol 423:261–281

    Article  CAS  PubMed  Google Scholar 

  • Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB (1998) Distribution of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395:535–547

    Article  CAS  PubMed  Google Scholar 

  • Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    Article  CAS  PubMed  Google Scholar 

  • Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M et al (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21:1656–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felix D, Akert K (1974) The effect of angiotensin II on neurones of the cat subfornical organ. Brain Res 76:350–353

    Article  CAS  PubMed  Google Scholar 

  • Férnandez-Guasti A, Kruijver FPM, Fodor M, Swaab DF (2000) Sex differences in the distribution of androgen receptors in the human hypothalamus. J Comp Neurol 425:422–435

    Article  PubMed  Google Scholar 

  • Ferretti A, Caulo M, Del Gratta C, Di Matteo R, Merla A, Montorsi F et al (2005) Dynamics of male sexual arousal: distinct components of brain activation revealed by fMRI. NeuroImage 26:1086–1096

    Article  PubMed  Google Scholar 

  • Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    Article  CAS  PubMed  Google Scholar 

  • Fliers E, Swaab DF, Pool CW, Verwer RWH (1985) The vasopressin and oxytocin neurons in the human supraoptic and paraventricular nucleus: changes with aging and in senile dementia. Brain Res 342:45–53

    Article  CAS  PubMed  Google Scholar 

  • Fliers E, Noppen NWAM, Wiersinga WM, Visser TJ, Swaab DF (1994) Distribution of thyrotropin-releasing hormone (TRH)-containing cells and fibres in the human hypothalamus. J Comp Neurol 350:311–323

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich A (1901) Ein Fall von Tumor der Hypophysis cerebri ohne Akromegalie. Wien Klin Wochenschr 15:883

    Google Scholar 

  • Fry FJ, Cowan WM (1972) A study of retrograde cell degeneration in the lateral mammillary nucleus of the cat, with special reference to the role of axonal branching in the preservation of the cell. J Comp Neurol 144:1–24

    Article  CAS  PubMed  Google Scholar 

  • Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–259

    Article  Google Scholar 

  • Gabreëls BATF (1998) Vasopressin secretion disorders in diabetes insipidus, Prader-Willi syndrome and Wolfram syndrome. Thesis, University of Amsterdam

    Google Scholar 

  • Gabreëls B, Swaab D, de Kleijn D, Dean A, Seidah N, van de Loo J-W et al (1998) The vasopressin precursor is not processed in the hypothalamus of Wolfram syndrome patients with diabetes insipidus: evidence for the involvement of PC2 and JB2. J Clin Endocrinol Metab 83:4026–4033

    Article  PubMed  Google Scholar 

  • Gagel O (1928) Zur Topik und feineren Histologie der vegetativen Kerne des Zwischenhirns. Z Anat Entwicklungsgesch 87:558–584

    Article  Google Scholar 

  • Gebarski SS (1993) Pituitary gland imaging: the last bottle of iodinated contrast material. Radiology 189:29–30

    Article  CAS  PubMed  Google Scholar 

  • Gebke E, Müler AR, Kurzak M, Gerstberger R (1998) Angiotensin II-induced calcium signalling in neurons and astrocytes of rat circumventricular organs. Neuroscience 85:509–520

    Article  CAS  PubMed  Google Scholar 

  • Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ (2003) Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience 116:225–235

    Article  Google Scholar 

  • German DC, White CL, Sparkman DR (1987) Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience 21:305–312

    Article  CAS  PubMed  Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148:333–346

    Article  CAS  PubMed  Google Scholar 

  • Griffin JD, Boulant JA (1995) Temperature effects on membrane potential and input resistance in rat hypothalamic neurones. J Physiol Lond 488:407–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grünthal EC (1933) Über das spezifisch Menschliche im Hypothalamusbau. Eine vergleichende Untersuchung des Hypothalamus beim Schimpansen und Menschen. J Psychol Neurol (Lpz) 45:237–263

    Google Scholar 

  • Gurdjian ES (1927) The diencephalon of the albino rat. J Comp Neurol 43:1–114

    Article  Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130

    Article  CAS  PubMed  Google Scholar 

  • Haglund L, Swanson LW, Köhler C (1984) The projection of the supramammillary nucleus to the hippocampal formation: an immunohistochemical and anterograde transport study with the lectin PHA-L in the rat. J Comp Neurol 229:171–185

    Article  CAS  PubMed  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Article  CAS  PubMed  Google Scholar 

  • Haymaker W (1969) Hypothalamo-pituitary neural pathways and the circulatory system of the pituitary. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 219–251

    Google Scholar 

  • Heimer L (1995) The human brain and spinal cord. functional neuroanatomy and dissection guide. Springer, New York

    Book  Google Scholar 

  • Herkenham M, Nauta WJH (1977) Afferent connections of the habenular nuclei in the rat: a horseradish peroxidase study, with a note on the fibers-of-passage problem. J Comp Neurol 173:123–146

    Article  CAS  PubMed  Google Scholar 

  • Herkenham M, Nauta WJH (1979) Efferent connections of the habenular nuclei. J Comp Neurol 187:19–48

    Article  CAS  PubMed  Google Scholar 

  • Hess WR (1936) Hypothalamus und die Zentren des autonomen Nervensystems: Physiologie. Arch Psychiatr Nervenkr 104:548–557

    Article  Google Scholar 

  • Hess WR, Brügger M (1943) Das subkortikale Zentrum der affektiven Abwehrreaktion. Helv Physiol Acta 1:33–52

    Google Scholar 

  • Hetherington AW, Ranson SW (1942) The relation of various hypothalamic lesions to adiposity in the rat. J Comp Neurol 76:475–499

    Article  Google Scholar 

  • His W (1893) Vorschläge zur Eintheilung des Gehirns. Arch Anat Physiol Anat Abt 17:172–179

    Google Scholar 

  • Holstege G (1987) Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260:98–126

    Article  CAS  PubMed  Google Scholar 

  • Holstege G, Georgiadis JR (2003) Neurobiology of cat and human sexual behavior. Int Rev Neurobiol 56:213–225

    Article  CAS  PubMed  Google Scholar 

  • Holstege G, Georgiadis JR (2004) The emotional brain: neural correlates of cat sexual behavior and human male ejaculation. Prog Brain Res 57:145–175

    Article  Google Scholar 

  • Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58:379–391

    Article  CAS  PubMed  Google Scholar 

  • Hori T, Kiyohara T, Oomura Y, Nishino H, Aou S, Fujita I (1987) Activity of thermosensitive neurons of monkey preoptic hypothalamus during thermoregulatory operant behavior. Brain Res Bull 18:649–655

    Article  CAS  PubMed  Google Scholar 

  • Hori A, Schmidt D, Feyerabend B (1995) Pharyngosellar pituitary: a rare developmental anomaly of the pituitary gland. Acta Neuropathol (Berl) 89:459–463

    Article  CAS  Google Scholar 

  • Hori A, Schmidt D, Rickels E (1999a) Pharyngeal pituitary: development, malformation and tumorigenesis. Acta Neuropathol (Berl) 98:262–272

    Article  CAS  Google Scholar 

  • Hori A, Schmidt D, Kuebber S (1999b) Immunohistochemical survey of migration of human anterior pituitary cells in developmental, pathological, and clinical aspects: a review. Micr Res Techn 46:59–68

    Article  CAS  Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LRG et al (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Suzuki J, Sasano N, Niizumi H (1988) The development of morphogenesis of the human pituitary gland. Acta Neuropathol (Berl) 178:327–336

    CAS  Google Scholar 

  • Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E et al (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148

    Article  CAS  PubMed  Google Scholar 

  • Irle E, Markowitsch HJ (1982) Connections of the hippocampal formation, mammillary bodies, anterior thalamus and cingulate cortex. Exp Brain Res 47:79–94

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2011) Mamillary or mammillary? What’s in an “m”? J Hist Neurosci 20:152–159

    Article  PubMed  Google Scholar 

  • Jones EG, Burton H, Saper CB, Swanson LW (1976) Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J Comp Neurol 167:385–420

    Article  CAS  PubMed  Google Scholar 

  • Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic connections to the frontal and parietal cortex of the rhesus monkey. Science 187:660–662

    Article  CAS  PubMed  Google Scholar 

  • Koutcherov Y, Mai JK, Ashwell KWS, Paxinos G (2002) Organization of human hypothalamus in fetal development. J Comp Neurol 446:301–324

    Article  PubMed  Google Scholar 

  • Kow LM, Pfaff DW (1998) Mapping of neural and signal transduction pathways for lordosis in the search for estrogen actions on the central nervous system. Behav Brain Res 92:169–180

    Article  CAS  PubMed  Google Scholar 

  • Kremer HPH, Roos RAC, Dingjan G, Marani E, Bots GTAM (1990) Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. J Neuropathol Exp Neurol 49:371–382

    Article  CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and brain stem in the rat and cat. J Comp Neurol 178:225–253

    Article  CAS  PubMed  Google Scholar 

  • Krieg WJS (1932) The hypothalamus of the albino rat. J Comp Neurol 55:19–89

    Article  Google Scholar 

  • Krieger MS, Conrad LCA, Pfaff DW (1979) An autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus. J Comp Neurol 183:785–816

    Article  CAS  PubMed  Google Scholar 

  • Lammers HJ (1972) The neural connections of the amygdaloid complex in mammals. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 123–144

    Chapter  Google Scholar 

  • Le Gros Clark WE (1936) The topography and homologies of the hypothalamic nuclei in man. J Anat (Lond) 70:203–216

    Google Scholar 

  • Le Gros Clark WE (1938) Morphological aspects of the hypothalamus. In: Le Gros Clark WE, Beattie J, Riddoch G, Dott NM (eds) The hypothalamus. Morphological, functional, clinical and surgical aspects. Oliver and Boyd, Edinburgh, pp 1–68

    Google Scholar 

  • Leib DE, Zimmerman CA, Knight ZA (2016) Thirst. Curr Biol:R1260–R1265

    Google Scholar 

  • Lim ASP, Ellison BA, Wang JL, Yu L, Schneider JA, Buchman AR et al (2014) Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer’s disease. Brain 137:2847–2861

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin JS (2000) Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminegic neurons. Sleep Med Rev 4:471–503

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Sakai K, Jouvet M (1988) Evidence for histaminergic arousal mechanisms in the hypothalamus of the cat. Neuropharmacology 27:111–132

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Sakai K, Jouvet M (1994) Hypothalamo-preoptic histaminergic projections in sleep-wake control in the cat. Eur J Neurosci 6:618–625

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Hou Y, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role of cortical activation and wakefulness in the cat. J Neurosci 16:1523–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind RW, Van Hoesen GW, Johnson AK (1982) An HRP study of the connections of the subfornical organ of the rat. J Comp Neurol 210:265–277

    Article  CAS  PubMed  Google Scholar 

  • Lloyd SA, Dixson AF (1988) Effects of hypothalamic lesions upon the sexual and social behaviour of the male common marmoset (Callithrix jacchus). Brain Res 463:317–329

    Article  CAS  PubMed  Google Scholar 

  • Luiten PGM, ter Horst GJ, Karst H, Steffens AB (1985) The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res 329:374–378

    Article  CAS  PubMed  Google Scholar 

  • Luiten PGM, ter Horst GJ, Steffens AB (1987) The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol 28:1–54

    Article  CAS  PubMed  Google Scholar 

  • Mai JK, Ashwell KWS (2004) Fetal development of the central nervous system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 49–94

    Chapter  Google Scholar 

  • Mantyh PW (1983) Connections of midbrain periaqueductal gray in the monkey. I. Ascending efferent projections. J Neurophysiol 49:567–581

    Article  CAS  PubMed  Google Scholar 

  • Mark MH, Farmer PM (1984) The human subfornical organ: an anatomic and ultrastructural study. Ann Clin Lab Sci 14:4270–4442

    Google Scholar 

  • Marx JJ, Iannetti GD, Mika-Gruettner A, Thoemke F, Fitzek S, Vucurevic G et al (2004) Topodiagnostic investigations on the sympathoexcitatory brain stem pathway using a new method of three dimensional brain stem mapping. J Neurol Neurosurg Psychiatry 75:250–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinley MJ, Congiu M, Denton DA, Park RG, Penschow J, Simpson JB et al (1984) The anterior wall of the third ventricle and homeostatic responses to dehydration. J Physiol Paris 79:421–427

    CAS  PubMed  Google Scholar 

  • McKinley MJ, Badour E, Oldfield BJ (1992) Intravenous angiotensin II induces Fos-immunoreactivity in circumventricular organs of the lamina terminalis. Brain Res 594:295–300

    Article  CAS  PubMed  Google Scholar 

  • McKinley MJ, Clarke IJ, Oldfield BJ (2004) Circumventricular organs. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 562–591

    Chapter  Google Scholar 

  • McKinley MJ, Clarke IJ, Oldfield BJ (2012) Circumventricular organs. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 594–617

    Chapter  Google Scholar 

  • Meibach RC, Siegel A (1975) The origins of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study. Brain Res 88:508–512

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata) and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    Article  CAS  PubMed  Google Scholar 

  • Mirmiran MD, Swaab DF, Witting W, Honnebier MBOM, van Gool WA, Eikelenboom P (1989) Biological clocks in development, aging and Alzheimer’s disease. Brain Dysfunct 2:57–66

    Google Scholar 

  • Miselis RR, Shapiro RE, Hand PJ (1979) Subfornical organ efferents to neural systems for control of body water. Science 205:1022–1025

    Article  CAS  PubMed  Google Scholar 

  • Moore RY (1973) Retinohypothalamic projections in mammals: a comparative study. Brain Res 49:403–409

    Article  CAS  PubMed  Google Scholar 

  • Moore RY (1982) The suprachiasmatic nucleus and the organization of a circadian system. Trends Neurosci 5:404–407

    Article  Google Scholar 

  • Moore RY (1997) Circadian rhythms: basic neurobiology and clinical applications. Annu Rev Med 48:253–266

    Article  CAS  PubMed  Google Scholar 

  • Morrison SF (1999) RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am J Phys 276:R962–R973

    CAS  Google Scholar 

  • Morton A (1969) A quantitative analysis of the normal neuron population of the hypothalamic magnocellular nuclei in man and of their projections to the neurohypophysis. J Comp Neurol 136:143–158

    Article  CAS  PubMed  Google Scholar 

  • Muske LE (1993) Evolution of gonadotropin-releasing hormone (GnRH) neuronal systems. Brain Behav Evol 42:215–230

    Article  CAS  PubMed  Google Scholar 

  • Nagai I, Li CH, Hsieh SM, Kizaki T, Urano Y (1984) Two cases of hereditary diabetes insipidus, with an autopsy finding in one. Acta Endocrinol 105:318–323

    Article  CAS  Google Scholar 

  • Nathan PW, Smith MC (1986) The location of descending fibers to sympathetic neurons supplying the eye and sudomotor neurons supplying the head and neck. J Neurol Neurosurg Psychiatry 49:187–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauta WJH (1946) Hypothalamic regulation of sleep in rats: an experimental study. J Neurophysiol 9:285–316

    Article  CAS  PubMed  Google Scholar 

  • Nauta WJH (1961) Fibre degeneration following lesions of the amygdaloid complex in the monkey. J Anat (Lond) 95:515–532

    CAS  Google Scholar 

  • Nauta WJH, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 136–209

    Google Scholar 

  • Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH, Procter LD (eds) Reticular formation of the brain. Little Brown, Toronto, pp 3–31

    Google Scholar 

  • Newman HM, Stevens RT, Apkarian AV (1996) Direct spinal projections to limbic and striatal areas: anterograde transport studies from the upper cervical spinal cord and the cervical enlargement in squirrel monkey and rat. J Comp Neurol 365:640–658

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Geeraedts LMG, Veening JG (1982) The medial forebrain bundle in the rat: I. General introduction. J Comp Neurol 206:49–81

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2007) The human central nervous system, 4th edn. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  • O’Rahilly R, Müller F (2001) Human Embryology & Teratology, 3rd edn. Wiley-Liss, New York

    Google Scholar 

  • Page RB (1986) The pituitary portal system. Curr Opin Neuroendocrinol 7:1–47

    Article  Google Scholar 

  • Panula P, Araiksinen MS, Pirvola U, Kotilainen E (1990) A histamine-containing neuronal system in the human brain. Neuroscience 34:127–132

    Article  CAS  PubMed  Google Scholar 

  • Pelletier G, Désy L, Côté J, Vaudry H (1983) Immunocytochemical localization of corticotropin-releasing factor-like immunoreactivity in the human hypothalamus. Neurosci Lett 41:259–263

    Article  CAS  PubMed  Google Scholar 

  • Pelletier G, Désy L, Côté J, Lefèvre G, Vaudry H (1986) Light-microscopic immunocytochemical localization of growth hormone-releasing factor in the human hypothalamus. Cell Tissue Res 245:461–463

    Article  CAS  PubMed  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaff DW, Sakuma Y (1979) Deficit in the lordosis reflex of female rats caused by lesions in the ventromedial nucleus of the hypothalamus. J Physiol Lond 288:203–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plum F, Van Uitert R (1978) Nonendocrine diseases and disorders of the hypothalamus. Res Publ Assoc Res Nerv Ment Dis 56:415–473

    CAS  PubMed  Google Scholar 

  • Porrino LJ, Goldman-Rakic PS (1982) Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205:63–76

    Article  CAS  PubMed  Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1:1242–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price JL, Slotnick BM, Revial MF (1991) Olfactory projections to the hypothalamus. J Comp Neurol 306:447–461

    Article  CAS  PubMed  Google Scholar 

  • Pritchard TC, Hamilton RB, Norgren R (2000) Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 165:101–117

    Article  CAS  PubMed  Google Scholar 

  • Puelles L (2019) Survey of midbrain, diencephalon, and hypothalamus neuroanatomic terms whose prosomeric definition conflicts with columnar tradition. Front Neuroanat 13:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Puelles L, Martinez-de-la-Torre M, Bardet S, Rubinstein JLR (2012) Hypothalamus. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 221–312

    Chapter  Google Scholar 

  • Putnam TJ (1922) The intercolumnar tubercle: an undescribed area in the anterior wall of the third ventricle. Bull Johns Hopkins Hosp 38:181–182

    Google Scholar 

  • Raisman G, Cowan WM, Powell TPS (1966) An experimental analysis of the efferent projections of the hippocampus. Brain 89:83–108

    Article  CAS  PubMed  Google Scholar 

  • Ranson SW (1939) Somnolence caused by hypothalamic lesions in the monkey. Arch Neurol Psychiatr 41:1–23

    Article  Google Scholar 

  • Reeves AG, Plum F (1969) Hyperphagia, rage, and dementia accompanying a ventromedial hypothalamic neoplasm. Arch Neurol 20:616–624

    Article  CAS  PubMed  Google Scholar 

  • Rempel-Clower NL, Barbas H (1998) Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol 398:393–419

    Article  CAS  PubMed  Google Scholar 

  • Ricardo JA (1983) Hypothalamic pathways involved in metabolic regulatory functions, as identified by track tracing methods. Adv Metab Dis 10:1–30

    Article  CAS  Google Scholar 

  • Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures of the rat. Brain Res 153:1–26

    Article  CAS  PubMed  Google Scholar 

  • Risold PY, Canteras NS, Swanson LW (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:1–40

    Article  CAS  PubMed  Google Scholar 

  • Risold PY, Thompson RH, Swanson LW (1997) The structural organization of connections between hypothalamus and cerebral cortex. Brain Res Rev 24:197–254

    Article  CAS  PubMed  Google Scholar 

  • Rittig S, Robertson GL, Siggaard C, Kovács L, Gregersen N, Nyborg J, Pedersen EB (1996) Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet 58:107–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roeling TAP, Veening JG, Kruk MR, Peters JPW, Vermelis MEJ, Nieuwenhuys R (1994) Efferent connections of the hypothalamic ‘aggression area’ in the rat. Neuroscience 59:1001–1024

    Article  CAS  PubMed  Google Scholar 

  • Sadun AA, Schaechter JD, Smith LEH (1984) A retinohypothalamic pathway in man: light mediation of circadian rhythms. Brain Res 302:371–377

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T (2014) The role of orexin in motivated behaviours. Nat Rev Neurosci 15:710–731

    Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  CAS  PubMed  Google Scholar 

  • Saper CB (1985) Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J Comp Neurol 237:21–46

    Article  CAS  PubMed  Google Scholar 

  • Saper CB (1987) Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Plum F (ed) Handbook of physiology, sect 1, Higher functions of the brain, vol V. American Physiological Society, Washington, DC, pp 169–210

    Google Scholar 

  • Saper CB (1990) Hypothalamus. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 389–413

    Chapter  Google Scholar 

  • Saper CB (2004) Hypothalamus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 513–550

    Chapter  Google Scholar 

  • Saper CB (2012) Hypothalamus. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 548–583

    Chapter  Google Scholar 

  • Saper CB, Fuller PM (2017) Wake-sleep circuitry: an overview. Curr Opin Neurobiol 44:186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saper CB, Levinsohn D (1983) Afferent connections of the median preoptic nucleus in the rat: anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricle (AV3V) region. Brain Res 288:21–31

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Loewy AD, Swanson KW, Cowan WM (1976a) Direct hypothalamo-autonomic connections. Brain Res 117:305–312

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1976b) The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J Comp Neurol 169:409–442

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1978) The efferent connections of the anterior hypothalamic area of the rat, cat, and monkey. J Comp Neurol 182:575–600

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1979) Some efferent connections of the rostral hypothalamus in the squirrel monkey (Saimiri sciureus) and cat. J Comp Neurol 184:205–242

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 23:389–398

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Lu J, Chou TC, Gooley J (2005a) The hypothalamic integrator for circadian rhythms. Trends Neurosci 26:152–157

    Article  CAS  Google Scholar 

  • Saper CB, Cano G, Scammell TE (2005b) Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 493:92–98

    Article  CAS  PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L (2001) Neuropathologic research strategies in holoprosencephaly. J Child Neurol 16:918–931

    Article  CAS  PubMed  Google Scholar 

  • Saunders RC, Mishkin M, Aggleton JP (2005) Projections from the entorhinal cortex, perirhinal cortex, subiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res 167:1–16

    Article  PubMed  Google Scholar 

  • Savic I, Berglund H, Gulyas B, Roland P (2001) Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans. Neuron 30:661–668

    Article  Google Scholar 

  • Scharrer E, Scharrer B (1940) Secretory cells within the hypothalamus. The hypothalamus and central levels of autonomic function. Res Public Assoc Nerv Ment Dis 20:170–194

    Google Scholar 

  • Schwanzel-Fukuda M, Pfaff DW (1989) Origin of luteinizing hormone releasing hormone neurons. Nature 338:161–164

    Article  CAS  PubMed  Google Scholar 

  • Schwanzel-Fukuda M, Bick D, Pfaff DW (1989) Luteinizing hormone releasing hormone (LHRH)-expressing cells do not migrate in an inherited hypogonadal (Kallmann) syndrome. Mol Brain Res 6:311–326

    Article  CAS  PubMed  Google Scholar 

  • Schwanzel-Fukuda M, Crossin KL, Pfaff DW, Bouloux PMG, Hardelin J-P, Petit C (1996) Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J Comp Neurol 366:547–557

    Article  CAS  PubMed  Google Scholar 

  • Schwartz WJ, Bois NA, Hedley-Whyte ET (1986) A discrete lesion of the ventral hypothalamus and optic chiasm that disturbed the daily temperature rhythm. J Neurol 233:1–4

    Article  CAS  PubMed  Google Scholar 

  • Scolding NJ, Kellar-Wood HF, Shaw C, Shneerson JM, Antoun N (1996) Wolfram syndrome: Hereditary diabetes mellitus with brainstem and optic atrophy. Ann Neurol 39:352–360

    Google Scholar 

  • Sheng HZ, Westphal H (1999) Early steps in pituitary organogenesis. Trends Genet 15:236–240

    Article  CAS  PubMed  Google Scholar 

  • Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219

    Article  CAS  PubMed  Google Scholar 

  • Sherin JE, Jk E, Torrealba F, Saper CB (1998) Innervation of tuberomammillary neurons by GABAergic and galalinergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L et al (2010) A genomic atlas mouse hypothalamic development. Nat Neurosci 13:767–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipley MT, Murphy AZ, Rizvi TA, Ennis M, Behbehani MM (1996) Olfaction and brainstem circuits of reproductive behavior in the rat. Prog Brain Res 107:355–377

    Article  CAS  PubMed  Google Scholar 

  • Sibbald JR, Hubbard JI, Sirett NE (1988) Responses from osmosensitive neurons of the rat subfornical organ in vitro. Brain Res 461:205–214

    Article  CAS  PubMed  Google Scholar 

  • Simerly RB, Swanson LW (1988) Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J Comp Neurol 270:209–242

    Article  CAS  PubMed  Google Scholar 

  • Smithson KG, Weiss ML, Hatton GI (1989) Supraoptic nuclear afferents from the main olfactory bulb. I. Anatomical evidence from anterograde and retrograde tracers in rat. Neuroscience 31:277–287

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (1980) Projections from vasopressin, oxytocin, and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28:475–478

    Article  CAS  PubMed  Google Scholar 

  • Strom TM, Hörtnagel K, Hofmann S, Gekeler F, Scharfe C, Rabl W et al (1998) Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 7:2021–2028

    Article  CAS  PubMed  Google Scholar 

  • Swaab DF (1997) Neurobiology and neuropathology of the human hypothalamus. Handb Chem Neuroanat 13:39–137

    Article  Google Scholar 

  • Swaab DF (2003) The human hypothalamus: basic and clinical aspects, part 1: nuclei of the human hypothalamus. Handb Clin Neurol 79:1–476

    Google Scholar 

  • Swaab DF (2004) The human hypothalamus: basic and clinical aspects, part 2: neuropathology of the human hypothalamus and adjacent structures. Handb Clin Neurol 80:1–597

    Google Scholar 

  • Swaab DF, Fliers E (1985) A sexually dimorphic nucleus in the human brain. Science 228:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Swaab DF, Hofman MA (1988) Sexual differentiation of the human hypothalamus: ontogeny of the sexually dimorphic nucleus of the preoptic area. Dev Brain Res 44:314–318

    Article  CAS  Google Scholar 

  • Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342:37–44

    Article  CAS  PubMed  Google Scholar 

  • Swaab DF, Hofman MA, Lucassen PJ, Purba JS, Raadsheer FC, van de Nes JP (1993) Functional neuroanatomy and neuropathology of the human hypothalamus. Anat Embryol (Berl) 187:317–330

    Article  CAS  Google Scholar 

  • Swanson LW (1976) An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167:227–256

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1975a) The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J Comp Neurol 160:1–12

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1975b) Hippocampo-hypothalamic connection: origin in subicular cortex, not Ammon’s horn. Science 189:303–304

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49–84

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–655

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Kuypers HGJM (1980) The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescent double-labeling methods. J Comp Neurol 194:555–570

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, McKellar S (1979) The distribution of oxytocin and neurophysin-stained fibers in the spinal cord of the rat and monkey. J Comp Neurol 188:87–106

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Mogenson GJ, Gerfen CR, Robinson P (1984) Evidence for a projection from the lateral preoptic area and substantia innominata to the ‘mesencephalic locomotor region’ in the rat. Brain Res 295:161–178

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Mogenson GJ, Simerly RB, Wu M (1987) Anatomical and electrophysiological evidence for a projection from the medial preoptic area to the ‘mesencephalic and subthalamic locomotor regions’ in the rat. Brain Res 405:108–122

    Article  CAS  PubMed  Google Scholar 

  • Takeda N, Inagaki S, Taguchi Y, Tohyama M, Watanabe T, Wada H (1984) Origins of histamine-containing fibres in the cerebral cortex of rats studied by immunohistochemistry with histidine decarboxylase as a marker and transection. Brain Res 323:55–63

    Article  CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Cruysberg JRM, Hori A, Shiota K, Verbist B (2006) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M (eds) Hori a clinical neuroembryology: development and developmental disorders of the human central nervous system. Springer, Berlin-Heidelberg-New York, pp 345–428

    Chapter  Google Scholar 

  • ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, pp 981–1141 (in Dutch)

    Google Scholar 

  • ten Donkelaar HJ, Lammens M, Cruysberg JRM, Kamphuis-van Ulzen K, Hori A, Shiota K (2014) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical neuroembryology: development and developmental disorders of the human central nervous system, 2nd edn. Springer, Heidelberg-New York-Dordrecht-London, pp 421–521

    Google Scholar 

  • ten Donkelaar HJ, Broman J, Neumann PE, Puelles L, Riva A, Tubbs RS, Kachlik D (2017) Towards a Terminologia Neuroanatomica. Clin Anat 30:145–155

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, Kachlik D, Tubbs RS (2018) An illustrated Terminologia Neuroanatomica: a concise encyclopedia of human neuroanatomy. Springer, Cham

    Google Scholar 

  • ter Horst GJ (1986) The hypothalamus, intrinsic connections and outflow pathways to the pancreas. Thesis, University of Groningen

    Google Scholar 

  • Thompson RH, Conteras NS, Swanson LW (1996) Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol 376:143–173

    Article  CAS  PubMed  Google Scholar 

  • Tigges J, Walker LC, Tigges M (1983) Subcortical projections to the occipital and parietal lobes of the chimpanzee brain. J Comp Neurol 220:106–115

    Article  CAS  PubMed  Google Scholar 

  • TNA (2017) Terminologia Neuroanatomica. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology

    Google Scholar 

  • van de Nes JAP, Kamphorst W, Ravid R, Swaab DF (1993) The distribution of Alz-50 immunoreactivity in the hypothalamus and adjoining areas of Alzheimer’s disease patients. Brain 116:103–115

    Article  PubMed  Google Scholar 

  • van der Woude PF, Goudsmit E, Wierda M, Purba JS, Hofman MA, Bogte H, Swaab DF (1995) No vasopressin cell loss in the human paraventricular and supraoptic nucleus during aging and in Alzheimer’s disease. Neurobiol Aging 16:11–18

    Article  PubMed  Google Scholar 

  • VanderHorst VGJM, Holstege G (1995) Caudal medullary pathways to lumbosacral motoneuronal cell groups in the cat: evidence for direct projections possibly representing the final common pathway for lordosis. J Comp Neurol 359:457–475

    Article  CAS  PubMed  Google Scholar 

  • VanderHorst VGJM, Holstege G (1996) A concept for the final common pathway of vocalization and lordosis behavior in the cat. Prog Brain Res 107:327–342

    Article  CAS  PubMed  Google Scholar 

  • VanderHorst VGJM, Holstege G (1997) Estrogen induces axonal outgrowth in the nucleus retroambiguus-lumbosacral motoneuronal pathway in the adult female cat. J Neurosci 17:1122–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanderHorst VGJM, Mouton LJ, Blok BF, Holstege G (1996) Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. J Comp Neurol 376:361–385

    Article  CAS  PubMed  Google Scholar 

  • VanderHorst VGJM, Terasawa E, Ralston HJ III, Holstege G (2000a) Monosynaptic projections from the nucleus retroambiguus to motoneurons supplying the abdominal wall, axial, hindlimb, and pelvis floor muscles in the female rhesus monkey. J Comp Neurol 424:233–250

    Article  CAS  PubMed  Google Scholar 

  • VanderHorst VGJM, Terasawa E, Ralston HJ III, Holstege G (2000b) Monosynaptic projections from the lateral periaqueductal gray to the nucleus retroambiguus in the rhesus monkey: implications for vocalization and reproductive behavior. J Comp Neurol 424:251–268

    Article  CAS  PubMed  Google Scholar 

  • Veazey RB, Amaral DG, Cowan WM (1982) The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J Comp Neurol 207:135–156

    Article  CAS  PubMed  Google Scholar 

  • Veening JG, Swanson LW, Cowan WM, Nieuwenhuys R, Geeraedts LMG (1982) The medial forebrain bundle of the rat: II. An autoradiographic study of the topography of the major descending and ascending components. J Comp Neurol 206:82–108

    Article  CAS  PubMed  Google Scholar 

  • Veening JG, Swanson LW, Sawchenko PE (1984) The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde and immunohistochemical study. Brain Res 303:337–357

    Article  CAS  PubMed  Google Scholar 

  • Veening JG, Te LS, Postuma P, Geeraedts LMG, Nieuwenhuys R (1987) A topographical analysis of the origin of some efferent projections from the lateral hypothalamic area in the rat. Neuroscience 22:537–551

    Article  CAS  PubMed  Google Scholar 

  • Vertes RP (1984a) A lectin horseradish peroxidase study of the origin of ascending fibers in the medial forebrain bundle of the rat. The lower brainstem. Neuroscience 11:651–668

    Article  CAS  PubMed  Google Scholar 

  • Vertes RP (1984b) Ibid. The upper brainstem. Neuroscience 11:669–690

    Article  CAS  PubMed  Google Scholar 

  • Vivas L, Chiaraviglio E, Carrer HF (1990) Rat organum vasculosum laminae terminalis in vitro: responses to changes in sodium concentration. Brain Res 519:294–300

    Article  CAS  PubMed  Google Scholar 

  • von Economo C (1920) Die Encephalitis lethargica, ihre Nachkrankheiten und ihre Behandlung. Urban & Schwarzenberg, Berlin (English translation 1931: Encephalitis Lethargica: its sequelae and treatment. Oxford University Press, London)

    Google Scholar 

  • von Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259

    Article  Google Scholar 

  • Watts AG, Swanson LW (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258:230–252

    Article  CAS  PubMed  Google Scholar 

  • Watts AG, Swanson LW, Sanchez-Watts G (1987) Ibid. I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258:204–229

    Article  CAS  PubMed  Google Scholar 

  • Wierda M, Goudsmit E, van der Woude PF, Purba JS, Hofman MA, Bogte H, Swaab DF (1991) Oxytocin cell number in the human paraventricular nucleus remains constant with aging and in Alzheimer’s disease. Neurobiol Aging 12:511–516

    Article  CAS  PubMed  Google Scholar 

  • Wolfram DJ (1938) Diabetes mellitus and simple optic atrophy among siblings: report of four cases. Proc Staff Meet Mayo Clin 13:715–718

    Google Scholar 

  • Wyss JM, Swanson LW, Cowan WM (1979) A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 4:463–476

    Article  CAS  PubMed  Google Scholar 

  • Xuereb GP, Pritchard MML, Daniel PM (1954a) The arterial supply and venous drainage of the human hypophysis cerebri. Q J Exp Physiol Cogn Med Sci 39:199–217

    CAS  PubMed  Google Scholar 

  • Xuereb GP, Pritchard MML, Daniel PM (1954b) The hypophysial portal system of vessels in man. Q J Exp Physiol Cogn Med Sci 39:219–230

    CAS  PubMed  Google Scholar 

  • Zhang YH, Hosono NT, Yanase-Fujiwara M, Chen XM, Kanosue K (1997) Effect of midbrain stimulation on thermoregulatory vasomotor responses in rats. J Physiol Lond 503:177–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman CA, Leib DE, Za K (2017) Neural circuits underlying thirst and fluid homeostasis. Nat Rev Neurosci 18:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

ten Donkelaar, H.J., Hori, A. (2020). The Hypothalamus, the Preoptic Area, and Hypothalamohypophysial Systems. In: Clinical Neuroanatomy. Springer, Cham. https://doi.org/10.1007/978-3-030-41878-6_13

Download citation

Publish with us

Policies and ethics