Skip to main content

Protein engineering of metallothionein to study the metal-binding ability

  • Chapter
Metallothionein IV

Abstract

It is well known that metals play an important role in post-transcriptional modifications of proteins stabilizing their structure and physiological activity [1]. The mechanism by which biosynthesized proteins interact with metals and originate such cluster structures like metallothionein (MT) remain unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vallee BL, Auld DS (1990) Zinc coordination, function and structure of zinc enzymes and other proteins. Biochemistry 29: 5647–5659.

    Article  PubMed  CAS  Google Scholar 

  2. Otvos JD, Armitage IM (1980) Structure of the metal cluster in rabbit liver metallothionein. Proc Natl Acad Sci USA 77: 7094–7098.

    Article  PubMed  CAS  Google Scholar 

  3. Winge DR, Miklossy KA (1982) Domain nature of metallothionein. J Biol Chem 257: 3471–3476.

    PubMed  CAS  Google Scholar 

  4. Nielson KB, Winge DR (1983) Order of metal binding in metallothionein. J Biol Chem 258: 13063–13069.

    PubMed  CAS  Google Scholar 

  5. Zelazowski AJ, Szymanska JA, Law AYC, Stillman MJ (1984) Spectroscopic properties of the α fragment of metallothionein. J Biol Chem 259: 12960–12963.

    PubMed  CAS  Google Scholar 

  6. Kojima Y, Kägi JHR (1978) Metallothionein. Trends Biochem Sci 3: 90–93.

    Article  CAS  Google Scholar 

  7. Kägi JHR (1993) Evolution, structure and chemical activity of class I metallothioneins: An overview. In: KT Suzuki, N Imura, M Kimura (eds): Metallothionein III. Birkhäuser Verlag, Basel, pp. 29–55.

    Google Scholar 

  8. Murooka Y, Nagaoka T (1987) Expression of cloned monkey metallothionein in Escherichia coli. Appl Environ Microbiol 53: 204–207.

    PubMed  CAS  Google Scholar 

  9. Hou Y, Kim R, Kim S (1988) Expression of the mouse metallothionein-I gene in Escherichia coli: increased tolerance to heavy metals. Biochim Biophys Acta 951: 230–234.

    Article  PubMed  CAS  Google Scholar 

  10. Kille P, Stephens P, Cryer A, Kay J (1990). The expression of a synthetic rainbow trout metallothionein gene in E. coli. Biochim Biophys Acta 1048: 178–186.

    Article  PubMed  CAS  Google Scholar 

  11. Chernaik ML, Huang PC (1991) Differential effect of cysteine-to-serine substitutions in metallothionein on cadmium resistance. Proc Natl Acad Sci USA 88: 3024–3028.

    Article  PubMed  CAS  Google Scholar 

  12. Cismowski MJ, Huang PC (1991) Effect of cysteine replacements at positions 13 and 50 in metallothionein structure. Biochemistry 30: 6626–6632.

    Article  PubMed  CAS  Google Scholar 

  13. Cismowski MJ, Narula SS, Armitage IM, Chernaik ML, Huang PC (1991) Mutation of invariant cysteines of mammalian metallothionein alters metal binding capacity, cadmium resistance, and 113Cd NMR spectrum. J Biol Chem 266: 24390–24397.

    PubMed  CAS  Google Scholar 

  14. Cody CW, Huang PC (1993) Metallothionein detoxification function is impaired by replacement of both conserved lysines with glutamines in the hinge between the two domains. Biochemistry 32: 5127–5131.

    Article  PubMed  CAS  Google Scholar 

  15. Cody CW, Huang PC (1994) Replacement of all α-domain lysines with glutamate reduces metallothionein detoxification function. Biochem Biophys Res Commun 202: 954–959.

    Article  PubMed  CAS  Google Scholar 

  16. Pan PK, Hou FY, Cody CW, Huang PC (1994) Substitution of glutamic acids for the conserved lysines in the α domain affects metal binding in both α and β domains of mammalian metallothionein. Biochem Biophys Res Commun 202: 621–628.

    Article  PubMed  CAS  Google Scholar 

  17. Kille P, Lees WE, Darke BM, Winge DR, Dameron CT, Stephens P, Kay J (1992) Sequestration of cadmium and copper by recombinant rainbow trout and human metallothioneins and by chimeric (mermaid and fish-man) proteins with interchanged domains. J Biol Chem 267: 8042–8049.

    PubMed  CAS  Google Scholar 

  18. Odawara F, Kurasaki M, Suzuki-Kurasaki M, Oikawa S, Emoto T, Yamasaki F, Linde Arias AR, Kojima Y (1995) Expression of human metallothionein-2 in Escherichia coli: Cadmium tolerance of transformed cells. J Biochem 118: 1131–1137.

    CAS  Google Scholar 

  19. Nielson KB, Winge DR (1984) Preferential binding of copper to the β domain of metallothionein. J Biol Chem 259: 4941–4946.

    PubMed  CAS  Google Scholar 

  20. Okada Y, Ohta N, Yagyu M, Min KS, Onosaka S, Tanaka K (1985) Synthesis of a nonacosapeptide (β-fragment) corresponding to the N-terminal sequence 1–29 of human liver metallothionein II and its heavy metal-binding properties. FEES Lett 183: 375–378.

    Article  CAS  Google Scholar 

  21. Vašák M, Galdes A, Hill HAO, Kägi JHR, Bremner I, Young BW (1980) Investigation of the structure of metallothioneins by proton nuclear magnetic resonance spectroscopy. Biochemistry 19: 416–425.

    Article  PubMed  Google Scholar 

  22. Nielson KB, Winge DR (1985) Independence of the domain of metallothionein in metal binding. J Biol Chem 260: 8698–8701.

    PubMed  CAS  Google Scholar 

  23. Kurasaki M, Emoto T, Linde-Arias AR, Okabe M, Yamasaki F, Oikawa S, Kojima Y (1996) Independent self assembly of cadmium-binding α-fragment of metallothionein without participation of β-fragment in Escherichia coli. Protein Eng.9: 1173–1180.

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, Mackay EA, Kurasaki M, Kägi JHR (1994) Purification and characterization of recombinant sea urchin metallothionein expressed in Escherichia coli. Eur J Biochem 225: 449–457.

    Article  PubMed  CAS  Google Scholar 

  25. Rhee IK, Lee KS, Huang PC (1990) Metallothioneins with interdomain hinges expanded by insertion mutagenesis. Protein Eng.3: 205–213.

    Article  PubMed  CAS  Google Scholar 

  26. Vašák M, McClelland CHE, Hill HAO, Kägi JHR (1985) Role of lysine side chains in metallothionein. Experientia 41: 30–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Kurasaki, M. et al. (1999). Protein engineering of metallothionein to study the metal-binding ability. In: Klaassen, C.D. (eds) Metallothionein IV. Advances in Life Sciences. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8847-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8847-9_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9799-0

  • Online ISBN: 978-3-0348-8847-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics