Skip to main content

Metallothionein structure update

  • Chapter
Metallothionein IV

Part of the book series: Advances in Life Sciences ((ALS))

Abstract

Metallothioneins (MTs) are low molecular weight (2–7 kDa), cysteine-rich proteins which bind with high affinity to metal ions, such as Zn(II), Cd(II), Cu(I) and Ag(I), in unusual metal-thiolate clusters [1-3]. MT biosynthesis is induced by a wide range of factors, including metal ions, oxidative stress, glucocorticoid hormones and cytokines, leading to their implication in many diverse cellular processes. However, the primary function of MTs under normal physiological conditions is in the transport and storage of the essential metals: zinc and copper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Otvos JD and Armitage IM (1979) 113Cd NMR of metallothionein: diirect evidence for the existence of polynuclear metal binding sites. J Amer Chem Soc 101: 7734–7736.

    Article  CAS  Google Scholar 

  2. Kägi JH, Schäffer A (1988) Biochemistry of metallothionein. Biochemistry 27: 8509–8515.

    Article  PubMed  Google Scholar 

  3. Pountney DL, Kägi JHR, Vašák M (1995) Metallothioneins. In: G Berthon (ed.): Handbook of Metal-Ligand Interactions in Biological Fluids; Bioinorganic Chemistry, Vol. 1. Marcel Dekker Inc., New York, pp. 431–450.

    Google Scholar 

  4. Narula SS, Winge DR, Armitage IM (1993) Copper-and silver-substituted yeast metallothioneins: sequential H NMR assignments reflecting conformational heterogeneity at the C terminus. Biochemistry 32: 6773–6787.

    Article  PubMed  CAS  Google Scholar 

  5. Peterson CW, Narula SS, Armitage IM (1996) 3D solution structure of copper and silver-substituted yeast metallothioneins. FEBS Lett 379: 85–93.

    Article  PubMed  CAS  Google Scholar 

  6. Narula SS, Armitage IM, Brouwer M, Brouwer Y, Enghild JJ (1993) Establishment of two distinct protein domains in blue crab Callinectes sapidus metallothionein-I through Heteronuclear (1H-113Cd) and Homonuclear (1H-1H) correlation NMR experiments. Magn Reson Chem 31: S96–S103.

    Article  CAS  Google Scholar 

  7. Narula SS, Brouwer M, Hua Y, Armitage IM (1995) Three-dimensional solution structure of Callinectes sapidus metallothionein-1 determined by homonuclear and heteronuclear magnetic resonance spectroscopy. Biochemistry 34: 620–631.

    Article  PubMed  CAS  Google Scholar 

  8. Kägi JHR, Riek R, Prêcheur B, Wang Y, Mackay E, Güntert P, Wider G and Wüthrich K (1997) NMR solution structure of metallothionein MTA from the sea urchin Strongylocentrotus pupuratus, this volume.

    Google Scholar 

  9. Braun W, Wagner G, Wörgötter E, Vašák M, Kägi JH, Wüthrich K (1986) Polypeptide fold in the two metal clusters of metallothionein-2 by nuclear magnetic resonance in solution. J Mol Biol 187: 125–129.

    Article  PubMed  CAS  Google Scholar 

  10. Schultze P, Wörgötter E, Braun W, Wagner G, Vašák M, Kägi JH, Wüthrich K (1988) Conformation of [Cd7]metallothionein-2 from rat liver in aqueous solution determined by nuclear magnetic resonance spectroscopy. J Mol Biol 203: 251–268.

    Article  PubMed  CAS  Google Scholar 

  11. Messerle BA, Schäffer A, Vašák M, Kägi JH, Wüthrich K (1990) Three-dimensional structure of human [113Cd7]metallothionein-2 in solution determined by nuclear magnetic resonance spectroscopy. J Mol Biol 214: 765–779.

    Article  PubMed  CAS  Google Scholar 

  12. Braun W, Vašák M, Robbins AH, Stout CD, Wagner G, Kägi JH, Wüthrich K (1992) Comparison of the NMR solution structure and the x-ray crystal structure of rat metallothionein-2. Proc Natl Acad Sci USA 89: 10124–10128.

    Article  PubMed  CAS  Google Scholar 

  13. Malikayil JA, Lerch K, Armitage IM (1989) Proton NMR studies of metallothionein from Neurospora crassa: sequence-specific assignments by NOE measurements in the rotating frame. Biochemistry 28: 2991–2995.

    Article  PubMed  CAS  Google Scholar 

  14. Pountney DL, Fundel SM, Faller P, Birchler NE, Hunziker P, Vašák M (1994) Isolation, primary structures and metal binding properties of neuronal growth inhibitory factor (GIF) from bovine and equine brain. FEBS Lett 345: 193–197.

    Article  PubMed  CAS  Google Scholar 

  15. Bogumil R, Faller P, Pountney DL, Vašák M (1996) Evidence for Cu(I) clusters and Zn(II) clusters in neuronal growth-inhibitory factor isolated from bovine brain. Eur J Biochem 238: 698–705.

    Article  PubMed  CAS  Google Scholar 

  16. Shen G (1995) Chapter 5, Properties of recombinant neuronal growth inhibitor factor (GIF). PhD thesis, North Carolina State University.

    Google Scholar 

  17. Messerle BA, Schäffer A, Vašák M, Kägi JH, Wüthrich K (1992) Comparison of the solution conformations of human [Zn7]-metallothionein-2 and [Cd7]-metallothionein-2 using nuclear magnetic resonance spectroscopy. J Mol Biol 225(2): 433–443.

    Article  PubMed  CAS  Google Scholar 

  18. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M (1991) The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7: 337–347.

    Article  PubMed  CAS  Google Scholar 

  19. Koch KA, Pena MMO, Thiele DJ (1997) Copper binding motifs in catalysis, transport, detoxification and signalling. Chem Biol 4: 549–560.

    Article  PubMed  CAS  Google Scholar 

  20. Pountney DL, Schauwecker I, Zarn J, Vašák M (1994) Formation of mammalian Cub-metallothionein in vitro: evidence for the existence of two Cu(I)4-thiolate clusters. Biochemistry 33: 9699–9705.

    Article  PubMed  CAS  Google Scholar 

  21. Li H, Otvos JD (1996) 111Cd NMR studies of the domain specificity of Ag+ and Cu+ binding to metallothionein. Biochemistry 35: 13929–13936.

    Article  PubMed  CAS  Google Scholar 

  22. Brouwer M, Schlenk D, Ringwood AH, Brouwer-Hoexum T (1992) Metal-specific induction of metallothionein isoforms in the blue crab Callinectes sapidus in response to single-and mixed-metal exposure. Arch Biochem Biophys 294: 461–468.

    Article  PubMed  CAS  Google Scholar 

  23. Dellinger R, Berger B, Hunziker P, Kägi JH (1997) Metallothionein in snail Cd and Cu metabolism. Nature 388: 237–238.

    Article  Google Scholar 

  24. Robbins AH, McRee DE, Williamson M, Collett SA, Xuong NH, Furey WF, Wang BC, Stout CD (1991) Refined crystal structure of Cd, Zn metallothionein at 2.0 Å resolution. J Mol Biol 221: 1269–1293.

    PubMed  CAS  Google Scholar 

  25. Otvos JD, Engeseth HR, Nettesheim DG, Hilt CR (1987) Interprotein metal exchange reactions of metallothionein. EXS 52: 171–178.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Öz, G., Pountney, D.L., Armitage, I.M. (1999). Metallothionein structure update. In: Klaassen, C.D. (eds) Metallothionein IV. Advances in Life Sciences. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8847-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8847-9_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9799-0

  • Online ISBN: 978-3-0348-8847-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics