Skip to main content

Motor Systems

  • Chapter
  • First Online:
Clinical Neuroanatomy

Abstract

The motoneurons in the spinal cord and the cranial nerve nuclei of the brain stem innervate the skeletal muscles. They form Sherrington’s “final common path” to the striated muscles for all signals that influence motor behaviour coming from peripheral sensory receptors and from motor centres in the brain stem and the cerebral cortex. The spinal and bulbar motoneurons with their respective premotor interneurons form the basic motor system. This system forms the basis for spinal and bulbar reflexes and for basic motor patterns such as walking, which in turn are modulated by descending supraspinal pathways. The interneuronal or propriospinal system is in large part responsible for the great versatility that characterizes motor behaviour. The descending pathways from the cerebral cortex and the brain stem to the interneurons and motoneurons of the spinal cord represent the instruments by which the brain steers movements of body and limbs. The descending supraspinal pathways consist of two parallel sets that are derived from the cerebral cortex and the brain stem, respectively. Likewise, corticonuclear or corticobulbar as well as brain stem projections innervate the interneurons and motoneurons of the trigeminal, facial, ambiguus and hypoglossal motor nuclei. Two other brain structures, the cerebellum and the basal ganglia, are crucially important for motor functions. The activity generated in the cerebellum and the basal ganglia is largely channelled through the brain stem descending pathways and the corticospinal tract. Several forebrain structures known for their close relation to emotional behaviour, such as parts of the amygdala and the hypothalamus, have direct access to brain stem areas controlling motoneurons. They form a highly integrated system which is especially concerned with emotional and motivational states. This is referred to as the emotional motor system.

In this chapter, first the peripheral motor system, composed of spinal and bulbar motoneurons, will be discussed, including their role in reflex pathways and muscle tone (► Sect. 9.2). These lower motoneurons are innervated by interneurons in the spinal cord and the brain stem through propriospinal and propriobulbar projections, respectively. Certain populations of interneurons form specialized pattern generators for rhythmic movements like locomotion. Subsequently, in ► Sect. 9.3 human walking, gait control and posture and in ► Sect. 9.4 the circuitry for central control of movement will be discussed. Disorders of the motor circuitry will be presented with emphasis on lesions of supraspinal motor structures and are abundantly illustrated with clinical cases. The English terms of the Terminologia Neuroanatomica are used throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akay T, Tourtelotte WG, Arber S, Jessell TM (2014) Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc Natl Acad Sci U S A 111:16877–16882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alaynick WA, Jessell TM, Pfaff SL (2011) SnapShot: spinal cord development. Cell 146:178–178.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alstermark B, Lundberg A (1992) The C3-C4 propriospinal system: target-reaching and food-taking. In: Jami L, Pierrot-Deseilligny E, Zytnicki D (eds) Muscle afferents and spinal control. Pergamon, Oxford, pp 328–354

    Google Scholar 

  • Alstermark B, Sasaki S (1985) Integration in descending motor pathways controlling the forelimb in the cat. 13. Corticospinal effects in shoulder, elbow, wrist, and digit motoneurons. Exp Brain Res 59:353–364

    Article  CAS  PubMed  Google Scholar 

  • Alstermark B, Górska T, Lundberg A, Pettersson L-G, Walkowska M (1987) Effect of different spinal cord lesions on visually guided switching of target-reaching in cats. Neurosci Res 5:63–67

    Article  CAS  PubMed  Google Scholar 

  • Alstermark B, Isa T, Ohti Y, Saito Y (1999) Disynaptic pyramidal excitation in forelimb motoneurons mediated via C3-C4 propriospinal neurons in the Macaca fuscata. J Neurophysiol 82:3580–3585

    Article  CAS  PubMed  Google Scholar 

  • Amassian VE, Quirk GJ, Stewart M (1990) A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroencephalogr Clin Neurophysiol 77:390–401

    Article  CAS  PubMed  Google Scholar 

  • Amassian VE, Eberle L, Maccabee P, Cracco RQ (1992) Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: significance of fiber bending in excitation. Electroencephalogr Clin Neurophysiol 85:291–301

    Article  CAS  PubMed  Google Scholar 

  • Amiez C, Kostopoulos P, Champod A-S, Petrides M (2006) Local morphology predicts functional organization of the dorsal premotor region in the human brain. J Neurosci 26:2724–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer DB, Vaillancourt DE, Coombes SA (2018) A template and probabilistic atlas of the human sensorimotor cortex tracts using diffusion MRI. Cereb Cortex 28:1685–1699

    Article  PubMed  Google Scholar 

  • Armand J (1982) The origin, course and termination of corticospinal fibers in various mammals. Prog Brain Res 57:329–360

    Article  CAS  PubMed  Google Scholar 

  • Armstrong DM (1986) Supraspinal contributions to the initiation and control of locomotion in the cat. Prog Neurobiol 26:273–362

    Article  CAS  PubMed  Google Scholar 

  • Baldissera F, Hultborn H, Illert M (1981) Integration in spinal neuronal systems. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, Motor systems, vol II. American Physiological Society, Bethesda, pp 509–595

    Google Scholar 

  • Bálint R (1909) Seelenlähmung des Schauens, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschr Psychiatr Neurol 25:51–81

    Article  Google Scholar 

  • Barbeau H, Norman K, Fung J, Visintin M, Ladouceur M (1998) Does neurorehabilitation play a role in the recovery of walking in neurological populations? Ann N Y Acad Sci 860:377–392

    Article  CAS  PubMed  Google Scholar 

  • Barbeau H, Ladouceur M, Norman KE, Pepin A, Leroux A (1999) Walking after spinal cord injury: evaluation, treatment, and functional recovery. Arch Phys Med Rehabil 80:225–235

    Article  CAS  PubMed  Google Scholar 

  • Barker D (1974) The morphology of muscle receptors. In: Hunt CC (ed) Handbook of sensory physiology, Part 2: Muscle receptors, vol 3. Springer, Berlin-Heidelberg-New York, pp 1–190

    Google Scholar 

  • Barnard JW, Woolsey CN (1956) A study of localization in the corticospinal tracts of monkey and rat. J Comp Neurol 105:25–50

    Article  CAS  PubMed  Google Scholar 

  • Barnes S (1901) Degeneration in hemiplegia: with special reference to a ventrolateral pyramidal tract, the accessory fillet and Pick’s bundle. Brain 24:463–501

    Article  Google Scholar 

  • Basmajian JV (1967) Muscles alive. Their functions revealed by electromyography, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Baumann SB, Noll DC, Kondziolka DS, Schneider W, Nichols TE, Mintun MA et al (1995) Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation. J Image Guid Surg 1:191–197

    Article  CAS  PubMed  Google Scholar 

  • Bentivoglio M, Rustioni A (1986) Corticospinal neurons with branching axons to the dorsal column nuclei in the monkey. J Comp Neurol 253:260–276

    Article  CAS  PubMed  Google Scholar 

  • Bessou P, Emonet-Dénand F, Laporte Y (1965) Motor fibres innervating extrafusal and intrafusal muscle fibres in the cat. J Physiol Lond 180:649–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder MD, Stuart DG (1980) Motor unit-muscle receptor interactions: design features of the neuromuscular control system. Prog Clin Neurophysiol 8:72–98

    Google Scholar 

  • Bortoff GA, Strick PL (1993) Corticospinal terminations in two New-World primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci 13:5105–5118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossy J (1990) Anatomique clinique, neuro-anatomie. Springer, Paris

    Google Scholar 

  • Boudrias M-H, Belhaj-Saif A, Park MC, Cheney PD (2006) Contrasting properties of motor output from the supplementary motor area and primary motor cortex in rhesus macaques. Cereb Cortex 16:632–638

    Article  PubMed  Google Scholar 

  • Bowker RM, Westlund KN, Sullivan MC, Coulter JD (1982) Organization of descending serotonergic projections to the spinal cord. Prog Brain Res 57:239–265

    Article  CAS  PubMed  Google Scholar 

  • Bowker RM, Westlund KN, Sullivan MC, Wilber JF, Coulter JD (1983) Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei. A multiple transmitter complex. Brain Res 288:33–48

    Article  CAS  PubMed  Google Scholar 

  • Boyd IA, Gladden MH (1985) The muscle spindle. Macmillan, London

    Book  Google Scholar 

  • Braak H (1976) A primitive gigantopyramidal field buried in the depth of the cingulate sulcus of the human brain. Brain Res 109:219–233

    Article  CAS  PubMed  Google Scholar 

  • Braakman R, Penning L (1976) Injuries of the cervical spine. Handb Clin Neurol 25:227–380

    Google Scholar 

  • Brandt T, Strupp M, Benson J (1999) You are better off running than walking with acute vestibulopathy. Lancet 35:746

    Article  Google Scholar 

  • Brinkman C (1974) Split-brain monkeys: cerebral control of contralateral and ipsilateral arm, hand and finger movements. Thesis, Erasmus University Rotterdam

    Google Scholar 

  • Brinkman C (1981) Lesions in supplementary motor area interfere with a monkey’s performance of a bimanual coordination task. Neurosci Lett 27:267–270

    Article  CAS  PubMed  Google Scholar 

  • Brinkman C (1984) Supplementary motor area of the monkey’s cerebral cortex: short- and long-term deficits after unilateral ablation and the effects of subsequent callosal section. J Neurosci 4:918–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkman J, Kuypers HGJM (1973) Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey. Brain 96:653–674

    Article  CAS  PubMed  Google Scholar 

  • Brinkman C, Porter R (1979) Supplementary motor area in the monkey: activity of neurons during performance of a learned motor task. J Neurophysiol 42:681–709

    Article  CAS  PubMed  Google Scholar 

  • Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11:43–49

    Article  CAS  PubMed  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    Article  CAS  PubMed  Google Scholar 

  • Brodmann K (1903) Beiträge zur histologischen Lokalisation der Grosshirnrinde. I. Die Regio Rolandica. J Psychol Neurol (Lpz) 2:79–107

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, Leipzig

    Google Scholar 

  • Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23:369–379

    Article  CAS  PubMed  Google Scholar 

  • Brooks VB (1986) The neural basis of motor control. Oxford University Press, New York

    Google Scholar 

  • Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B 84:308–319

    Article  Google Scholar 

  • Brown TG (1914) On the nature of fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of the function of the nervous system. J Physiol Lond 48:18–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AG (1981) Organisation in the spinal cord. Springer, Berlin-Heidelberg-New York

    Book  Google Scholar 

  • Brown WJ, Fang HCH (1956) Spastic hemiplegia in man associated with unilateral infarct of the corticospinal tract at the pontomedullary junction. Trans Am Neurol Assoc 81:22–26

    Google Scholar 

  • Brown AG, Fyffe REW (1978) Morphology of group Ia afferent fibre collaterals in the spinal cord of the cat. J Physiol Lond 274:111–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AG, Fyffe REW (1979) The morphology of group Ib afferent fibre collaterals in the spinal cord of the cat. J Physiol Lond 296:221–228

    Google Scholar 

  • Brown-Séquard CE (1846) Recherches et expériences sur la physiologie de la moelle épinière. Thèse de Paris

    Google Scholar 

  • Brown-Séquard CE (1849) De la transmission des impressions sensitives dans la moelle épinière. C R Soc Biol 2:192–194

    Google Scholar 

  • Brown-Séquard CE (1868) Lectures on the physiology and pathology of the central nervous system and on the treatment of organic nervous affections. Lancet 2:593–596, 659–661, 755–757, 821–823

    Article  Google Scholar 

  • Büchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14:945–951

    Article  PubMed  Google Scholar 

  • Buchtal F (1961) The general concept of the motor unit. Res Publ Assoc Nerv Ment Dis 38:3–30

    Google Scholar 

  • Buchtal F, Schmalbruch M (1980) Motor unit of mammalian muscle. Physiol Rev 60:90–142

    Article  Google Scholar 

  • Bucy PC, Keplinger JE (1961) Section of the cerebral peduncles. Arch Neurol 5:132–139

    Article  Google Scholar 

  • Bucy PC, Keplinger JE, Siqueira EB (1964) Destruction of the ‘pyramidal tract’ in man. J Neurosurg 21:385–398

    Article  Google Scholar 

  • Bumke OCE (1907) Ueber Variationen im Verlauf der Pyramidenbahn. Arch Psychiatr Nervenkr 42:1–18

    Article  Google Scholar 

  • Burke RE (1967) Motor unit types of cat triceps surae muscle. J Physiol Lond 193:141–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke RE (1981) Motor units: anatomy, physiology and functional organization. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, Motor systems, vol II. American Physiological Society, Bethesda, pp 351–364

    Google Scholar 

  • Burke D (1988) Spasticity as an adaptation to pyramidal tract injury. Adv Neurol 47:401–423

    CAS  PubMed  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol Lond 234:723–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke D, Gracies JM, Meunier S, Pierrot-Deseilligny E (1994) Changes in presynaptic inhibition of afferents to propriospinal-like neurones in man during voluntary contractions. J Physiol Lond 449:673–687

    Article  Google Scholar 

  • Buys EJ, Lemon RN, Mantel GWH, Muir RB (1986) Selective facilitation of different hand muscles by single corticospinal neurones in the conscious monkey. J Physiol Lond 281:529–549

    Article  Google Scholar 

  • Calauti C, Baron JC (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34:1553–1566

    Article  Google Scholar 

  • Capaday C (2000) Control of a ‘simple’ stretch reflex in humans. Trends Neurosci 23:528–530

    Article  CAS  PubMed  Google Scholar 

  • Capaday C (2002) The special nature of human walking and its neural control. Trends Neurosci 25:370–376

    Article  CAS  PubMed  Google Scholar 

  • Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M (1999) Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81:129–139

    Article  CAS  PubMed  Google Scholar 

  • Carlton SM, Chung JM, Leonard RB, Willis WD (1985) Funicular trajectories of brainstem neurons projecting to the lumbar spinal cord in the monkey (Macaca fascicularis): a retrograde labeling study. J Comp Neurol 241:382–404

    Article  CAS  PubMed  Google Scholar 

  • Castiglione AJ, Gallaway MC, Coulter JD (1978) Spinal projections from the midbrain in monkey. J Comp Neurol 178:329–346

    Article  Google Scholar 

  • Catsman-Berrevoets CE, Kuypers HGJM (1976) Cells of origin of cortical projections to dorsal column nuclei, spinal cord and bulbar medial reticular formation of the rhesus monkey. Neurosci Lett 3:245–252

    Article  CAS  PubMed  Google Scholar 

  • Charcot J, Joffroy A (1869) Deux cas d’atrophie musculaire progressive avec lésions de la substance grise et des faisceaux antéro-latéreaux de la moelle épinière. Arch Physiol Neurol Pathol 2:744

    Google Scholar 

  • Cheema SS, Rustioni A, Whitsel BL (1984) Light and electron microscopic evidence for a direct corticospinal projection to superficial laminae of the dorsal horn in cats and monkeys. J Comp Neurol 225:276–290

    Article  CAS  PubMed  Google Scholar 

  • Cheney PD (2002) Electrophysiological methods for mapping brain motor and sensory circuits. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 189–206

    Chapter  Google Scholar 

  • Cheney PD, Fetz EE, Mewes K (1991) Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res 87:213–252

    Article  CAS  PubMed  Google Scholar 

  • Chenot Q, Tzourio-Mazoyer N, Rheault F, Descoteaux M, Crivello F, Zago L et al (2019) A population-based atlas of the human pyramidal tract in 410 healthy participants. Brain Struct Funct 224:599–612

    Article  PubMed  Google Scholar 

  • Chokroverty S, Rubino FA, Haller C (1975) Pure motor hemiplegia due to pyramidal infarction. Arch Neurol 32:647–648

    Article  CAS  PubMed  Google Scholar 

  • Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RSJ (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29:63–71

    Article  CAS  PubMed  Google Scholar 

  • Cole JD, Sedgwick EM (1992) The perceptions of force and of movements in a man without large myelinated sensory afferents below the neck. J Physiol Lond 449:503–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colebatch JG, Adams L, Murphy K, Martin AJ, Lammertsma AA, Tochon-Danguy HJ et al (1991a) Regional cerebral blood flow during volitional breathing in man. J Physiol Lond 433:91–103

    Article  Google Scholar 

  • Colebatch JG, Deiber M-P, Passingham RE, Friston KJ, Frackowiak RSJ (1991b) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65:1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Collier J, Buzzard F (1901) Descending mesencephalic tracts in cat, monkey and man; Monakow’s bundle; the dorsal longitudinal bundle; the ventral longitudinal bundle; the ponto-spinal tracts, lateral and ventral; the vestibulo-spinal tract; the central tegmental tract (Centrale Haubenbahn); descending fibres of the fillet. Brain 24:177–221

    Article  Google Scholar 

  • Connelly A, Jackson GD, Frackowiak RSJ, Belliveau JW, Vargha-Khadem F, Gadian DG (1993) Functional mapping of activated human primary motor cortex with a clinical MR imaging system. Radiology 188:125–130

    Article  CAS  PubMed  Google Scholar 

  • Conway BA, Hultborn H, Kiehn O (1987) Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp Brain Res 68:643–656

    Article  CAS  PubMed  Google Scholar 

  • Cooper S, Daniel PM (1963) Muscle spindles in man: their morphology in the lumbricals and the deep muscles of the neck. Brain 86:563–586

    Article  CAS  PubMed  Google Scholar 

  • Damasio H, Damasio AR (1989) Lesion analysis in neuropsychology. Oxford University Press, New York

    Google Scholar 

  • Dancause N, Barbay S, Frost SB, Plautz EJ, Popescu M, Dixon PM, Stowe AM, Friel KM, Nudo RJ (2006) Topographically divergent and convergent connectivity between premotor and primary motor cortex. Cereb Cortex 16:1057–1068

    Article  PubMed  Google Scholar 

  • Danek A, Bauer M, Fries W (1990) Tracing of neuronal connections in the human brain by magnetic resonance imaging in vivo. Eur J Neurosci 2:112–115

    Article  PubMed  Google Scholar 

  • Danner SM, Hofstoetter US, Freundl B, Binder H, Mayr W, Rattay F, Minassian K (2015) Human spinal locomotor control is based on flexibly organized burst generators. Brain 138:577–588

    Article  PubMed  PubMed Central  Google Scholar 

  • Darian-Smith C, Ciferri MM (2005) Loss and recovery of voluntary hand movements in the macaque following a cervical dorsal rhizotomy. J Comp Neurol 491:27–45

    Article  PubMed  Google Scholar 

  • Davies HE, Edgley SA (1994) Inputs to group II-activated midlumbar interneurones from descending motor pathways in the cat. J Physiol Lond 479:463–473

    Article  PubMed  PubMed Central  Google Scholar 

  • Day BL, Rothwell JC, Thompson PD, Dick JPR, Cowan JMA, Berardelli A, Marsden CD (1987) Motor cortex stimulation in intact man. 2. Multiple descending volleys. Brain 110:1191–1209

    Article  PubMed  Google Scholar 

  • Day BL, Rothwell JC, Thompson PD, Maertens de Noordhout A, Nakashima H, Shannon K, Marsden CD (1989) Relay in the execution of voluntary movement by electrical magnetic brain stimulation in intact man. Brain 112:649–663

    Article  PubMed  Google Scholar 

  • Dejerine J (1901) Anatomie des centres nerveux, Tome 2. Rueff, Paris

    Google Scholar 

  • Dejerine J (1914) Sémiologie des affections du système nerveux. Masson, Paris

    Google Scholar 

  • DeMyer W (1959) Number of axons and myelin sheaths in adult human medullary pyramids. Study with silver impregnation and iron hematoxylin staining methods. Neurology 9:42–47

    Article  CAS  PubMed  Google Scholar 

  • Denny-Brown D (1962) The basal ganglia and their relation to disorders of movements. Oxford University Press, London

    Google Scholar 

  • Dettmers C, Stephan KM, Lemon RN, Frackowiak RSJ (1997) Reorganization of the executive motor system after stroke. Cerebrovasc Dis 7:187–200

    Article  Google Scholar 

  • Dichgans J, Diener HC (1986) Different forms of postural ataxia in patients with cerebellar diseases. In: Bles W, Brandt T (eds) Disorders of posture and gait. Elsevier, Amsterdam, pp 207–225

    Google Scholar 

  • Diener HC, Dichgans J, Mauritz KH (1983) What distinguishes the different kinds of postural ataxia in patients with cerebellar diseases? Adv Otorhinolaryngol 30:285–287

    PubMed  Google Scholar 

  • Dietz V (1992) Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev 72:33–69

    Article  CAS  PubMed  Google Scholar 

  • Dietz V (1997) Neurophysiology of gait disorders: present and future applications. Electroencephalogr Clin Neurophysiol 103:333–355

    Article  CAS  PubMed  Google Scholar 

  • Dietz V (2002a) Do human bipeds use quadrupedal coordination? Trends Neurosci 25:462–467

    Article  PubMed  Google Scholar 

  • Dietz V (2002b) Proprioception and locomotor disorders. Nat Rev Neurosci 3:781–790

    Article  CAS  PubMed  Google Scholar 

  • Dietz V (2006) Gait disorders and rehabilitation. In: Selzer ME, Clarke S, Cohen LG, Duncan PW, Gage FH (eds) Textbook of neural repair and rehabilitation, vol II. Cambridge University Press, Cambridge, pp 283–297

    Chapter  Google Scholar 

  • Dietz V, Colombo G (1998) Influence of body load on the gait pattern in Parkinson’s disease. Mov Disord 13:255–261

    Article  CAS  PubMed  Google Scholar 

  • Dietz V, Michel J (2008) Locomotion in Parkinson’s disease: neuronal coupling of upper and lower limbs. Brain 131:3421–3431

    Article  CAS  PubMed  Google Scholar 

  • Dietz V, Berger W, Horstmann GA (1988) Posture in Parkinson’s disease: impairment of reflexes and programming. Ann Neurol 24:660–669

    Article  CAS  PubMed  Google Scholar 

  • Dietz V, Zijlstra W, Assainte C, Trippel M, Berger W (1993) Balance control in Parkinson’s disease. Gait Posture 1:77–84

    Article  Google Scholar 

  • Dietz V, Colombo G, Jensen L (1994) Locomotor activity in spinal man. Lancet 344:1260–1263

    Article  CAS  PubMed  Google Scholar 

  • Dietz V, Colombo G, Jensen L, Baumgartner L (1995) Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol 37:574–582

    Article  CAS  PubMed  Google Scholar 

  • Dietz V, Wirz M, Colombo G, Curt A (1998) Locomotor capacity and recovery of spinal cord function in paraplegic patients: a clinical and electrophysiological evaluation. Electroencephalogr Clin Neurophysiol 109:140–153

    Article  CAS  PubMed  Google Scholar 

  • Dietz V, Baaken B, Colombo G (2001) Proprioceptive input overrides vestibulospinal drive during human locomotion. Neuroreport 12:2743–2746

    Article  CAS  PubMed  Google Scholar 

  • Diez del Corral R, Storey KG (2001) Markers in vertebrate neurogenesis. Nat Rev Neurosci 2:835–839

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijeviv MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal pattern generator in humans. Ann N Y Acad Sci 860:360–376

    Article  Google Scholar 

  • Dubowitz V (1995) Disorders of the lower motor neuron, the spinal muscular atrophy. In: Dubowitz V (ed) Muscular disorders in children. Saunders, Philadelphia, pp 325–369

    Google Scholar 

  • Dubowitz V, Pearse AGE (1960) Reciprocal relationship of phosphorylase and oxidative enzymes in skeletal muscle. Nature 185:701

    Article  CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dum RP, Strick PL (1996a) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dum RP, Strick PL (1996b) The corticospinal system: a structural framework for the central control of movement. In: Rowell LB, Sheperd JT (eds) Handbook of physiology, sect 12: exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 217–254

    Google Scholar 

  • Dum RP, Strick PL (2005) Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci 25:1375–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dum RP, Levinthal DJ, Sprick PL (2009) The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci 29:14223–14235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dundas R (1825) Case of concussion of the spine, tending to confirm the opinion that the nerves of sensation and motor are distinct. Edinb Med Surg J 23:304–309

    PubMed  PubMed Central  Google Scholar 

  • Duysens J, Van de Crommert HWAA (1998) Neural control of locomotion; part 1: the central pattern generator from cats to humans. Gait Posture 7:131–141

    Article  CAS  PubMed  Google Scholar 

  • Duysens J, Clarac F, Cruse H (2000) Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80:84–133

    Article  Google Scholar 

  • Edgley SA, Eyre JA, Lemon RN, Miller S (1990) Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey. J Physiol Lond 425:301–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edström L, Kugelberg E (1968) Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J Neurol Neurosurg Psychiatry 31:424–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Eidelberg E (1981) Consequences of spinal cord lesions upon motor function, with special reference to locomotor activity. Prog Neurobiol 17:185–202

    Article  CAS  PubMed  Google Scholar 

  • Eidelberg E, Walden JG, Nguyen LH (1981) Locomotor control in macaque monkeys. Brain 104:647–663

    Article  CAS  PubMed  Google Scholar 

  • Elder GCB, Bradbury K, Roberts R (1982) Variability of fiber type distributions within human muscles. J Appl Physiol 53:1473–1480

    Article  CAS  PubMed  Google Scholar 

  • Emonet-Dénand F, Jami L, Laporte Y (1980) Histophysiological observations on the skeleto-fusimotor innervation of mammalian spindles. Prog Clin Neurophysiol 8:1–11

    Google Scholar 

  • Englander RN, Netsky MG, Adelman LS (1975) Location of human pyramidal tract in the internal capsule: anatomic evidence. Neurology 25:823–825

    Article  CAS  PubMed  Google Scholar 

  • Feinstein B, Lindegard B, Nyman E, Wohlfart G (1955) Morphologic studies of motor units in normal human muscles. Acta Anat (Basel) 23:127–142

    Article  CAS  Google Scholar 

  • Ferrier D (1876) The functions of the brain. Smith, Elder and Company, London

    Book  Google Scholar 

  • Ferrier D (1886) The functions of the brain. GP Putnam’s Sons, New York

    Google Scholar 

  • Ferrier D, Yeo G (1885) A record of experiments on the effects of lesions of different regions of the cerebral hemispheres. Philos Trans Roy Soc B 175:479–564

    Google Scholar 

  • Fetz EE, Cheney PD (1980) Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol 44:751–772

    Article  CAS  PubMed  Google Scholar 

  • Fetz EE, Cheney PD, German DC (1976) Corticomotoneuronal connections of precentral cells detected by post-spike averages of EMG activity in behaving monkeys. Brain Res 114:505–510

    Article  CAS  PubMed  Google Scholar 

  • Fetz EE, Cheney PD, Mewes K, Palmer S (1989) Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. Prog Brain Res 80:437–449

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Frackowiak RSJ, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174

    Article  CAS  PubMed  Google Scholar 

  • Flechsig P (1876) Die Leitungsbahnen im Gehirn und Rückenmark des Menschen auf Grund entwicklungsgeschichtlicher Untersuchungen. Engelmann, Leipzig

    Google Scholar 

  • Foerster O (1909) Der Lähmungstypus bei corticalen Hirnherden. Dtsch Z Nervenheilkd 37:349–414

    Article  Google Scholar 

  • Foerster O (1936a) Motorische Felder und Bahnen. In: Bumke H, Foerster O (eds) Handbuch der Neurologie, vol 6. Springer, Berlin, pp 1–357

    Google Scholar 

  • Foerster O (1936b) Motor cortex in the light of Hughlings Jackson’s doctrines. Brain 59:135–159

    Article  Google Scholar 

  • Freund H-J (1984) Premotor areas in man. Trends Neurosci 7:481–483

    Article  Google Scholar 

  • Freund H-J (1987) Abnormalities of motor behavior after cortical lesions in humans. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, Higher functions of the brain, vol V. American Physiological Society, Bethesda, pp 763–810

    Google Scholar 

  • Freund H-J (1992) The apraxias. In: Asbury AK, McKhann GM, McDonald WJ (eds) Diseases of the nervous system. Clinical neurobiology, 2nd edn. Saunders, Philadelphia, pp 751–767

    Google Scholar 

  • Freund H-J, Hummelsheim H (1985) Lesions of premotor cortex in man. Brain 108:697–733

    Article  PubMed  Google Scholar 

  • Freund H-J, Jeannerod M, Hallett M, Leiguarda R (2005) Higher-order motor disorders. From neuroanatomy and neurobiology to clinical neurology. Oxford University Press, Oxford

    Google Scholar 

  • Friede RL (1989) Developmental neuropathology, 2nd edn. Springer, Berlin-Heidelberg-New York

    Book  Google Scholar 

  • Fries W, Danek A, Scheidtmann K, Hamburger C (1993) Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain 116:369–382

    Article  PubMed  Google Scholar 

  • Fritsch G, Hitzig E (1870) Ueber die elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol Wiss Med 37:300–332

    Google Scholar 

  • Gandevia SC, Burke D (2004) Peripheral motor system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 113–133

    Chapter  Google Scholar 

  • Gans C, Gaunt AS, Webb PW (1997) Vertebrate locomotion. In: Dantzler W (ed) Handbook of physiology, sect 13: comparative physiology. Oxford University Press, New York, pp 55–213

    Google Scholar 

  • Garcia-Rill E (1986) The basal ganglia and the locomotor regions. Brain Res Rev 11:47–63

    Article  Google Scholar 

  • Garcia-Rill E, Skinner RD (1987a) The mesencephalic locomotor region. I. Activation of a medullary projection site. Brain Res 411:1–12

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rill E, Skinner RD (1987b) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rill E, Skinner RD, Fitzgerald JA (1985) Chemical activation of the mesencephalic locomotor region. Brain Res 330:43–54

    Article  CAS  PubMed  Google Scholar 

  • Garrett M, Kerr T, Caulfield B (1999) Phase-dependent inhibition of the soleus H-reflexes during walking in humans is independent of reduction in knee angular velocity. J Neurophysiol 82:747–753

    Article  CAS  PubMed  Google Scholar 

  • Gath I, Shenhav R (1985) Probabilistic model of the spatial distribution of muscle fibres in human muscles. Biol Cybernet 53:773–782

    Article  Google Scholar 

  • Gath I, Stålberg E (1981) In situ measurement of the innervation ratio of motor units in human muscles. Exp Brain Res 43:377–382

    CAS  PubMed  Google Scholar 

  • Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1998) The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain 121:1695–1709

    Article  PubMed  Google Scholar 

  • Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T et al (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129:791–808

    Article  PubMed  Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174:1–92

    Article  CAS  Google Scholar 

  • Geyer S, Zilles K (2005) Functional neuroanatomy of the human motor cortex. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders. From neuroanatomy and neurobiology to clinical neurology. Oxford University Press, Oxford, pp 3–22

    Google Scholar 

  • Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U et al (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Matelli M, Luppino G, Zilles K (2000) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol (Berl) 202:443–474

    Article  CAS  Google Scholar 

  • Geyer S, Luppino G, Rozzi S (2012) Motor cortex. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 1012–1035

    Chapter  Google Scholar 

  • Gibson AR, Houk JC, Kohlerman NJ (1985) Magnocellular red nucleus activity during different types of limb movement in the macaque monkey. J Physiol Lond 358:527–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovanelli Barilari M, Kuypers HGJM (1969) Propriospinal fibers interconnecting the spinal enlargements in the cat. Brain Res 14:321–330

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg G (2008) Apraxia. Hb Clin Neurol 88:323–338

    Article  Google Scholar 

  • Goldenberg G (2013) Apraxia. Oxford University Press, Oxford

    Book  Google Scholar 

  • Golgi C (1880) Sui nervi dei tendini dell’uomo e di altri vertebrati e di un nuovo organo nervoso terminale musculotendineo. Mem R Accad Sci Torino 32:359–385

    Google Scholar 

  • Gómez-Skarmeta JL, Campuzano S, Modolell J (2003) Half a century of neural prepatterning: the story of a few bristles and many genes. Nat Rev Neurosci 4:587–598

    Article  PubMed  CAS  Google Scholar 

  • Goulding M (2009) Circuits controlling vertebrate locomotion. Nat Rev Neurosci 10:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouti M, Metzis V, Briscoe J (2015) The route to spinal cord cell types: a tale of signals and switches. Trends Genet 31:282–289

    Article  CAS  PubMed  Google Scholar 

  • Gracies JM, Meunier S, Pierrot-Deseilligny E, Simonetta M (1991) Pattern of propriospinal-like excitation to different species of human upper limb motoneurons. J Physiol Lond 434:151–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grafton ST, Woods RP, Mazziotta JC, Phelps ME (1991) Somatotopic mapping of the primary motor cortex in man: activation studies with cerebral blood flow and PET. J Neurophysiol 66:735–743

    Article  CAS  PubMed  Google Scholar 

  • Grafton ST, Woods RP, Mazziotta JC (1993) Within-arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow. Exp Brain Res 95:172–117

    Article  CAS  PubMed  Google Scholar 

  • Grafton ST, Martin NA, Mazziotta JC, Woods RP, Vinuela F, Phelps ME (1994) Localization of grasp representations in humans by positron emission tomography study. J Neuro-Oncol 4:97–103

    CAS  Google Scholar 

  • Grafton ST, Hari R, Salenius S (2000) The human motor system. In: Toga AW, Mazziotta JC (eds) Brain mapping: the systems. Academic, San Diego, pp 331–363

    Chapter  Google Scholar 

  • Grefkes C, Fink GR (2011) Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 134:1264–1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Grillner S (1975) Locomotion in vertebrates – central mechanisms and reflex interaction. Physiol Rev 55:247–304

    Article  CAS  PubMed  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapod, and fish. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, Motor systems, vol II. American Physiological Society, Bethesda, pp 1179–1236

    Google Scholar 

  • Grillner S (1986) Interaction between sensory signals and the central networks controlling locomotion in lamprey, dogfish and cat. In: Grillner S, Stein P, Stuart D, Forssberg H, Hermann R (eds) Neurobiology of vertebrate locomotion. Macmillan, London, pp 505–512

    Chapter  Google Scholar 

  • Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Rossignol S (1978) On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res 146:269–277

    Article  CAS  PubMed  Google Scholar 

  • Grofová I, Maršala J (1966) Tvar a struktura nucleus ruber u člověka (Form and structure of the nucleus ruber in man). Cesk Morfol 8:215–237

    Google Scholar 

  • Haaxma R (1976) Cortico-corticale verbindingen en visueel geleide hand- en vingerbewegingen bij de rhesusaap. Thesis, Erasmus University Rotterdam (in Dutch)

    Google Scholar 

  • Haaxma R, Kuypers HGJM (1975) Intrahemispheric cortical connections and visual guidance of hand and finger movements in the rhesus monkey. Brain 98:239–260

    Article  CAS  PubMed  Google Scholar 

  • Halsband U, Passingham R (1982) The role of premotor and parietal cortex in the direction of action. Brain Res 240:368–372

    Article  CAS  PubMed  Google Scholar 

  • Hanaway J, Young RR (1977) Localization of the pyramidal tract in the internal capsule of man. J Neurol Sci 34:63–70

    Article  CAS  PubMed  Google Scholar 

  • Hari R, Antervo A, Katila T, Poutanen T, Seppanen M, Tuomisto T, Varpula T (1983) Cerebral magnetic fields associated with voluntary movements in man. Nuovo Cimento Soc Ital Fis D 2D:484–494

    Article  Google Scholar 

  • Hathout GM, Bhidayasiri R (2005) Midbrain ataxia: an introduction to the mesencephalic locomotor region and the pedunculopontine nucleus. AJR Am J Roentgenol 184:953–956

    Article  PubMed  Google Scholar 

  • He S-Q, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13:952–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He S-Q, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffner RS, Masterton B (1975) Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav Evol 12:161–200

    Article  CAS  PubMed  Google Scholar 

  • Heffner RS, Masterton B (1983) The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol 23:165–183

    Article  CAS  PubMed  Google Scholar 

  • Heilman KM, Watson RT (2008) The disconnection apraxias. Cortex 44:975–985

    Article  PubMed  Google Scholar 

  • Helweg H (1888) Studien über den centralen Verlauf der vasomotorischen Nervenbahnen. Arch Psychiatr Nervenkr 19:104–183

    Article  Google Scholar 

  • Henneman E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1347

    Article  CAS  PubMed  Google Scholar 

  • Henneman E, Mendell LM (1981) Functional organization of motoneuron pool and its inputs. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, Motor systems, vol II. American Physiological Society, Bethesda, pp 423–507

    Google Scholar 

  • Hepp-Reymond M-C (1988) Functional organization of motor cortex and its participation in voluntary movements. In: Seklis HD, Erwin J (eds) Comparative primate biology, vol 4. Liss, New York, pp 501–624

    Google Scholar 

  • Hepp-Reymond M-C, Wiesendanger M (1972) Unilateral pyramidotomy in monkeys: effects on force and speed of a conditioned precision grip. Brain Res 36:117–131

    Article  CAS  PubMed  Google Scholar 

  • Hepp-Reymond M-C, Trouche E, Wiesendanger M (1974) Effects of unilateral and bilateral pyramidotomy on a conditioned rapid precision grip in monkeys (Macaca fascicularis). Exp Brain Res 21:519–527

    Article  CAS  PubMed  Google Scholar 

  • Hervé PY, Crivello F, Perchey G, Mazoyer B, Tzourio-Mazoyer N (2006) Handedness and cerebral anatomical asymmetries in young adult males. NeuroImage 29:1066–1079

    Article  PubMed  Google Scholar 

  • Hinsey JC, Ranson SW, McNattin RF (1930) The role of the hypothalamus and mesencephalon in locomotion. Arch Neurol Psychiatr 23:1–43

    Article  Google Scholar 

  • Hoche A (1898) Beiträge zur Anatomie der Pyramidenbahn und der oberen Schleife, nebst Bemerkungen über die abnorme Bündel im Pons und Medulla oblongata. Arch Psychiatr Nervenkr 30:103–139

    Article  Google Scholar 

  • Hoffmann P (1922) Die Eigenreflexe menschlicher Muskeln. Springer, Berlin

    Book  Google Scholar 

  • Holmes G (1904) On certain tremors in organic cerebral lesions. Brain 27:327–375

    Article  Google Scholar 

  • Holmes G (1915) The Goulstonian lectures on spinal injuries of warfare. Br Med J 2:855–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62:1–30

    Article  Google Scholar 

  • Holstege G (1990) Descending motor pathways and the spinal motor system. Limbic and non-limbic components. Thesis, Erasmus University Rotterdam

    Google Scholar 

  • Holstege G (1991) Descending motor pathways and the spinal motor system. Limbic and non-limbic components. Prog Brain Res 87:307–421

    Article  CAS  PubMed  Google Scholar 

  • Holstege G (1992) The emotional motor system. Eur J Morphol 30:67–81

    CAS  PubMed  Google Scholar 

  • Holstege JC (1996) The ventro-medial medullary projections to spinal motoneurons: ultrastructure, transmitters and functional aspects. Prog Brain Res 107:159–181

    Article  CAS  PubMed  Google Scholar 

  • Holstege G, Kuypers HGJM (1977) Propriobulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. I. An anterograde degeneration study in the cat. Brain 100:239–264

    Article  CAS  PubMed  Google Scholar 

  • Holstege G, Kuypers HGJM (1982) The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study. Prog Brain Res 57:145–175

    Article  CAS  PubMed  Google Scholar 

  • Holstege JC, Kuypers HGJM (1987) Brainstem projections to spinal motoneurons: an update. Neuroscience 3:809–821

    Article  Google Scholar 

  • Holstege G, Kuypers HGJM, Dekker JJ (1977) The organization of the bulbar fibre connections to the trigeminal facial and hypoglossal motor nuclei. II. An autoradiographic tracing study in cat. Brain 100:265–286

    Article  Google Scholar 

  • Holstege G, Kuypers HGJM, Boer RC (1979) Anatomical evidence for direct brain stem projections to the somatic motoneuronal cell groups and autonomic preganglionic cell groups in cat spinal cord. Brain Res 171:329–333

    Article  CAS  PubMed  Google Scholar 

  • Holstege G, Mouton LJ, Gerrits NM (2004) Emotional motor system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1306–1324

    Chapter  Google Scholar 

  • Horak FB, Macpherson JM (1996) Postural orientation and equilibrium. In: Rowell LB, Sheperd JT (eds) Handbook of physiology, sect 12: exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 255–292

    Google Scholar 

  • Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17:234–242

    Article  CAS  PubMed  Google Scholar 

  • Houlden DA, Schwartz ML, Tator CH, Ashby P, MacKay WA (1999) Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects. J Neurosci 19:1855–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman AM, Kuypers HGJM, Verburgh CA (1982) Differences in collateralization of the descending spinal pathways from red nucleus and other brainstem cell groups in cat and monkey. Prog Brain Res 57:185–219

    Article  CAS  PubMed  Google Scholar 

  • Hultborn H (1976) Transmission in the pathway of reciprocal Ia inhibition to motoneurones and its control during the tonic stretch reflex. Prog Brain Res 44:235–255

    Article  CAS  PubMed  Google Scholar 

  • Hultborn H (2006) Spinal reflexes, mechanisms and concepts. From Eccles to Lundberg and beyond. Prog Neurobiol 78:215–232

    Article  PubMed  Google Scholar 

  • Hultborn H, Jankowska E, Lindström S (1971a) Recurrent inhibition from motor axon collaterals of transmission in the Ia inhibitory pathway to motoneurones. J Physiol Lond 215:591–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultborn H, Jankowska E, Lindström S (1971b) Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. J Physiol Lond 215:613–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias C, Nielsen JB, Marchand-Pauvert V (2008) Corticospinal inhibition of transmission in propriospinal-like neurones during walking. Eur J Neurosci 28:1351–1361

    Article  PubMed  Google Scholar 

  • Illert M, Lundberg A, Tanaka R (1977) Integration in descending motor pathways controlling the forelimb in the cat. 3. Convergence on propriospinal neurones transmitting disynaptic excitation from the corticospinal tract and other descending tracts. Exp Brain Res 29:323–346

    CAS  PubMed  Google Scholar 

  • Illert M, Lundberg A, Padel Y, Tanaka R (1978) Integration in descending motor pathways controlling the forelimb in the cat. 5. Properties of and monosynaptic excitatory convergence on C3-C4 propriospinal neurones. Exp Brain Res 33:101–130

    Article  CAS  PubMed  Google Scholar 

  • Isa T (2019) Dexterous hand movements and their recovery after central nervous system injury. Annu Rev Neurosci 42:315–335

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka N, Mannen H, Hongo T, Sasaki S (1979) Trajectory of group Ia afferent fibers stained with horseradish peroxidase in the lumbosacral spinal cord of the cat: three-dimensional reconstructions from serial sections. J Comp Neurol 186:189–212

    Article  CAS  PubMed  Google Scholar 

  • Jackson JH (1931) Selected writings. Hodder and Stoughton, London

    Google Scholar 

  • Jagiella WM, Sung JH (1989) Bilateral infarction of the medullary pyramids in humans. Neurology 39:21–24

    Article  CAS  PubMed  Google Scholar 

  • Jahn K, Deutschländer A, Stephan T, Kalla R, Wiesmann M, Strupp M, Brandt T (2008) Imaging human supraspinal locomotor centers in brainstem and cerebellum. NeuroImage 39:786–792

    Article  PubMed  Google Scholar 

  • Jami L (1992) Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev 72:623–666

    Article  CAS  PubMed  Google Scholar 

  • Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378

    Article  CAS  PubMed  Google Scholar 

  • Jankowska E (2013) Spinal interneurons. In: Pfaff DW (ed) Neuroscience in the 21st century. Springer, Heidelberg, pp 1063–1099

    Chapter  Google Scholar 

  • Jankowska E, Lindström S (1972) Morphology of interneurones mediating Ia reciprocal inhibition of motoneurones in the spinal cord of the cat. J Physiol Lond 226:805–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen P, Scherberger H (2015) Visual guidance in control of grasping. Annu Rev Neurosci 38:69–86

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod D (1991) Neuroanatomical basis of spasticity. In: Sindou M, Abboot R, Keravel Y (eds) Neurosurgery for spasticity. Springer, Vienna, New York, pp 3–14

    Google Scholar 

  • Jenny AB, Izukai J (1983) Principles of motor organization of the monkey cervical spinal cord. J Neurosci 3:567–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  CAS  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty six human muscles. An autopsy study. J Neurol Sci 18:111–129

    Article  CAS  PubMed  Google Scholar 

  • Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG (2008) Descending command systems for the initiation of locomotion in mammals. Brain Res Rev 57:183–191

    Article  CAS  PubMed  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285:2136–2139

    Article  CAS  PubMed  Google Scholar 

  • Kakuda N, Nagaoka M (1998) Dynamic response of human muscle spindle afferents to stretch during voluntary contraction. J Physiol Lond 513:612–618

    Article  Google Scholar 

  • Kameyana M, Mannen T, Takahashi K (1963) Variations of the pyramidal decussation: a clinicopathological study. Clin Neurol (Tokyo) 3:444–452. (in Japanese)

    Google Scholar 

  • Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A (1996) The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. Electroencephalogr Clin Neurophysiol 101:478–482

    CAS  PubMed  Google Scholar 

  • Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R et al (1998) The acquisition of skilled motor performance: first and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci U S A 95:861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima R, Yamada K, Kinomura S, Yamaguchi T, Matsui H, Yoshioka S, Fukuda H (1993) Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movements. Brain Res 623:33–40

    Article  CAS  PubMed  Google Scholar 

  • Kawashima R, Roland PE, O’Sullivan BT (1994) Activity in the human primary motor cortex related to ipsilateral hand movements. Brain Res 663:251–256

    Article  CAS  PubMed  Google Scholar 

  • Kawashima R, Itoh H, Ono S, Satoh K, Furumoto S, Gatoh R, Koyama M, Yoshioka S, Takahashi T, Yanagisawa T, Fukuda H (1995) Activity in the human primary motor cortex related to arm and finger movements. Neuroreport 6:238–240

    Article  CAS  PubMed  Google Scholar 

  • Kawashima R, Inoue K, Sato K, Fukuda H (1997) Functional asymmetry of cortical motor control in left-handed subjects. Neuroreport 8:1729–1732

    Article  CAS  PubMed  Google Scholar 

  • Kazennikov O, Wicki U, Corboz M, Hyland B, Palmeri A, Rouiller EM (1994) Temporal structure of a bimanual goal-directed movement sequence in monkeys. Eur J Neurosci 6:203–210

    Article  CAS  PubMed  Google Scholar 

  • Keizer K, Kuypers HGJM (1989) Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 74:311–318

    Article  CAS  PubMed  Google Scholar 

  • Kennedy WR (1970) Innervation of normal human muscle spindles. Neurology 20:463–475

    Article  CAS  PubMed  Google Scholar 

  • Kertesz A, Geschwind N (1971) Patterns of pyramidal decussation and their relationship to handedness. Arch Neurol 24:326–332

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O (2011) Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21:100–109

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O (2016) Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci 17:224–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-G, Ashe J, Georgopoulos AP, Merkle H, Ellermann JM, Meno RS et al (1993a) Functional imaging of human motor cortex at high magnetic field. J Neurophysiol 69:297–302

    Article  CAS  PubMed  Google Scholar 

  • Kim S-G, Ashe J, Hendrick K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993b) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kim HG, Chung CS (1995) Medial medullary syndrome. Report of 18 new patients and a review of the literature. Stroke 26:1548–1552

    Article  CAS  PubMed  Google Scholar 

  • Kleinschmidt A, Nitschke MF, Frahm J (1997) Somatotopy in the human motor cortex hand area. A high-resolution functional MRI study. Eur J Neurosci 9:2178–2186

    Article  CAS  PubMed  Google Scholar 

  • Knapp HD, Taub E, Berman AJ (1963) Movements in monkeys with deafferented forelimbs. Exp Neurol 7:305–315

    Article  CAS  PubMed  Google Scholar 

  • Kneisley LW, Biber MP, LaVail JH (1978) A study of the origin of brainstem projections to monkey spinal cord using the retrograde transport method. Exp Neurol 60:116–139

    Article  CAS  PubMed  Google Scholar 

  • Koehler PJ, Endtz LJ (1986) The Brown-Séquard syndrome. True or false? Arch Neurol 43:921–924

    Article  CAS  PubMed  Google Scholar 

  • Kostyuk PG (1967) Neuronal mechanisms of corticospinal motor systems. Sechenov Physiol J USSR 53:1311–1321. (in Russian)

    Google Scholar 

  • Kramer W (1949) De ongekruiste pyramidebaan. Thesis, University of Indonesia, Batavia (in Dutch)

    Google Scholar 

  • Krause F (1911) Chirurgie des Gehirns und Rückenmarks nach eigenen Erfahrungen. Berlin (quoted from Geyer 2004)

    Google Scholar 

  • Kretschmann H-J (1988) Localization of the corticospinal fibers in the internal capsule in man. J Anat 160:219–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kriellaars DJ, Brownstone RM, Noga BR, Jordan JM (1994) Mechanical entrainment of fictive locomotion in the decerebrate cat. J Neurophysiol 71:2074–2086

    Article  CAS  PubMed  Google Scholar 

  • Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Cosgrove GR, Rosen BR (1997) Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function. Neurology 48:1406–1416

    Article  CAS  PubMed  Google Scholar 

  • Kristeva-Feige R, Walter H, Lütkenhöner B, Hampson S, Ross B, Knorr U et al (1994) A neuromagnetic study of the functional organization of the sensorimotor cortex. Eur J Neurosci 6:632–639

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Masegi T (1977) Muscle spindle supply to the human jaw muscle. J Dent Res 56:901–909

    Article  CAS  PubMed  Google Scholar 

  • Kucera J (1986) Reconstruction of the nerve supply to a human muscle spindle. Neurosci Lett 63:180–184

    Article  CAS  PubMed  Google Scholar 

  • Kucera J, Dorovini-Zis K (1979) Types of human intrafusal muscle fibers. Muscle Nerve 2:437–451

    Article  CAS  PubMed  Google Scholar 

  • Kuhn RA (1950) Functional capacity of the isolated human spinal cord. Brain 73:1–51

    Article  CAS  PubMed  Google Scholar 

  • Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15:185–234

    Article  PubMed  Google Scholar 

  • Künzle H, Akert K (1977) Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J Comp Neurol 173:147–164

    Article  PubMed  Google Scholar 

  • Kuypers HGJM (1958a) Corticobulbar connexions to the pons and lower brain stem in man. An anatomical study. Brain 81:364–388

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HGJM (1958b) Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. J Comp Neurol 110:221–255

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HGJM (1960) Central cortical projections to motor and somato-sensory cell groups. An experimental study in the rhesus monkey. Brain 83:161–184

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HGJM (1964) The descending pathways to the spinal cord, their anatomy and function. Prog Brain Res 11:178–202

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HGJM (1973) The anatomical organization of the descending pathways and their contributions to motor control especially in primates. In: Desmedt JE (ed) New developments in EMG and clinical neurophysiology, vol 3. Karger, Basel, pp 38–68

    Google Scholar 

  • Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, Motor systems, vol II. American Physiological Society, Bethesda, pp 597–666

    Google Scholar 

  • Kuypers HGJM (1982) A new look at the organization of the motor system. Prog Brain Res 57:381–403

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Brinkman J (1970) Precentral projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res 14:29–48

    Article  Google Scholar 

  • Kuypers HGJM, Lawrence DG (1967) Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res 4:151–188

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Maisky VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1:9–14

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Fleming WR, Farinholt JW (1962) Subcorticospinal projections in the rhesus monkey. J Comp Neurol 118:107–137

    Article  CAS  PubMed  Google Scholar 

  • Ladouceur M, Barbeau H (2000) Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries: longitudinal changes in maximal overground walking speed. Scand J Rehabil Med 22:28–36

    Google Scholar 

  • Lance JW (1980) The control of muscle tone, reflexes and movement: Robert Wartenberg lecture. Neurology 30:1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Lance JW, McLeod JC (1981) A physiological approach to clinical neurology, 3rd edn. Butterworths, London

    Google Scholar 

  • Lankamp DJ (1967) The fibre composition of the Pedunculus Cerebri (Crus Cerebri). Thesis, University of Leiden

    Google Scholar 

  • Lanuza GM, Gosgnack S, Pierani A, Jessell TM, Goulding M (2004) Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42:375–386

    Article  CAS  PubMed  Google Scholar 

  • Laplane D, Talairach J, Meiniger V, Bancaud J, Bouchareine A (1977) Motor consequences of motor area ablations in man. J Neurol Sci 31:29–49

    Article  CAS  PubMed  Google Scholar 

  • Lassek AM (1954) The pyramidal tract: its status in medicine. Thomas, Springfield

    Google Scholar 

  • Lassek A, Rasmussen GL (1940) A comparative and numerical analysis of the pyramidal tract. J Comp Neurol 72:417–428

    Article  Google Scholar 

  • Lawrence DG, Kuypers HGJM (1968a) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91:1–14

    Article  CAS  PubMed  Google Scholar 

  • Lawrence DG, Kuypers HGJM (1968b) The functional organization of the motor system in the monkey. II The effects of lesions of the descending brain-stem pathways. Brain 91:15–33

    Article  CAS  PubMed  Google Scholar 

  • Leblond H, Menard A, Gossard JP (2001) Corticospinal control of locomotor pathways generating extensor activities in the cat. Exp Brain Res 138:173–184

    Article  CAS  PubMed  Google Scholar 

  • Leestma JE, Noronha A (1976) Pure motor hemiplegia, medullary pyramid lesion, and olivary hypertrophy. J Neurol Neurosurg Psychiatry 39:877–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leichnetz GR (1982) Connections between the frontal eye field and pretectum in the monkey: an anterograde/retrograde study using HRP gel and TMB neurohistochemistry. J Comp Neurol 207:394–402

    Article  CAS  PubMed  Google Scholar 

  • Leichnetz GR, Spencer RF, Smith DJ (1984) Cortical projections to nuclei adjacent to the oculomotor complex in the medial dien-mesencephalic tegmentum in the monkey. J Comp Neurol 228:359–387

    Article  CAS  PubMed  Google Scholar 

  • Leiguarda R (2005) Apraxias as traditionally defined. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders: from neuroanatomy and neurobiology to clinical neurobiology. Oxford University Press, Oxford, pp 303–338

    Google Scholar 

  • Leiguarda R, Marsden CD (2000) Limb apraxias: higher-order disorders of sensorimotor integration. Brain 123:860–879

    Article  PubMed  Google Scholar 

  • Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31:195–218

    Article  CAS  PubMed  Google Scholar 

  • Lemon RN, Johansson RS, Westling G (1995) Corticospinal control during reach, grasp, and precision lift in man. J Neurosci 16:6145–6156

    Article  Google Scholar 

  • Lemon R, Sasaki S, Naito K, Yoshimura K, Isa T, Seki K, Pettersson L-G et al (2004) Corticomotoneuronal system and dexterous finger movements. J Neurophysiol 92:3601–3603

    Article  PubMed  Google Scholar 

  • Lemon RN, Landau W, Tutssel D, Lawrence DG (2012) Lawrence and Kuypers (1968a, b) revisited: copies of the original filmed material from their classic papers in Brain. Brain 138:2290–2295

    Article  Google Scholar 

  • Leyton SSF, Sherrington CS (1917) Observations on the excitable cortex of the chimpanzee, orangutan and gorilla. Q J Exp Physiol 11:135–222

    Article  Google Scholar 

  • Liddell EGT, Sherrington CS (1925) Further observations on myotatic reflexes. Proc R Soc Lond B 97:267–283

    Article  Google Scholar 

  • Liepmann H (1908) Drei Aufsätze aus dem Apraxiegebiet. Karger, Berlin

    Google Scholar 

  • Liu CN, Chambers WW (1964) An experimental study of the cortico-spinal system in the monkey (Macaca mulatta). The spinal pathways and preterminal distribution of degenerating fibers following discrete lesions of the pre- and postcentral gyri and bulbar pyramid. J Comp Neurol 123:257–284

    Article  CAS  PubMed  Google Scholar 

  • Lorson CL, Strasswimmer J, Yao J-M, Baleja JD, Hahnen F, Wirth B et al (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19:63–68

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Lennox G, Leigh PN (1997) Disorders of movement and system degeneration. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, vol 2, 6th edn. Arnold, London, pp 281–366

    Google Scholar 

  • Lu DC, Niu T, Alaynick WA (2015) Molecular and cellular development of spinal cord locomotor circuitry. Front Mol Neurosci 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Luccarini P, Gahery Y, Pompeiano O (1990) Cholinoceptive pontine reticular structures modify the postural adjustments during the limb movements induced by cortical stimulation. Arch Ital Biol 128:19–45

    CAS  PubMed  Google Scholar 

  • Lundberg A (1979) Multisensory control of spinal reflex pathways. Prog Brain Res 50:11–28

    Article  CAS  PubMed  Google Scholar 

  • Lundberg A (1982) Inhibitory control from the brain stem of transmission from primary afferent terminals and ascending pathways. In: Sjölund B, Björklund A (eds) Brain stem control of spinal mechanisms. Elsevier, Amsterdam, pp 179–224

    Google Scholar 

  • Macefield G, Gandevia SC, Burke D (1989) Conduction velocities of muscle and cutaneous afferents in the upper and lower limbs of human subjects. Brain 112:1519–1532

    Article  PubMed  Google Scholar 

  • Maertens de Noordhout A, Rapisarda G, Bogacz D, Gérard P, De Pasqua V, Pennisi G, Delwaide PJ (1999) Corticomotoneuronal synaptic connections in normal man. An electrophysiological study. Brain 122:1327–1340

    Article  Google Scholar 

  • Maier MA, Illert M, Kirkwood PA, Nielsen J, Lemon RN (1998) Does a C3-C4 propriospinal system transmit corticospinal excitation in the primate? An investigation in the macaque monkey. J Physiol Lond 511:191–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 12:281–296

    Article  CAS  PubMed  Google Scholar 

  • Marchand-Pauvert V, Mazevet D, Pradat-Diehl P, Alstermark B, Pierrot-Deseilligny E (2001) Interruption of a relay of corticospinal excitation by a spinal lesion at C6-C7. Muscle Nerve 24:1554–1561

    Article  CAS  PubMed  Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1981) Human postural responses. Brain 104:513–534

    Article  CAS  PubMed  Google Scholar 

  • Marsden CD, Rothwell JC, Day BL (1984) The use of peripheral feedback in the control of movement. Trends Neurosci 7:253–257

    Article  Google Scholar 

  • Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31:656–661

    Article  CAS  PubMed  Google Scholar 

  • Marti E, Bovolenta P (2002) Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci 25:89–96

    Article  CAS  PubMed  Google Scholar 

  • Martin GF, Cabana T, Humbertson AO (1981) Evidence for collateral innervation of the cervical and lumbar enlargements of the spinal cord by single reticular and raphe neurons. Studies using fluorescent markers in double-labeling experiments on the north Americal opossum. Neurosci Lett 24:1–6

    Article  CAS  PubMed  Google Scholar 

  • Martin GF, Cabana T, DiTirro FJ, Ho RH, Humbertson AO (1982a) Reticular and raphe projections to the spinal cord of the north American opossum: evidence for connectional heterogeneity. Prog Brain Res 57:107–129

    Google Scholar 

  • Martin GF, Cabana T, DiTitto FJ, Ho RH, Humbertson AO (1982b) Raphespinal projections in the North American opossum: evidence for functional heterogeneity. J Comp Neurol 208:67–84

    Article  CAS  PubMed  Google Scholar 

  • Martin GF, Vertes RP, Waltzer R (1985) Spinal projections of the gigantocellular reticular formation in the rat. Evidence for projections from different areas to lamina I and II and lamina IX. Exp Brain Res 58:154–162

    Article  CAS  PubMed  Google Scholar 

  • Masdeu JC, Alampur U, Cavaliere R, Tavoulareas G (1994) Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol 35:619–621

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18:125–136

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251:281–298

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–463

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Geyer S, Zilles K (2004) Motor cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 973–996

    Chapter  Google Scholar 

  • Matsushita M, Ikeda M, Hosoya Y (1979) The location of spinal neurons with long descending axons (long descending propriospinal tract neurons) in the cat: a study with the horseradish peroxidase technique. J Comp Neurol 184:63–80

    Article  CAS  PubMed  Google Scholar 

  • Matthews PBC (1972) Mammalian muscle receptors and their central actions. Arnold, London

    Google Scholar 

  • Matthews PBC (1981) Muscle spindles: their messages and fusimotor supply. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, Motor systems, vol II. American Physiological Society, Bethesda, pp 189–228

    Google Scholar 

  • McCurdy ML, Hansma DI, Houk JC, Gibson AR (1987) Selective projections from the cat red nucleus to digit motor neurons. J Comp Neurol 265:367–379

    Article  CAS  PubMed  Google Scholar 

  • McKeon B, Burke D (1983) Muscle spindle discharge in response to contraction of single motor units. J Neurophysiol 49:291–302

    Article  CAS  PubMed  Google Scholar 

  • Mestrom LHJ (1911) Variaties in de pyramidenkruising Thesis, University of Amsterdam. Van Langenhuysen, Amsterdam (in Dutch)

    Google Scholar 

  • Meyer JS, Herndon RM (1962) Bilateral infarction of the pyramidal tracts in man. Neurology 12:637–642

    Article  CAS  PubMed  Google Scholar 

  • Miller S, van der Burg J, van der Meché FGA (1975) Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res 91:217–237

    Article  CAS  PubMed  Google Scholar 

  • Moffie D, Ongerboer de Visser BW, van der Sande JJ (1979) “Pure motor hemiplegia”; de plaatsbepaling van de piramidebaan in de capsula interna. Ned T Geneesk 123:822–825. (in Dutch)

    CAS  PubMed  Google Scholar 

  • Molenaar I, Kuypers HGJM (1978) Cells of origin of propriospinal fibers and of fibers ascending to supraspinal levels. A HRP study in cat and rhesus monkey. Brain Res 152:429–450

    Article  CAS  PubMed  Google Scholar 

  • Molenaar I, Rustioni A, Kuypers HGJM (1974) The location of cells of origin of the fibers in the ventral and the lateral funiculus of the cat’s lumbosacral cord. Brain Res 78:239–254

    Article  CAS  PubMed  Google Scholar 

  • Moll L (1984) Over de mogelijke rol van de premotorische cortex, de ventrolaterale thalamuskern en de colliculus superior bij de visuele sturing van onafhankelijke hand- en vingerbewegingen. Thesis, Erasmus University Rotterdam (in Dutch)

    Google Scholar 

  • Moll L, Kuypers HGJM (1977) Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198:317–319

    Article  CAS  PubMed  Google Scholar 

  • Moran-Rivard L, Kagawa T, Saueressig H, Gross MK, Burrill J, Goulding M (2001) Evx1 is a postmitotic determinant of V0 interneuron identity in the spinal cord. Neuron 29:385–399

    Article  CAS  PubMed  Google Scholar 

  • Morecraft RJ, Louie JL, Herrick JL, Stilwell-Morecraft KS (2001) Cortical innervation of the facial nucleus in the non-human primate. A new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain 124:176–208

    Article  CAS  PubMed  Google Scholar 

  • Morecraft RJ, Herrick JL, Stilwell-Morecraft KS, Louie JL, Schroeder CM, Ottenbacher JG, Schoolfield MW (2002) Localization of arm representation in the corona radiata and internal capsule in the non-human primate. Brain 125:176–198

    Article  PubMed  Google Scholar 

  • Mori S (1987) Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 28:161–195

    Article  CAS  PubMed  Google Scholar 

  • Mori S (1989) Contribution of postural muscle tone to full expression of posture and locomotor movements: multifaceted analysis of its setting brainstem – spinal cord mechanisms in the cat. Jpn J Physiol 39:785–809

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Shik ML, Yadodnitsyn AS (1977) Role of pontine tegmentum for locomotor control in mesencephalic cat. J Neurophysiol 40:284–295

    Article  CAS  PubMed  Google Scholar 

  • Mott FW, Sherrington CS (1895) Experiments upon the influence of sensory nerves upon movement and nutrition of the limbs. Proc R Soc Lond 57:481–488

    Article  Google Scholar 

  • Mumenthaler M (1983) Neurologische Differentialdiagnostik, 2. Aufl. Thieme, Stuttgart

    Google Scholar 

  • Mumenthaler M, Schliack H (1982) Läsionen peripherer Nerven, 4. Aufl. Thieme, Stuttgart

    Google Scholar 

  • Murray EA, Coulter JD (1981) Organization of corticospinal neurons in the monkey. J Comp Neurol 195:339–365

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Maier MA, Kirkwood PA, Lemon RN (2000) Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species. J Neurophysiol 84:698–709

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1996) Direct and indirect activation of human corticospinal neurons by transcranial magnetic and electrical stimulation. Neurosci Lett 210:45–48

    Article  CAS  PubMed  Google Scholar 

  • Nathan PW (1994) Effects on movement of surgical incisions into the human spinal cord. Brain 117:337–346

    Article  PubMed  Google Scholar 

  • Nathan PW, Smith MC (1955) Long descending tracts in man. I. Review of present knowledge. Brain 78:248–303

    Article  CAS  PubMed  Google Scholar 

  • Nathan PW, Smith MC (1959) Fasciculi proprii of the spinal cord in man: review of present knowledge. Brain 82:610–668

    Article  CAS  PubMed  Google Scholar 

  • Nathan PW, Smith MC (1982) The rubrospinal and central tegmental tracts in man. Brain 105:223–269

    Article  CAS  PubMed  Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1990) The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain 113:303–324

    Article  PubMed  Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119:1809–1833

    Article  PubMed  Google Scholar 

  • Newton JM, Ward NS, Parker GJM, Deichmann R, Alexander DC, Friston KJ, Frackowiak RSJ (2006) Non-invasive mapping of corticofugal fibres from multiple motor areas in relevance to stroke recovery. Brain 129:1844–1858

    Article  PubMed  Google Scholar 

  • Nielsen JB (2016) Human spinal motor control. Annu Rev Neurosci 39:81–101

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Pierrot-Deseilligny E (1991) Pattern of cutaneous inhibition of the propriospinal-like excitation to human upper limb motoneurons. J Physiol Lond 434:169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskin KJ (1995) Congenital malformations of the brain. Pathologic, embryologic, clinical, radiologic and genetic aspects. Oxford University Press, New York

    Google Scholar 

  • Nudo RJ, Masterton RB (1988) Descending pathways to the spinal cord: a comparative study of 22 mammals. J Comp Neurol 277:53–79

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1990) Descending pathways to the spinal cord, III: sites of origin of the corticospinal tract. J Comp Neurol 296:559–583

    Article  CAS  PubMed  Google Scholar 

  • Nyberg-Hansen R, Rinvik E (1963) Some comments on the pyramidal tracts, with special reference to its individual variations in man. Acta Neurol Scand 39:1–30

    Article  Google Scholar 

  • O’Rahilly R (1986) Gardner – Gray – O’Rahilly anatomy. A regional study of human structure, 5th edn. Saunders, Philadelphia

    Google Scholar 

  • Op de Coul AAW (1970) De atrofie van de kleine handspieren. Thesis, University of Amsterdam (in Dutch; published in 1971 as Handspieratrofie by Stenfert Kroese, Leiden)

    Google Scholar 

  • Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion: from Molluscs to man. Oxford University Press, New York

    Book  Google Scholar 

  • Padberg J, Franca JG, Cooke F, Soares JGM, Rosa MGP, Fiorani M et al (2007) Parallel evolution of cortical areas involved in skilled hand use. J Neurosci 27:10106–10115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padel Y, Angaut P, Massion J, Sedan R (1981) Comparative study of the posterior red nucleus in baboons and gibbons. J Comp Neurol 202:421–438

    Article  CAS  PubMed  Google Scholar 

  • Pang MY, Yang JF (2000) The initiation of the swing phase in human infant stepping: importance of hip position and leg loading. J Physiol Lond 528:389–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang MY, Yang JF (2001) Interlimb co-ordination in human infant stepping. J Physiol Lond 533:617–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual-Leone A, Walsh V (2002) Transcranial magnetic stimulation. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 255–290

    Chapter  Google Scholar 

  • Pauvert V, Pierrot-Deseilligny E, Rothwell JC (1998) Role of spinal motoneurones in mediating corticospinal input to forearm motoneurones in man. J Physiol Lond 508:301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123–129

    Article  PubMed  Google Scholar 

  • Pearson KG, Misiaszek JE, Fouad K (1998) Enhancement and resetting of locomotor activity by muscle afferents. Ann N Y Acad Sci 860:203–215

    Article  CAS  PubMed  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 6:389–443

    Article  Google Scholar 

  • Penfield W, Jasper HH (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown, Boston

    Book  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man. Macmillan, New York

    Google Scholar 

  • Peter JB, Barnard RJ, Edgerton VR, Gillespie CA, Stempel KE (1972) Metabolic profiles of three fiber types of skeletal muscles in Guinea pigs and rabbits. Biochemistry 11:2627

    Article  CAS  PubMed  Google Scholar 

  • Peterson BW, Fukushima K (1982) The reticulospinal system and its role in generating vestibular and visuomotor reflexes. In: Sjölund B, Björklund A (eds) Brain stem control of spinal mechanisms. Elsevier, Amsterdam, pp 225–251s

    Google Scholar 

  • Petras JM, Cummings JF (1972) Autonomic neurons in the spinal cord of the rhesus monkey: a correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J Comp Neurol 146:189–218

    Article  CAS  PubMed  Google Scholar 

  • Petrides M (1982) Motor conditional associative-learning after selective prefrontal lesions in the monkey. Behav Brain Res 5:407–413

    Article  CAS  PubMed  Google Scholar 

  • Petrides M (1985) Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 23:601–614

    Article  CAS  PubMed  Google Scholar 

  • Petrides M (1986) The effect of periarcuate lesions in the monkey on the performance of symmetrically and asymmetrically reinforced visual and auditory go, no-go tasks. J Neurosci 6:2054–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrides M (1997) Visuo-motor-conditional associative learning after frontal and temporal lesions in the human brain. Neuropsychologia 35:989–997

    Article  CAS  PubMed  Google Scholar 

  • Picard N, Strick PL (1996) Medial wall motor areas: a review of their location and functional activation. Cereb Cortex 6:342–353

    Article  CAS  PubMed  Google Scholar 

  • Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11:663–672

    Article  CAS  PubMed  Google Scholar 

  • Pick A (1890) Ueber ein abnormes Bündel der menschlichen Medulla oblongata. Arch Psychiatr Nervenkr 21:636–640

    Article  Google Scholar 

  • Pierani A, Brenner-Morton S, Chiang C, Jessell TM (1999) A tonic Hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97:903–915

    Article  CAS  PubMed  Google Scholar 

  • Pierani A, Moran-Rivard L, Sunshine MJ, Littman DR, Goulding M, Jessell TM (2001) Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron 29:367–384

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny E (1996) Transmission of the cortical command for human voluntary movement through cervical premotoneurones. Prog Neurobiol 48:489–517

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny E (2002) Propriospinal transmission of part of the corticospinal excitation in humans. Muscle Nerve 26:155–172

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord. Its role in motor control and movement disorders. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pineiro R, Pendlebury ST, Smith S, Flitney D, Blamire AM, Styles P, Mathews PM (2000) Relating MRI changes to motor deficit after ischemic stroke by segmentation of functional motor pathways. Stroke 31:672–679

    Article  CAS  PubMed  Google Scholar 

  • Porter R, Lemon RN (1993) Corticospinal function and voluntary movement. Oxford University Press, Oxford

    Google Scholar 

  • Pratt CA, Fung J, Macpherson JM (1994) Stance control in the chronic spinal cat. J Neurophysiol 71:1981–1985

    Article  CAS  PubMed  Google Scholar 

  • Prochazka A, Hulliger M (1983) Muscle afferent function and its significance for motor control mechanisms during voluntary movements in cat, monkey, and man. Adv Neurol 39:93–132

    CAS  PubMed  Google Scholar 

  • Proske U (1981) The Golgi tendon organ. Properties of the receptor and reflex action of impulses arising from tendon organs. Int Rev Physiol 25:127–171

    CAS  PubMed  Google Scholar 

  • Puvanendran K, Wong PK, Ransome GA (1978) Syndrome of Dejerine’s fourth Reich. Acta Neurol Scand 57:349–353

    Article  CAS  PubMed  Google Scholar 

  • Rabe Bernhardt N, Memic F, Gezelius H, Thiebes A-J, Vallstedt A, Kullander K (2012) DCC mediated axon guidance of spinal interneurons is essential for normal locomotor central pattern generator function. Dev Biol 366:279–289

    Article  CAS  PubMed  Google Scholar 

  • Rabe N, Gezelius H, Vallstedt A, Memic F, Kullander K (2009) Netrin-1-dependent spinal interneuron subtypes are required for the formation of left-right alternating locomotor circuitry. J Neurosci 29:15642–15649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329

    Article  CAS  PubMed  Google Scholar 

  • Rademacher J, Bürgel U, Geyer S, Schormann T, Schleicher A, Freund H-J, Zilles K (2001) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124:2232–2258

    Article  CAS  PubMed  Google Scholar 

  • Ralston DD, Ralston HJ (1985) The terminations of corticospinal tract axons in the macaque monkey. J Comp Neurol 242:325–337

    Article  CAS  PubMed  Google Scholar 

  • Rascol A, Clanet M, Manelfe C, Guiraud B, Bonafe A (1982) Pure motor hemiplegia: CT study of 30 cases. Stroke 13:11–17

    Article  CAS  PubMed  Google Scholar 

  • Rathelot J-A, Strick PL (2006) Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Natl Acad Sci U S A 103:8257–8262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renshaw B (1941) Influence of discharge of motoneurons upon excitation of neighbouring motoneurons. J Neurophysiol 4:167–183

    Article  Google Scholar 

  • Riddoch G (1917) The reflex function of the completely divided spinal cord in man, compared with those associated with less severe lesions. Brain 40:264–402

    Article  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12:149–154

    Article  CAS  PubMed  Google Scholar 

  • Roessmann U, Hori A (1985) Agyria (lissencephaly) with anomalous pyramidal crossing: case report and review of literature. J Neurol Sci 69:357–364

    Article  CAS  PubMed  Google Scholar 

  • Roland PE, Zilles K (1996) Functions and structures of the motor cortices in humans. Curr Opin Neurobiol 6:773–781

    Article  CAS  PubMed  Google Scholar 

  • Romanes GJ (1951) The motor cell columns of the lumbosacral spinal cord of the cat. J Comp Neurol 94:313–364

    Article  CAS  PubMed  Google Scholar 

  • Romanes GJ (1964) Motor pools of the spinal cord. Prog Brain Res 11:93–119

    Article  CAS  PubMed  Google Scholar 

  • Rondot P, de Recondo J, Ribadeau Dumas JL (1977) Visuomotor ataxia. Brain 100:355–376

    Article  CAS  PubMed  Google Scholar 

  • Ropper AH, Fisher CM, Kleinman GM (1979) Pyramidal infarction in the medulla: a cause of pure motor hemiplegia sparing the face. Neurology 29:91–95

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig ES, Brock JH, Culbertson MD, Lu P, Moseanho R, Edgerton VR et al (2009) Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J Comp Neurol 513:151–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross ED (1980) Localization of the pyramidal tract in the internal capsule by whole brain dissection. Neurology 30:59–64

    Article  CAS  PubMed  Google Scholar 

  • Rossignol S (1996) Neural control of stereotypic limb movements. In: Rowell LB, Sheperd JT (eds) Handbook of physiology, sect 12: exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 173–216

    Google Scholar 

  • Rossignol S (2000) Locomotion and its recovery after spinal injury. Curr Opin Neurobiol 10:708–716

    Article  CAS  PubMed  Google Scholar 

  • Rossignol S (2006) Plasticity in the injured spinal cord. In: Selzer ME, Clarke S, Cohen LG, Duncan PW, Gage FH (eds) Textbook of neural repair and rehabilitation, vol I. Cambridge University Press, Cambridge, pp 209–227

    Chapter  Google Scholar 

  • Rossignol S, Dubuc R, Gossard J-P (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154

    Article  PubMed  Google Scholar 

  • Rothwell J (1994) Control of human voluntary movement, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden JC (1982) Manual motor performance in a deafferented man. Brain 105:515–542

    Article  PubMed  Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Dick JPR, Kachi T, Cowan JMA, Marsden CD (1987) Motor cortex stimulation in intact man. I. General characteristics of EMG responses in different muscles. Brain 110:1173–1190

    Article  PubMed  Google Scholar 

  • Rothwell JC, Gandevia SC, Burke D (1990) Activation of fusimotor neurones by motor cortical stimulation in human subjects. J Physiol Lond 431:743–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Babalian A, Kazennikov O, Moret V, Yu X-H, Wiesendanger M (1994) Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res 102:227–243

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Moret V, Tanné J, Boussaoud D (1996) Evidence for direct connections between the hand region of the supplementary motor area and cervical motoneurons in the macaque monkey. Eur J Neurosci 8:1055–1059

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Bludau S, Palomero-Gallagher N, Caspers S, Mohlberg H, Eickhoff SB et al (2018) Cytoarchitecture, probabilistic maps, and functions of the human supplementary and pre-supplementary motor areas. Brain Struct Funct 223:4169–4186

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz i Altaba A, Nguyên V, Palma V (2003) The emergent design of the neural tube: Prepattern, SHH morphogen and GLI code. Curr Opin Genet Dev 13:513–523

    Article  CAS  PubMed  Google Scholar 

  • Rustioni AA, Kuypers HGJM, Holstege G (1971) Propriospinal projections from the ventral and lateral funiculi to the motoneurons in the lumbosacral cord of the cat. Brain Res 34:255–275

    Article  CAS  PubMed  Google Scholar 

  • Sack AT (2006) Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Curr Opin Neurobiol 16:593–599

    Article  CAS  PubMed  Google Scholar 

  • Sanes JN, Mauritz K-H, Dalakas MC, Evarts EV (1985) Motor control in humans with large-fiber sensory neuropathy. Hum Neurobiol 4:104–114

    Google Scholar 

  • Sanes JN, Donoghue JP, Thangaraj V, Edelman RR, Warach S (1995) Shared neural substrates controlling hand movements in human motor cortex. Science 268:1775–1777

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Isa T, Pettersson L-G, Aslstermark B, Naito K, Yoshimura K et al (2004) Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. J Neurophysiol 92:3142–3147

    Article  PubMed  Google Scholar 

  • Saueressig H, Burrill J, Goulding M (1999) Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. Development 126:4201–4212

    Article  CAS  PubMed  Google Scholar 

  • Schaechter JD, Perdue KL, Wang R (2008) Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients. NeuroImage 39:1370–1381

    Article  PubMed  Google Scholar 

  • Schneider C, Lavoie B, Capaday C (2000) On the origin of the soleus H-reflex modulation pattern during human walking and its task-dependent differences. J Neurophysiol 83:2881–2890

    Article  CAS  PubMed  Google Scholar 

  • Schoen JHR (1964) Comparative aspects of the descending fibre systems in the spinal cord. Prog Brain Res 11:203–222

    Article  CAS  PubMed  Google Scholar 

  • Schoen JHR (1969) The corticofugal projection on the brain stem and spinal cord in man. Psychiatr Neurol Neurochir 72:121–128

    CAS  PubMed  Google Scholar 

  • Schomburg ED (1990) Spinal sensory systems and their supraspinal control. Neurosci Res 7:265–340

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Curt A, Jensen L, Dietz V (1997) Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res 115:234–246

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Curt A, Colombo G, Berger W (1999) Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task. Exp Brain Res 126:583–588

    Article  CAS  PubMed  Google Scholar 

  • Schwartzmann RJ (1978) A behavioral analysis of complete unilateral section of the pyramidal tract at the medullary level in M. mulatta. Ann Neurol 4:234–244

    Article  Google Scholar 

  • Seitz R, Haflich R, Binkofski F, Tellmann L, Herzog H, Freund H-J (1998) Role of the premotor cortex in recovery from middle cerebral artery syndrome. Arch Neurol 55:1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Selionov VA, Shik ML (1984) Medullary locomotor strip and column in the cat. Neuroscience 13:1267–1278

    Article  CAS  PubMed  Google Scholar 

  • Sellers JR (2000) Myosins: a diverse superfamily. Biochem Biophys Acta Mol Cell Res 1496:3–22

    Article  CAS  Google Scholar 

  • Serrien DJ, Strens LH, Oliviero A, Brown P (2002) Repetitive transcranial magnetic stimulation of the supplementary motor area (SMA) degrades bimanual movement control in humans. Neurosci Lett 328:89–92

    Article  CAS  PubMed  Google Scholar 

  • Shapovalov AI (1975) Neuronal organization and synaptic mechanisms of supraspinal motor control in vertebrates. Rev Physiol Biochem Pharmacol 72:1–54

    CAS  PubMed  Google Scholar 

  • Sharrard WJ (1955) The distribution of the permanent paralysis in the lower limb in poliomyelitis. J Bone Joint Surg Br 37:540–558

    Article  PubMed  Google Scholar 

  • Shefchyk SJ, Jordan LM (1985) Excitatory and inhibitory post-synaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region. J Neurophysiol 53:1345–1355

    Article  CAS  PubMed  Google Scholar 

  • Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501

    Article  CAS  PubMed  Google Scholar 

  • Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–766. (English translation of Biofizika 11:659–666)

    Google Scholar 

  • Shik ML, Severin FV, Orlovsky GN (1967) Structure of the brain stem responsible for evoked locomotion. Sechenov Physiol J USSR 53:1125–1132. (in Russian)

    CAS  Google Scholar 

  • Shinoda Y, Zarzecki P, Asanuma H (1979) Spinal branching of pyramidal tract neurons in the monkey. Exp Brain Res 34:59–72

    Article  CAS  PubMed  Google Scholar 

  • Shinoda Y, Yokota JI, Futami T (1981) Divergent projection of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neurosci Lett 23:7–12

    Article  CAS  PubMed  Google Scholar 

  • Sie Pek Giok (1956) Localization of fibre systems within the white matter of the medulla oblongata and the cervical cord in man. Thesis, University of Leiden. Eduard IJdo, Leiden

    Google Scholar 

  • Sie Pek Giok (1958) The fasciculus intermediolateralis of Loewenthal in man. Brain 81:577–587

    Article  CAS  PubMed  Google Scholar 

  • Simić G, Mladinov M, Seso Simić D, Jovanov-Milošević N, Islam A, Pajtak A et al (2008) Abnormal motoneuron migration, differentiation and axon outgrowth in spinal muscular atrophy. Acta Neuropathol (Berl) 115:313–326

    Article  Google Scholar 

  • Sjöström M, Downham DY, Lexell J (1986) Distribution of different fiber types in human skeletal muscles: why is there a difference within a fascicle? Muscle Nerve 9:30–36

    Article  PubMed  Google Scholar 

  • Smith MC, Deacon P (1981) Helweg’s triangular tract in man. Brain 104:249–277

    Article  CAS  PubMed  Google Scholar 

  • Snijders AH, van de Warrenburg BP, Giladi N, Bloem BR (2007) Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol 6:63–74

    Article  PubMed  Google Scholar 

  • Sprague JM (1948) A study of motor cell localization in the spinal cord of the rhesus monkey. Am J Anat 82:1–26

    Article  CAS  PubMed  Google Scholar 

  • Sprague JM, Ha H (1964) The terminal fields of dorsal root fibers in the lumbosacral spinal cord of the cat and the dendritic organization of the motor nuclei. Prog Brain Res 11:120–154

    Article  CAS  PubMed  Google Scholar 

  • Stålberg E, Schwartz MS, Thiele B, Schiller HH (1976) The normal motor unit in man. A single fibre EMG multielectrode investigation in man. J Neurol Sci 27:291–301

    Article  PubMed  Google Scholar 

  • Stephan KM, Binkofski F, Halsband U, Dohle C, Wunderlich G, Schnitzler A et al (1999) The role of ventral medial wall motor areas in bimanual co-ordination. A combined lesion and activation study. Brain 122:351–368

    Article  PubMed  Google Scholar 

  • Sterling P, Kuypers HGJM (1968) Anatomical organization of the brachial spinal cord of the cat. III. The propriospinal connections. Brain Res 7:419–443

    Article  CAS  PubMed  Google Scholar 

  • Swank RL (1934) The relationship between the circumolivary pyramidal fascicles and the pontobulbar body in man. J Comp Neurol 60:309–317

    Article  Google Scholar 

  • Swash M, Fox KP (1972) Muscle spindle innervation in man. J Anat 112:61–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeoka A, Vollenweider I, Courtine G, Arber S (2014) Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord inhjury. Cell 159:1626–1639

    Article  CAS  PubMed  Google Scholar 

  • Talairach J, Bancaud J (1966) The supplementary motor area in man. Int J Neurol 5:330–347

    Google Scholar 

  • Tanji J (1996) New concepts of the supplementary motor area. Curr Opin Neurobiol 6:782–787

    Article  CAS  PubMed  Google Scholar 

  • Tanji J, Okano K, Sato KC (1988) Neuronal activity in cortical motor areas related to ipsilateral, contralateral, and bilateral digit movements of the monkey. J Neurophysiol 60:325–343

    Article  CAS  PubMed  Google Scholar 

  • Taylor RG, Gleave JRW (1957) Incomplete spinal cord injuries (with Brown-Séquard phenomenon). J Bone Joint Surg Br 39:438–450

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Rotteveel J (2004) Development and malformations of the human pyramidal tract. J Neurol 251:1429–1442

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, pp 981–1141. (in Dutch)

    Google Scholar 

  • ten Donkelaar HJ, Itoh K, Hori A (2014) Development and developmental disorders of the spinal cord. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical Neuroembryology: development and developmental disorders of the human nervous system, 2nd edn. Springer, Heidelberg-New York-Dordrecht-London, pp 271–320

    Google Scholar 

  • ten Donkelaar HJ, Broman J, Neumann PE, Puelles L, Riva A, Tubbs RS, Kachlik D (2017) Towards a Terminologia Neuroanatomica. Clin Anat 30:145–155

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, Kachlik D, Tubbs RS (2018) An illustrated Terminologia Neuroanatomica: a concise encyclopedia of human neuroanatomy. Springer, Cham

    Google Scholar 

  • Terao S, Takatsu S, Izumi M, Takagi J, Mitsuma T, Takahashi A et al (1997) Central facial weakness due to medial medullary infarction: the course of facial corticobulbar fibres. J Neurol Neurosurg Psychiatry 63:391–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terao S, Miura N, Takeda A, Takahashi A, Mitsuma T, Sobue G (2000) Course and distribution of facial corticobulbar tract fibres in the lower brain stem. J Neurol Neurosurg Psychiatry 69:262–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson PD, Day BL, Crockard HA, Calder I, Murray NMF, Rothwell JC (1991) Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation of the motor cortex. J Neurol Neurosurg Psychiatry 54:618–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • TNA (2017) Terminologia Neuroanatomica. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology

    Google Scholar 

  • Tohyama M, Sakai K, Salvert D, Touret M, Jouvet M (1979a) Spinal projections from the lower brain stem in the cat as demonstrated by the HRP technique. I. Origins of the reticulospinal tracts and their funicular trajectories. Brain Res 173:383–403

    Article  CAS  PubMed  Google Scholar 

  • Tohyama M, Sakai K, Salvert D, Touret M, Jouvet M (1979b) Spinal projections from the lower brain stem in the cat as demonstrated by the HRP technique. II. Projections from the dorsal pontine tegmentum and raphe nuclei. Brain Res 176:215–231

    Article  CAS  PubMed  Google Scholar 

  • Tokuno H, Tanji J (1993) Input organization of distal and proximal forelimb areas in the monkey primary motor cortex: a retrograde double labeling study. J Comp Neurol 333:199–209

    Article  CAS  PubMed  Google Scholar 

  • Tomassini V, Jbabdi S, Klein JC, Behrens TEJ, Mackay CE, Matthews PM et al (2007) Diffusion-weighted imaging tractography-based parcellation of the human lateral premotor cortex identifies dorsal and ventral subregions with anatomical and functional specializations. J Neurosci 27:10259–10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tower SS (1940) Pyramidal lesion in the monkey. Brain 63:36–90

    Article  Google Scholar 

  • Toyoshima K, Sakai H (1982) Exact cortical extent of the origin of the corticospinal tract (CST) and the quantitative contribution to the CST in different cytoarchitectonic areas. A study with horseradish peroxidase in the monkey. J Hirnforsch 23:257–269

    CAS  PubMed  Google Scholar 

  • Urban PP, Hopf HC, Connemann B, Hundemer HP, Koehler J (1996) The course of cortico-hypoglossal projections in the human brainstem. Functional testing using transcranial magnetic stimulation. Brain 119:1031–1038

    Article  PubMed  Google Scholar 

  • Urban PP, Wicht S, Vucorevic G, Fitzek S, Marx J, Thömke F et al (2001) The course of corticofacial projections in the human brainstem. Brain 124:1866–1876

    Article  CAS  PubMed  Google Scholar 

  • Van de Crommert HWAA, Mulder T, Duysens J (1998) Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 7:251–263

    Article  PubMed  Google Scholar 

  • Verhaart WJC (1934) Zehn Fällen des Pickschen Bündels. Psychiatr Neurol Bl 38:85–95

    Google Scholar 

  • Verhaart WJC (1935) Die aberrierenden Pyramidenfasern bei Menschen und Affen. Schweiz Arch Neurol 36:170–190

    Google Scholar 

  • Verhaart WJC (1948) The pes pedunculi and pyramid. J Comp Neurol 88:139–155

    Article  CAS  PubMed  Google Scholar 

  • Verhaart WJC (1970) Conparative anatomical aspects of the mammalian brain stem and spinal cord. Van Gorcum, Assen

    Google Scholar 

  • Verhaart WJC, Kramer W (1952) The uncrossed pyramidal tract. Acta Psychiatr Neurol Scand 27:181–190

    Article  CAS  PubMed  Google Scholar 

  • Vilensky JA, O’Connor BL (1998) Stepping in nonhuman primates with a complete spinal cord transection: old and new data, and implications for humans. Ann N Y Acad Sci 860:528–530

    Article  CAS  PubMed  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol (Lpz) 25:279–461

    Google Scholar 

  • Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR (1995) Human cingulate cortex: surface features, flat maps, and cytoarchitectonics. J Comp Neurol 359:490–506

    Article  CAS  PubMed  Google Scholar 

  • Vogt BA, Hof PR, Vogt LJ (2004) Cingulate gyrus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 915–949

    Chapter  Google Scholar 

  • Volkmann J, Schnitzler A, Witte OW, Freund H-J (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79:2149–2154

    Article  CAS  PubMed  Google Scholar 

  • von Monakow C (1909) Der rote Kern, die Haube und die Regio hypothalamica bei einigen Säugetieren und beim Menschen. I. Teil: Anatomisches und Experimentelles. Arb Hirnanat Inst Zürich 3:49–267

    Google Scholar 

  • von Monakow C (1910) Der rote Kern, die Haube und die Regio hypothalamica bei einigen Säugetieren und beim Menschen. II. Teil: Pathologische-anatomische Untersuchungen beim Menschen. Arb Hirnanat Inst Zürich 4:103–225

    Google Scholar 

  • Vorobiev V, Govoni P, Rizzolatti G, Matelli M, Luppino G (1998) Parcellation of human mesial area 6: cytoarchitectonic evidence for three separate areas. Eur J Neurosci 19:2199–2203

    Article  Google Scholar 

  • Voss VH (1937) Untersuchungen über Zahl, Anordnung and Länge der Muskelspindeln in den Lumbrikalmuskeln des Menschen und einiger Tiere. Z Mikrosk-Anat Forsch 42:509–524

    Google Scholar 

  • Voss VH (1971) Tabelle der absoluten und relativen Muskelspindelzahlen der menschlichen Skelettmuskulatur. Anat Anz 129:562–572

    CAS  PubMed  Google Scholar 

  • Walmsley B, Hodgson JA, Burke RE (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cars. J Neurophysiol 41:1203–1216

    Article  CAS  PubMed  Google Scholar 

  • Walshe FMR (1948) Clinical studies in neurology. Livingstone, Edinburgh

    Google Scholar 

  • Wannier T, Bastiaanse CM, Colombo G, Dietz V (2001) Arm to leg coordination in humans during walking, creeping and swimming activities. Exp Brain Res 141:375–379

    Article  CAS  PubMed  Google Scholar 

  • Ward NS, Newton JM, Swayne OBC, Lee L, Thompson AJ, Greenwood RJ et al (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129:809–819

    Article  PubMed  Google Scholar 

  • Wassermann EM, McShane LM, Hallett M, Cohen LG (1992) Non-invasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 85:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wassermann EM, Wang W, Zeffiro TA, Sadato N, Pascual-Leone A, Toro C, Hallett M (1996) Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. NeuroImage 3:1–6

    Article  CAS  PubMed  Google Scholar 

  • Weiller C, Chollet F, Friston KJ, Wise RJS, Frackowiak RSJ (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31:463–472

    Article  CAS  PubMed  Google Scholar 

  • Weiller C, Ramsay SC, Wise RJS, Friston KJ, Frackowiak RSJ (1993) Individual patterns of functional organization in the human cerebral cortex after capsular infarction. Ann Neurol 33:181–189

    Article  CAS  PubMed  Google Scholar 

  • Wenner P, O’Donovan MJ (1999) Identification of an interneuronal population that mediates recurrent inhibition of motor neurons in the developing chick spinal cord. J Neurosci 19:7557–7567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzelburger R, Kopper F, Frenzel A, Stolze H, Klebe S, Brossmann A et al (2005) Hand coordination following capsular stroke. Brain 128:64–74

    Article  PubMed  Google Scholar 

  • Westerhausen R, Huster RJ, Kreuder F, Wittling W, Schweiger E (2007) Corticospinal asymmetries at the level of the internal capsule: is there an association with handedness? NeuroImage 37:379–386

    Article  PubMed  Google Scholar 

  • Westlund KN, Coulter JD (1980) Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in monkey: axonal transport studies and dopamine-β-hydroxylase immunocytochemistry. Brain Res Rev 2:235–264

    Article  CAS  Google Scholar 

  • Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1982) Descending noradrenergic projections and their spinal terminations. Prog Brain Res 57:219–238

    Article  CAS  PubMed  Google Scholar 

  • Wieler M, Stein RB, Ladouceur M, Whittaker M, Smith AW, Naaman S et al (1999) Multicenter evaluation of electrical stimulation systems for walking. Arch Phys Med Rehabil 80:495–500

    Article  CAS  PubMed  Google Scholar 

  • Wiesendanger M, Serrien DJ (2001) Neurological problems affecting hand dexterity. Brain Res Rev 36:161–168

    Article  CAS  PubMed  Google Scholar 

  • Wiesendanger M, Serrien DJ (2005) Bimanual coordination and its disorders. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders. From neuroanatomy and neurobiology to clinical neurology. Oxford University Press, Oxford, pp 193–236

    Google Scholar 

  • Wiesendanger M, Rouiller EM, Kazennikov O, Perrig S (1996) Is the supplementary motor area a bilaterally organized system? Adv Neurol 70:85–93

    CAS  PubMed  Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum, New York

    Book  Google Scholar 

  • Wilson VJ, Peterson BW (1981) Vestibulospinal and reticulospinal systems. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, Motor systems, vol II. American Physiological Society, Bethesda, pp 667–702

    Google Scholar 

  • Wilson VJ, Peterson BW (1988) Vestibular and reticular projections to the neck. In: Peterson BW, Richmond F (eds) Control of head movements. Oxford University Press, New York, pp 129–140

    Google Scholar 

  • Winkler C (1926) De bouw van het zenuwstelsel. IV. Bohn, Haarlem, The Netherlands

    Google Scholar 

  • Woolsey CN, Settlage PH, Meyer DR, Sencer W, Hamuy TP, Travis AM (1952) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Publ Assoc Res Nerv Ment Dis 30:238–264

    CAS  PubMed  Google Scholar 

  • Yakovlev PI, Rakic P (1966) Patterns of decussation of bulbar pyramids and distribution of pyramidal tracts on two sides of the spinal cord. Trans Am Neurol Assoc 91:366–367

    Google Scholar 

  • Yamashita M, Yamamoto T (2001) Aberrant pyramidal tract in the medial lemniscus of the human brainstem: Normal distribution and pathological changes. Eur Neurol 45:75–82

    Article  CAS  PubMed  Google Scholar 

  • Yang JF, Stephens MJ, Vishram R (1998) Transient disturbances to one limb produce coordinated, bilateral responses during infant stepping. J Neurophysiol 79:2329–2337

    Article  CAS  PubMed  Google Scholar 

  • Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the hand motor area to a knob on the precentral gyrus. A new landmark. Brain 120:141–157

    Article  PubMed  Google Scholar 

  • Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN (2012) Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 135:2277–2289

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Narayan S, Geiman A, Lanuza GM, Velasquez T, Shanks B et al (2008) V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60:84–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zickler P, Seitz RJ, Hartung H-P, Hefter H (2005) Bilateral medullary pyramid infarction. Neurology 64:1801

    Article  PubMed  Google Scholar 

  • Zilles K, Schlaug G, Geyer S, Luppino G, Matelli M, Qü M et al (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and non-human primate brain. Adv Neurol 70:29–43

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

ten Donkelaar, H.J. (2020). Motor Systems. In: Clinical Neuroanatomy. Springer, Cham. https://doi.org/10.1007/978-3-030-41878-6_9

Download citation

Publish with us

Policies and ethics