Skip to main content

Abstract

In the last two decades, different markers and diagnostic assays have been developed to overcome limitations of urinary cytology and improve the timely detection of urothelial carcinoma (UC). Among ancillary tests that can be used on cytological preparations, namely cell-based tests UroVysion® Fluorescence in situ Hybridization (U-FISH; Abbott Laboratories, Abbott Park, IL, USA) and ImmunoCyt/UCyt+® (uCyt; Diagnocure Inc, Quebec, Canada) have been approved by the U.S. Food and Drug Administration (FDA) for diagnosis of UC in patients with hematuria and/or monitoring for tumor recurrence in patients previously diagnosed with UC. The pre-analytical procedures, technique, and evaluation of U-FISH including imaging and automation are described, followed by discussion on the performance of the assay. U-FISH is used for the determination of neoplasia after an interpretation of atypical urinary cytology or finding residual neoplastic cells after intravesical bacillus Calmette-Guerin (BCG) treatment. This seems to be the most important indication. uCyt is another promising diagnostic assay; however, further validation studies are needed.

Most commonly used liquid- or non-cytology-based urine tests are the BTA and the NMP22 (Bladder Check). Both were approved by the FDA for detection of UC in symptomatic patients and for monitoring of patients with a history of UC.

No single ancillary test is being recommended as part of the routine evaluation in the Guidelines of the American Urological Association and the European Association of Urology at this time.The classification in The Paris System for Reporting Urinary Cytology lays the ground for prospective studies in search of cost-effective combinations of urine cytology with ancillary testing to improve diagnosis and clinical outcome of UC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamat AM, Hegarty PK, Gee JR, Clark PE, Svatek RS, Hegarty N, et al. ICUD-EAU International Consultation on Bladder Cancer 2012: screening, diagnosis, and molecular markers. Eur Urol. 2013;63:4–15.

    Article  PubMed  Google Scholar 

  2. Bubendorf L, Piaton E. UroVysion(R) multiprobe FISH in the triage of equivocal urinary cytology cases. Ann Pathol. 2012;32:e52–6. 438–43. [article in French].

    Article  PubMed  Google Scholar 

  3. Halling KC, Kipp BR. Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol. 2008;15:279–86.

    Article  CAS  PubMed  Google Scholar 

  4. Marganski WA, El-Sirgany Costa V, Kilpatrick MW, Tafas T, Yim J, Matthews M. Digitized microscopy in the diagnosis of bladder cancer: analysis of >3000 cases during a 7-month period. Cancer Cytopathol. 2011;119:279–89.

    Article  PubMed  Google Scholar 

  5. Smith GD, Riding M, Oswald K, Bentz JS. Integrating a FISH imaging system into the cytology laboratory. Cytojournal. 2010;7:3.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Smith GD, Bentz JS. “FISHing” to detect urinary and other cancers: validation of an imaging system to aid in interpretation. Cancer Cytopathol. 2010;118:56–64.

    Article  PubMed  Google Scholar 

  7. Daniely M, Rona R, Kaplan T, Olsfanger S, Elboim L, Zilberstien Y, et al. Combined analysis of morphology and fluorescence in situ hybridization significantly increases accuracy of bladder cancer detection in voided urine samples. Urology. 2005;66:1354–9.

    Article  PubMed  Google Scholar 

  8. Bubendorf L. Multiprobe fluorescence in situ hybridization (UroVysion) for the detection of urothelial carcinoma - FISHing for the right catch. Acta Cytol. 2011;55:113–9.

    Article  CAS  PubMed  Google Scholar 

  9. Furrer D, Jacob S, Caron C, Sanschagrin F, Provencher L, Diorio C. Validation of a new classifier for the automated analysis of the human epidermal growth factor receptor 2 (HER2) gene amplification in breast cancer specimens. Diagn Pathol. 2013;8:17.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hajdinjak T. UroVysion FISH test for detecting urothelial cancers: meta-analysis of diagnostic accuracy and comparison with urinary cytology testing. Urol Oncol. 2008;26:646–51.

    Article  CAS  PubMed  Google Scholar 

  11. Kipp BR, Halling KC, Campion MB, Wendel AJ, Karnes RJ, Zhang J, et al. Assessing the value of reflex fluorescence in situ hybridization testing in the diagnosis of bladder cancer when routine urine cytological examination is equivocal. J Urol. 2008;179:1296–301. discussion 301.

    Article  PubMed  Google Scholar 

  12. Savic S, Zlobec I, Thalmann GN, Engeler D, Schmauss M, Lehmann K, et al. The prognostic value of cytology and fluorescence in situ hybridization in the follow-up of nonmuscle-invasive bladder cancer after intravesical Bacillus Calmette-Guerin therapy. Int J Cancer. 2009;124:2899–904.

    Article  CAS  PubMed  Google Scholar 

  13. Gayed BA, Seideman C, Lotan Y. Cost-effectiveness of fluorescence in situ hybridization in patients with atypical cytology for the detection of urothelial carcinoma. J Urol. 2013;190:1181–6.

    Article  CAS  PubMed  Google Scholar 

  14. Lotan Y, Bensalah K, Ruddell T, Shariat SF, Sagalowsky AI, Ashfaq R. Prospective evaluation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J Urol. 2008;179:2164–9.

    Article  PubMed  Google Scholar 

  15. Schlomer BJ, Ho R, Sagalowsky A, Ashfaq R, Lotan Y. Prospective validation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J Urol. 2010;183:62–7.

    Article  PubMed  Google Scholar 

  16. Kim PH, Sukhu R, Cordon BH, Sfakianos JP, Sjoberg DD, Hakimi AA, et al. Reflex fluorescence in situ hybridization assay for suspicious urinary cytology in patients with bladder cancer with negative surveillance cystoscopy. BJU Int. 2014;114:354–9.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Seideman C, Canter D, Kim P, Cordon B, Weizer A, Oliva I, et al. Multicenter evaluation of the role of UroVysion FISH assay in surveillance of patients with bladder cancer: does FISH positivity anticipate recurrence? World J Urol. 2014. doi:10.1007/s00345-014-1452-9. Epub ahead of print.

    PubMed  Google Scholar 

  18. Skacel M, Fahmy M, Brainard JA, Pettay JD, Biscotti CV, Liou LS, et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J Urol. 2003;169:2101–5.

    Article  CAS  PubMed  Google Scholar 

  19. Yoder BJ, Skacel M, Hedgepeth R, Babineau D, Ulchaker JC, Liou LS, et al. Reflex UroVysion testing of bladder cancer surveillance patients with equivocal or negative urine cytology: a prospective study with focus on the natural history of anticipatory positive findings. Am J Clin Pathol. 2007;127:295–301.

    Article  PubMed  Google Scholar 

  20. Fritsche HM, Burger M, Dietmaier W, Denzinger S, Bach E, Otto W, et al. Multicolor FISH (UroVysion) facilitates follow-up of patients with high-grade urothelial carcinoma of the bladder. Am J Clin Pathol. 2010;134:597–603.

    Article  PubMed  Google Scholar 

  21. Kipp BR, Karnes RJ, Brankley SM, Harwood AR, Pankratz VS, Sebo TJ, et al. Monitoring intravesical therapy for superficial bladder cancer using fluorescence in situ hybridization. J Urol. 2005;173:401–4.

    Article  PubMed  Google Scholar 

  22. Whitson J, Berry A, Carroll P, Konety B. A multicolour fluorescence in situ hybridization test predicts recurrence in patients with high-risk superficial bladder tumours undergoing intravesical therapy. BJU Int. 2009;104:336–9.

    Article  PubMed  Google Scholar 

  23. Mengual L, Marin-Aguilera M, Ribal MJ, Burset M, Villavicencio H, Oliver A, et al. Clinical utility of fluorescent in situ hybridization for the surveillance of bladder cancer patients treated with bacillus Calmette-Guerin therapy. Eur Urol. 2007;52:752–9.

    Article  PubMed  Google Scholar 

  24. Huysentruyt CJ, Baldewijns MM, Ruland AM, Tonk RJ, Vervoort PS, Smits KM, et al. Modified UroVysion scoring criteria increase the urothelial carcinoma detection rate in cases of equivocal urinary cytology. Histopathology. 2011;58:1048–53.

    Article  PubMed  Google Scholar 

  25. Tapia C, Glatz K, Obermann EC, Grilli B, Barascud A, Herzog M, et al. Evaluation of chromosomal aberrations in patients with benign conditions and reactive changes in urinary cytology. Cancer Cytopathol. 2011;119:404–10.

    Article  PubMed  Google Scholar 

  26. Zellweger T, Benz G, Cathomas G, Mihatsch MJ, Sulser T, Gasser TC, et al. Multi-target fluorescence in situ hybridization in bladder washings for prediction of recurrent bladder cancer. Int J Cancer. 2006;119:1660–5.

    Article  CAS  PubMed  Google Scholar 

  27. Hossain D, Hull D, Kalantarpour F, Maitlen R, Qian J, Bostwick DG. Does polyomavirus infection interfere with bladder cancer fluorescence in situ hybridization? Diagn Cytopathol. 2014;42:225–9.

    Article  PubMed  Google Scholar 

  28. Kamat AM, Vlahou A, Taylor JA, Hudson ML, Pesch B, Ingersoll MA, et al. Considerations on the use of urine markers in the management of patients with high-grade non-muscle-invasive bladder cancer. Urol Oncol. 2014;32:1069–77.

    Article  PubMed  Google Scholar 

  29. Schmitz-Drager BJ, Todenhofer T, van Rhijn B, Pesch B, Hudson MA, Chandra A, et al. Considerations on the use of urine markers in the management of patients with low-/intermediate-risk non-muscle invasive bladder cancer. Urol Oncol. 2014;32:1061–8.

    Article  PubMed  Google Scholar 

  30. Sullivan PS, Nooraie F, Sanchez H, Hirschowitz S, Levin M, Rao PN, et al. Comparison of ImmunoCyt, UroVysion, and urine cytology in detection of recurrent urothelial carcinoma: a “split-sample” study. Cancer. 2009;117:167–73.

    PubMed  Google Scholar 

  31. Todenhofer T, Hennenlotter J, Esser M, Mohrhardt S, Tews V, Aufderklamm S, et al. Combined application of cytology and molecular urine markers to improve the detection of urothelial carcinoma. Cancer Cytopathol. 2013;121:252–60.

    Article  PubMed  Google Scholar 

  32. Yang M, Zheng Z, Zhuang Z, Zhao X, Xu Z, Lin H. ImmunoCyt and cytology for diagnosis of bladder carcinoma: a meta analysis. Chin Med J (Engl). 2014;127:758–64.

    Google Scholar 

  33. Fradet Y, Lockhard C. Performance characteristics of a new monoclonal antibody test for bladder cancer: ImmunoCyt trade mark. Can J Urol. 1997;4:400–5.

    PubMed  Google Scholar 

  34. Allard P, Fradet Y, Tetu B, Bernard P. Tumor-associated antigens as prognostic factors for recurrence in 382 patients with primary transitional cell carcinoma of the bladder. Clin Cancer Res. 1995;1:1195–202.

    CAS  PubMed  Google Scholar 

  35. Comploj E, Mian C, Ambrosini-Spaltro A, Dechet C, Palermo S, Trenti E, et al. uCyt+/ImmunoCyt and cytology in the detection of urothelial carcinoma: an update on 7422 analyses. Cancer Cytopathol. 2013;121:392–7.

    Article  PubMed  Google Scholar 

  36. Mian C, Pycha A, Wiener H, Haitel A, Lodde M, Marberger M. Immunocyt: a new tool for detecting transitional cell cancer of the urinary tract. J Urol. 1999;161:1486–9.

    Article  CAS  PubMed  Google Scholar 

  37. Piaton E, Daniel L, Verriele V, Dalifard I, Zimmermann U, Renaudin K, et al. Improved detection of urothelial carcinomas with fluorescence immunocytochemistry (uCyt+ assay) and urinary cytology: results of a French Prospective Multicenter Study. Lab Invest. 2003;83:845–52.

    Article  CAS  PubMed  Google Scholar 

  38. Tetu B, Tiguert R, Harel F, Fradet Y. ImmunoCyt/uCyt+ improves the sensitivity of urine cytology in patients followed for urothelial carcinoma. Mod Pathol. 2005;18:83–9.

    Article  CAS  PubMed  Google Scholar 

  39. Mowatt G, Zhu S, Kilonzo M, Boachie C, Fraser C, Griffiths TR, et al. Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol Assess. 2010;14:1–331. iii-iv.

    Article  CAS  Google Scholar 

  40. Moatamed NA, Rao JY, Alexanian S, Cobarrubias M, Levin M, Lu D, et al. ProEx C as an adjunct marker to improve cytological detection of urothelial carcinoma in urinary specimens. Cancer Cytopathol. 2013;121:320–8.

    Article  CAS  PubMed  Google Scholar 

  41. Vergara-Lluri ME, Hu E, Rao JY, Levin M, Apple SK, Moatamed NA. Comparative evaluation of ProEx C and ImmunoCyt/uCyt assays in atypical urine cytology. Arch Pathol Lab Med. 2014;138:1215–22.

    Article  PubMed  Google Scholar 

  42. Piaton E, Carre C, Advenier AS, Decaussin-Petrucci M, Mege-Lechevallier F, Lantier P, et al. p16 INK4a overexpression and p16/Ki-67 dual labeling versus conventional urinary cytology in the evaluation of urothelial carcinoma. Cancer Cytopathol. 2014;122:211–20.

    Article  CAS  PubMed  Google Scholar 

  43. Tetu B. Diagnosis of urothelial carcinoma from urine. Mod Pathol. 2009;22 Suppl 2:S53–9.

    Article  PubMed  Google Scholar 

  44. van der Aa MN, Steyerberg EW, Bangma C, van Rhijn BW, Zwarthoff EC, van der Kwast TH. Cystoscopy revisited as the gold standard for detecting bladder cancer recurrence: diagnostic review bias in the randomized, prospective CEFUB trial. J Urol. 2010;183:76–80.

    Article  PubMed  Google Scholar 

  45. Kinders R, Jones T, Root R, Bruce C, Murchison H, Corey M, et al. Complement factor H or a related protein is a marker for transitional cell cancer of the bladder. Clin Cancer Res. 1998;4:2511–20.

    CAS  PubMed  Google Scholar 

  46. Cheng ZZ, Corey MJ, Parepalo M, Majno S, Hellwage J, Zipfel PF, et al. Complement factor H as a marker for detection of bladder cancer. Clin Chem. 2005;51:856–63.

    Article  CAS  PubMed  Google Scholar 

  47. Tilki D, Burger M, Dalbagni G, Grossman HB, Hakenberg OW, Palou J, et al. Urine markers for detection and surveillance of non-muscle-invasive bladder cancer. Eur Urol. 2011;60:484–92.

    Article  PubMed  Google Scholar 

  48. van Rhijn BW, van der Poel HG, van der Kwast TH. Urine markers for bladder cancer surveillance: a systematic review. Eur Urol. 2005;47:736–48.

    Article  PubMed  Google Scholar 

  49. Leyh H, Marberger M, Conort P, Sternberg C, Pansadoro V, Pagano F, et al. Comparison of the BTA stat test with voided urine cytology and bladder wash cytology in the diagnosis and monitoring of bladder cancer. Eur Urol. 1999;35:52–6.

    Article  CAS  PubMed  Google Scholar 

  50. Oge O, Kozaci D, Gemalmaz H. The BTA stat test is nonspecific for hematuria: an experimental hematuria model. J Urol. 2002;167:1318–9. discussion 9-20.

    Article  PubMed  Google Scholar 

  51. Soloway MS, Briggman V, Carpinito GA, Chodak GW, Church PA, Lamm DL, et al. Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment. J Urol. 1996;156(2 Pt 1):363–7.

    Article  CAS  PubMed  Google Scholar 

  52. Miyake M, Goodison S, Giacoia EG, Rizwani W, Ross S, Rosser CJ. Influencing factors on the NMP-22 urine assay: an experimental model. BMC Urol. 2012;12:23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Zhou AG, Hutchinson LM, Ceosar EF. Urine cytopathology and ancillary methods. Surg Pathol Clin. 2014;7:77–88.

    Article  Google Scholar 

  54. Grossman HB, Messing E, Soloway M, Tomera K, Katz G, Berger Y, et al. Detection of bladder cancer using a point-of-care proteomic assay. JAMA. 2005;293:810–6.

    Article  CAS  PubMed  Google Scholar 

  55. Yafi FA, Brimo F, Auger M, Aprikian A, Tanguay S, Kassouf W. Is the performance of urinary cytology as high as reported historically? A contemporary analysis in the detection and surveillance of bladder cancer. Urol Oncol. 2014;32:27. e1-6.

    PubMed  Google Scholar 

  56. Kamat AM, Karam JA, Grossman HB, Kader AK, Munsell M, Dinney CP. Prospective trial to identify optimal bladder cancer surveillance protocol: reducing costs while maximizing sensitivity. BJU Int. 2011;108:1119–23.

    Article  PubMed  Google Scholar 

  57. Sapre N, Anderson PD, Costello AJ, Hovens CM, Corcoran NM. Gene-based urinary biomarkers for bladder cancer: an unfulfilled promise? Urol Oncol. 2014;32:48. e9-17.

    Article  PubMed  Google Scholar 

  58. Zuiverloon TC, van der Aa MN, van der Kwast TH, Steyerberg EW, Lingsma HF, Bangma CH, et al. Fibroblast growth factor receptor 3 mutation analysis on voided urine for surveillance of patients with low-grade non-muscle-invasive bladder cancer. Clin Cancer Res. 2010;16:3011–8.

    Article  CAS  PubMed  Google Scholar 

  59. Chen LM, Chang M, Dai Y, Chai KX, Dyrskjot L, Sanchez-Carbayo M, et al. External validation of a multiplex urinary protein panel for the detection of bladder cancer in a multicenter cohort. Cancer Epidemiol. 2014;23:1804–12.

    Article  CAS  Google Scholar 

  60. Kandimalla R, Masius R, Beukers W, Bangma CH, Orntoft TF, Dyrskjot L, et al. A 3-plex methylation assay combined with the FGFR3 mutation assay sensitively detects recurrent bladder cancer in voided urine. Clin Cancer Res. 2013;19:4760–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Bubendorf M.D. .

Editor information

Editors and Affiliations

Appendix

Appendix

UroVysion® Assay

The slide pretreatment with protease uncovers target DNA and is recommended in Pap-stained specimens. Decolorization is not mandatory since the stain is removed during further phases of FISH procedure. If using the archival slides, remove the coverslip and mounting medium in xylene. Place the slides in 1 % acid alcohol (HCL and 70 % alcohol) overnight or until decolorized. The U-FISH assay can subsequently be conducted either manually or automatically. The first step is denaturation of specimen DNA to expose single-strand target DNA. U-FISH probes should be prepared accordingly and applied to the selected area of slide. The area should be coverslipped and sealed immediately to ensure optimal conditions. Hybridization of probes to target DNA sequences follows under appropriate conditions. The procedure is finished with posthybridization washes to remove excessive probes. Slides should be dried in a dark area. The exact procedure of the FISH assay is described in the UroVysion kit datasheet. The procedure should be validated in each individual laboratory, together with positive and negative controls, to ensure optimal hybridization. Afterwards the specimen chosen for analysis is stained by DAPI solution. Slides are coverslipped and stored at −20 °C in the dark until analysis.

Automated Imaging Systems for UroVysion® FISH Analysis

The Duet TM System™ workstation integrates a microscope, CCD camera, motorized stage or slide-loader, computer, keyboard, mouse, joystick, monitor, and a dedicated software program. Up to 200 slides that have undergone the FISH procedure, can be loaded and run overnight for inspection the following day. This latter feature may be suitable for diagnostic laboratories that receive high volumes of abnormal or atypical urines. Similarly, the Ikoniscope oncoFISH Bladder Test System has an automated scanning microscope system coupled with an image analysis work station. It features automated slide loading and handling, low and high magnification scanning to identify cells of interest, and digital image acquisition [4]. The MetaSystems uses an automated fluorescent scanning microscope and analysis software with “tile-sampling” method [9].

The Bioview Duet System™ scans cells that are imaged at high resolution (under oil immersion) both in bright light illumination and in fluorescent illumination. Cells are classified by the system according to their morphological features, their staining on bright field (Giemsa or Papanicolaou stains, if target FISH is used), and according to the pattern of fluorescent signals. The automated microscope has micrometer-level precision in the X, Y, and Z axes which allows it to focus on cells and retain coordinate information for target cells. There are two modes of operation: (1) automatic scanning, which provides a gallery of all fields of view, and (2) manual scanning, which provides interactive control allowing the user to select the fields of view using either bright field or fluorescent illumination.

Similar to manual scoring, the automated system scans the FISH slides by locating and scoring the nuclei exhibiting abnormalities such as enlargement, irregular borders, and patchy DAPI staining. As identification of abnormal or malignant cells based solely on aberrant morphology may be misleading, the Bioview System™ classifies cells both by morphology on the DAPI fluorescence, as well as by superimposed FISH signals. Cells are ranked based on a combination of nuclear features, including size, shape, DAPI intensity, and DAPI standard deviation inside the nucleus.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bubendorf, L. et al. (2016). Ancillary Studies in Urinary Cytology. In: Rosenthal, D., Wojcik, E., Kurtycz, D. (eds) The Paris System for Reporting Urinary Cytology. Springer, Cham. https://doi.org/10.1007/978-3-319-22864-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22864-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22863-1

  • Online ISBN: 978-3-319-22864-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics