Skip to main content

Articular Cartilage and Subchondral Bone

  • Chapter
  • First Online:
MRI of the Knee

Abstract

The knee articular cartilage is a hyaline cartilage composed of water (65–80 %), collagen (10–20 %, with type II collagen representing 90–95 % of the network), proteoglycans (10–20 %), and chondrocytes (1–5 %) [1]. Morphologically there are four cartilage zones with different composition, structure, and function. The superficial zone is the thinnest zone of the cartilage (10–20 % from the cartilage thickness) and is covered by synovial fluid. It is mainly composed of collagen fibers oriented parallel to the articular surface and provides shear strength. The transitional zone is the thickest zone (40–60 % from the cartilage thickness) and contains randomly oriented fibers, and its role is to distribute stress uniformly [2]. The deep or the radial zone (30 % of the cartilage thickness) contains the largest diameter of collagen fiber. The fibers are oriented perpendicularly to the articular surface, and its role is to anchor the cartilage to the subchondral bone [2]. The calcified cartilage zone (5 % of the cartilage thickness), the deepest zone of the cartilage, is a mineralized thin area and represents a shock absorber along the subchondral bone [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77–95.

    Article  PubMed  Google Scholar 

  2. Bullough P, Goodfellow J. The significance of the fine structure of articular cartilage. J Bone Joint Surg Br. 1968;50(4):852–7.

    CAS  PubMed  Google Scholar 

  3. Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 2009;37(1–2):1–57.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Imhof H, et al. Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol. 2000;35(10):581–8.

    Article  CAS  PubMed  Google Scholar 

  5. Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis. 1999;58(1):27–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kladny B, et al. Cartilage thickness measurement in magnetic resonance imaging. Osteoarthritis Cartilage. 1996;4(3):181–6.

    Article  CAS  PubMed  Google Scholar 

  7. Andreisek G, Weiger M. T2* mapping of articular cartilage: current status of research and first clinical applications. Invest Radiol. 2014;49(1):57–62.

    Article  PubMed  Google Scholar 

  8. Crema MD, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics. 2011;31(1):37–61.

    Article  PubMed  Google Scholar 

  9. Andreisek G, et al. Delayed gadolinium-enhanced MR imaging of articular cartilage: three-dimensional T1 mapping with variable flip angles and B1 correction. Radiology. 2009;252(3):865–73.

    Article  PubMed  Google Scholar 

  10. Andreisek G, et al. Quantitative MR imaging evaluation of the cartilage thickness and subchondral bone area in patients with ACL-reconstructions 7 years after surgery. Osteoarthritis Cartilage. 2009;17(7):871–8.

    Article  CAS  PubMed  Google Scholar 

  11. Eckstein F, Guermazi A, Roemer FW. Quantitative MR imaging of cartilage and trabecular bone in osteoarthritis. Radiol Clin North Am. 2009;47(4):655–73.

    Article  PubMed  Google Scholar 

  12. Raya JG, et al. Diffusion-tensor imaging of human articular cartilage specimens with early signs of cartilage damage. Radiology. 2013;266(3):831–41.

    Article  PubMed  Google Scholar 

  13. Losch A, et al. A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI. Part 1: development of a computational method. Magn Reson Imaging. 1997;15(7):795–804.

    Article  CAS  PubMed  Google Scholar 

  14. Trattnig S, et al. MR imaging of cartilage and its repair in the knee–a review. Eur Radiol. 2009;19(7):1582–94.

    Article  CAS  PubMed  Google Scholar 

  15. Andreisek G, et al. A systematic review of semiquantitative and qualitative radiologic criteria for the diagnosis of lumbar spinal stenosis. AJR Am J Roentgenol. 2013;201(5):W735–46.

    Article  PubMed  Google Scholar 

  16. Peterfy CG, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  17. Kornaat PR, et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)–inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol. 2005;34(2):95–102.

    Article  PubMed  Google Scholar 

  18. Hunter DJ, et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206–11.

    Article  CAS  PubMed  Google Scholar 

  19. Goodfellow J, Hungerford DS, Woods C. Patello-femoral joint mechanics and pathology. 2. Chondromalacia patellae. J Bone Joint Surg Br. 1976;58(3):291–9.

    CAS  PubMed  Google Scholar 

  20. Rubenstein JD, et al. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol. 1997;169(4):1089–96.

    Article  CAS  PubMed  Google Scholar 

  21. Cotofana S, et al. Relationship between knee pain and the presence, location, size and phenotype of femorotibial denuded areas of subchondral bone as visualized by MRI. Osteoarthritis Cartilage. 2013;21(9):1214–22.

    Article  CAS  PubMed  Google Scholar 

  22. Zanetti M, et al. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology. 2000;215(3):835–40.

    Article  CAS  PubMed  Google Scholar 

  23. Landells JW. The bone cysts of osteoarthritis. J Bone Joint Surg Br. 1953;35-B(4):643–9.

    CAS  PubMed  Google Scholar 

  24. Rhaney K, Lamb DW. The cysts of osteoarthritis of the hip; a radiological and pathological study. J Bone Joint Surg Br. 1955;37-B(4):663–75.

    CAS  PubMed  Google Scholar 

  25. Bancroft LW, Peterson JJ, Kransdorf MJ. Cysts, geodes, and erosions. Radiol Clin North Am. 2004;42(1):73–87.

    Article  PubMed  Google Scholar 

  26. McQueen FM. Bone marrow edema and osteitis in rheumatoid arthritis: the imaging perspective. Arthritis Res Ther. 2012;14(5):224.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bullough PG, Bansal M. The differential diagnosis of geodes. Radiol Clin North Am. 1988;26(6):1165–84.

    CAS  PubMed  Google Scholar 

  28. Tehranzadeh J, et al. MRI of large intraosseous lesions in patients with inflammatory arthritis. AJR Am J Roentgenol. 2004;183(5):1453–63.

    Article  PubMed  Google Scholar 

  29. Crema MD, et al. MR imaging of intra- and periarticular soft tissues and subchondral bone in knee osteoarthritis. Radiol Clin North Am. 2009;47(4):687–701.

    Article  PubMed  Google Scholar 

  30. Guermazi A, et al. MR findings in knee osteoarthritis. Eur Radiol. 2003;13(6):1370–86.

    PubMed  Google Scholar 

  31. Waldschmidt JG, Braunstein EM, Buckwalter KA. Magnetic resonance imaging of osteoarthritis. Rheum Dis Clin North Am. 1999;25(2):451–65.

    Article  CAS  PubMed  Google Scholar 

  32. McCauley TR, Kornaat PR, Jee WH. Central osteophytes in the knee: prevalence and association with cartilage defects on MR imaging. AJR Am J Roentgenol. 2001;176(2):359–64.

    Article  CAS  PubMed  Google Scholar 

  33. Breer S, et al. Spontaneous osteonecrosis of the knee (SONK). Knee Surg Sports Traumatol Arthrosc. 2013;21(2):340–5.

    Article  CAS  PubMed  Google Scholar 

  34. Brahme SK, et al. Osteonecrosis of the knee after arthroscopic surgery: diagnosis with MR imaging. Radiology. 1991;178(3):851–3.

    Article  CAS  PubMed  Google Scholar 

  35. Narvaez J, et al. Osteonecrosis of the knee: differences among idiopathic and secondary types. Rheumatology (Oxford). 2000;39(9):982–9.

    Article  CAS  Google Scholar 

  36. Mitchell DG, et al. Chemical-shift MR imaging of the femoral head: an in vitro study of normal hips and hips with avascular necrosis. AJR Am J Roentgenol. 1987;148(6):1159–64.

    Article  CAS  PubMed  Google Scholar 

  37. van den Borne MP, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage. 2007;15(12):1397–402.

    Article  PubMed  Google Scholar 

  38. Levy AS, et al. Chondral delamination of the knee in soccer players. Am J Sports Med. 1996;24(5):634–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kendell SD, et al. MRI appearance of chondral delamination injuries of the knee. AJR Am J Roentgenol. 2005;184(5):1486–9.

    Article  PubMed  Google Scholar 

  40. Uozumi H, et al. Histologic findings and possible causes of osteochondritis dissecans of the knee. Am J Sports Med. 2009;37(10):2003–8.

    Article  PubMed  Google Scholar 

  41. Clanton TO, DeLee JC. Osteochondritis dissecans. History, pathophysiology and current treatment concepts. Clin Orthop Relat Res. 1982;167:50–64.

    PubMed  Google Scholar 

  42. Mesgarzadeh M, et al. Osteochondritis dissecans: analysis of mechanical stability with radiography, scintigraphy, and MR imaging. Radiology. 1987;165(3):775–80.

    Article  CAS  PubMed  Google Scholar 

  43. Steiner RM, et al. Magnetic resonance imaging of diffuse bone marrow disease. Radiol Clin North Am. 1993;31(2):383–409.

    CAS  PubMed  Google Scholar 

  44. Lynch TC, et al. Bone abnormalities of the knee: prevalence and significance at MR imaging. Radiology. 1989;171(3):761–6.

    Article  CAS  PubMed  Google Scholar 

  45. Hooper DM, et al. Validation of the Hughston Clinic subjective knee questionnaire using gait analysis. Med Sci Sports Exerc. 2001;33(9):1456–62.

    Article  CAS  PubMed  Google Scholar 

  46. Irrgang JJ, et al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med. 2001;29(5):600–13.

    CAS  PubMed  Google Scholar 

  47. Versier G, Dubrana F, Society French Arthroscopy. Treatment of knee cartilage defect in 2010. Orthop Traumatol Surg Res. 2011;97(8 Suppl):S140–53.

    Article  CAS  PubMed  Google Scholar 

  48. Brown WE, et al. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res. 2004;422:214–23.

    Article  PubMed  Google Scholar 

  49. Marlovits S, et al. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57(1):16–23.

    Article  PubMed  Google Scholar 

  50. Trattnig S, et al. MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol. 2007;17(1):103–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Steadman JR, et al. The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg. 2003;16(2):83–6.

    PubMed  Google Scholar 

  52. Gnannt R, et al. MR imaging of the postoperative knee. J Magn Reson Imaging. 2011;34(5):1007–21.

    Article  PubMed  Google Scholar 

  53. Alparslan L, et al. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol. 2001;5(4):345–63.

    Article  CAS  PubMed  Google Scholar 

  54. Polster J, Recht M. Postoperative MR evaluation of chondral repair in the knee. Eur J Radiol. 2005;54(2):206–13.

    Article  PubMed  Google Scholar 

  55. Brittberg M, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  56. Nehrer S, et al. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials. 1998;19(24):2313–28.

    Article  CAS  PubMed  Google Scholar 

  57. Richardson JB, et al. Repair of human articular cartilage after implantation of autologous chondrocytes. J Bone Joint Surg Br. 1999;81(6):1064–8.

    Article  CAS  PubMed  Google Scholar 

  58. Minas T, Chiu R. Autologous chondrocyte implantation. Am J Knee Surg. 2000;13(1):41–50.

    CAS  PubMed  Google Scholar 

  59. Minas T, Peterson L. Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med. 1999;18(1):13–44, v–vi.

    Article  CAS  PubMed  Google Scholar 

  60. Peterson L, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.

    Article  PubMed  Google Scholar 

  61. Recht MP, Kramer J. MR imaging of the postoperative knee: a pictorial essay. Radiographics. 2002;22(4):765–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolog, N.V., Andreisek, G., Ulbrich, E.J. (2015). Articular Cartilage and Subchondral Bone. In: MRI of the Knee. Springer, Cham. https://doi.org/10.1007/978-3-319-08165-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08165-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08164-9

  • Online ISBN: 978-3-319-08165-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics