Skip to main content

Abstract

Pharmacokinetics is the mathematical characterization of the time course of drug absorption, distribution, metabolism, and excretion. Over the past 50 years, dramatic scientific advances have revolutionized drug development and design and clinical decision making. These include improvements in quantitating drug and metabolite concentrations in biologic matrices (plasma and tissue), measuring drug effects, and understanding how genetics, metabolic pathways, and drug transporters influences drug disposition. A major challenge for health-care professionals in clinical psychopharmacology is in understanding and adjusting for individual differences in a drug’s response. Knowledge of a drug’s pharmacokinetic characteristics can be leveraged to help resolve these issues and formulate rational drug therapy decisions. As an example, understanding the absorption and distribution characteristics of a drug allows one to predict the amount of an administered dose that is expected to enter the bloodstream and reach its site of action. Further, an understanding of drug metabolism and elimination allows for the prediction of drug concentrations when it is administered on a repeated basis (i.e., under steady-state conditions); this allows for the rational selection of dosing regimens. Dose and regimen selection must also take drug interactions, genetic polymorphisms, comorbid conditions, and aging into account since all of these can impact drug exposure, efficacy, and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibaldi M, Levy G (1976) Pharmacokinetics in clinical practice I. Concepts. JAMA 235(17):1864–1867

    Article  CAS  PubMed  Google Scholar 

  2. Davies SJC, Nutt D (2007) Pharmacokinetics for psychiatrics. Psychiatry 6(7):268–272

    Article  Google Scholar 

  3. Gibaldi M, Perrier D (1982) One-compartment model. In: Pharmacokinetics. Marcel Dekker Inc., New York, pp 1–43

    Google Scholar 

  4. Badhan RK, Chenel M, Penny JI (2014) Development of a physiologically-based pharmacokinetic model of the rat central nervous system. Pharmaceutics 6(1):97–136. doi:10.3390/pharmaceutics6010097

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nelson E (1961) Kinetics of drug absorption, distribution, metabolism and excretion. J Pharm Sci 50:181–192

    Article  CAS  PubMed  Google Scholar 

  6. Rowland M, Tozer T (eds) (2011) Fundamental concepts and terminology. In: Clinical pharmacokinetics and pharmacodynamics: concepts and applications. Williams & Wilkins, Baltimore, pp 17–45

    Google Scholar 

  7. Moustafa MA, Babhair SA, Kouta HI (1987) Decreased bioavailability of some antipsychotic phenothiazines due to interactions with adsorbent antacid and antidiarrhoeal mixtures. Int J Pharm 36(2–3):185–189

    Article  CAS  Google Scholar 

  8. Hamilton RA, Garnett WR, Kline BJ, Pellock JM (1981) Effects of food on valproic acid absorption. Am J Hosp Pharm 38(10):1490–1493

    CAS  PubMed  Google Scholar 

  9. Chun AH, Hoffman DJ, Friedmann N, Carrigan PJ (1980) Bioavailability of valproic acid under fasting/nonfasting regimens. J Clin Pharmacol 20:30–36

    Article  CAS  PubMed  Google Scholar 

  10. Jann MW, Ereshefsky L, Saklad SR (1985) Clinical pharmacokinetics of the depot antipsychotics. Clin Pharmacokinet 10(4):315–333

    Article  CAS  PubMed  Google Scholar 

  11. Park EJ, Amatya S, Kim MS, Park JH, Seol E, Lee H, Shin YH, Na DH (2013) Long-acting injectable formulations of antipsychotic drugs for the treatment of schizophrenia. Arch Pharm Res 36(6):651–659. doi:10.1007/s12272-013-0105-7

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka H, Mizojiri K (1999) Drug-protein binding and blood-brain barrier permeability. J Pharmacol Exp Ther 288:912–918

    CAS  PubMed  Google Scholar 

  13. Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684

    Article  CAS  PubMed  Google Scholar 

  14. Johanson CE, Stopa EG, McMillan PN (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131

    Article  CAS  PubMed  Google Scholar 

  15. de Lange EC (2013) The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutics effects. Fluids Barriers CNS 10:12. doi:10.1186/2045-8118-10-12

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xiao G, Gan L-S (2013) Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int J Cell Biol 2013:14 pages. Article ID 703545. http://dx.doi.org/10.1155/2013/703545

  17. Greenblatt DJ, Ehrenberg BL, Gunderman J, Scavone JM, Tai NT, Harmatz JS, Shader RI (1989) Kinetic and dynamic study of intravenous lorazepam: comparison with intravenous diazepam. J Pharmacol Exp Ther 250(1):134–140

    CAS  PubMed  Google Scholar 

  18. Ramsay RE, Hammond EJ, Perchalski RJ, Wilder BJ (1979) Brain uptake of phenytoin, phenobarbital, and diazepam. Arch Neurol 36:535–539

    Article  CAS  PubMed  Google Scholar 

  19. Alldredge BK, Gelb AM, Isaacs SM, Corry MD, Allen F, Ulrich S et al (2001) A comparison of lorazepam, diazepam, and placebo for the treatment of out-of-hospital status epilepticus. N Engl J Med 345:631–637

    Article  CAS  PubMed  Google Scholar 

  20. Treiman DM (1990) The role of benzodiazepines in the management of status epilepticus. Neurology 40(5 Suppl 2):32–42

    CAS  PubMed  Google Scholar 

  21. Luer MS, Hamani C, Dujovny M, Gidal B, Cwik M, Deyo K, Fischer JH (1999) Saturable transport of gabapentin at the blood-brain barrier. Neurol Res 21(6):559–562

    CAS  PubMed  Google Scholar 

  22. Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54(4):561–587

    Article  CAS  PubMed  Google Scholar 

  23. Schinkel AH, Smit JJ, van Tellingen O et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  CAS  PubMed  Google Scholar 

  24. Sakata A, Tamai I, Kawazu K et al (1994) In vivo evidence for ATP-dependent and P-glycoprotein-mediated transport of cyclosporin A at the blood brain barrier. Biochem Pharmacol 48(10):1989–1992

    Article  CAS  PubMed  Google Scholar 

  25. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P (1995) Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 96:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Girardin F (2006) Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci 8:311–321

    PubMed  PubMed Central  Google Scholar 

  27. Alavijeh MS, Chrishty M, Qaiser MZ, Palmer AM (2005) Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx® 2:554–571

    Article  Google Scholar 

  28. Breyer-Pfaff U (2004) The metabolic fate of amitriptyline, nortriptyline and amitriptylinoxide in man. Drug Metab Rev 36(3–4):723–746

    Article  CAS  PubMed  Google Scholar 

  29. Mandrioli R, Forti GC, Raggi MA (2006) Fluoxetine metabolism and pharmacological interactions: the role of cytochrome p450. Curr Drug Metab 7(2):127–133

    Article  CAS  PubMed  Google Scholar 

  30. Gallagher BB, Baumel IP, Mattson RH (1972) Metabolic disposition of primidone and its metabolites in epileptic subjects after single and repeated administration. Neurology 22:1186–1192

    Article  CAS  PubMed  Google Scholar 

  31. Dayer P, Desmeules J, Collart L (1997) Pharmacology of tramadol. Drugs 53(Suppl 2):18–24. doi:10.2165/00003495-199700532-00006

    Article  CAS  PubMed  Google Scholar 

  32. Gong L, Stamer UM, Tzvetkove MV, Altmana RB, Klein TE (2014) PharmGKB summary: tramadol pathway. Pharmacogenet Genomics 24(7):374–380. doi:10.1097/FPC.0000000000000057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davies SJ, Eayrs S, Pratt P, Lennard MS (2004) Potential for drug interactions involving cytochromes P450 2D6 and 3A4 on general adult and functional elderly psychiatric wards. Br J Clin Pharmacol 57:464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sandson NB, Armstrong SC, Cozza KL (2005) An overview of psychotropic drug-drug interactions. Psychosomatics 46:464–494

    Article  CAS  PubMed  Google Scholar 

  35. Greenblatt DJ, von Moltke LL, Harmatz JS, Shader RI (1998) Drug interactions with new antidepressants: role of human cytochromes P450. J Clin Psychiatry 59(Suppl 15):19–27

    CAS  PubMed  Google Scholar 

  36. Flockhart DA (2007) Drug interactions: cytochrome P450 drug interaction table. Indiana University School of Medicine. “/clinpharm/ddis/clinical-table/” Accessed 10 June 2015

    Google Scholar 

  37. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138(1):103–41. doi: 10.1016/j.pharmthera.2012.12.007. Epub 2013 Jan 16

    Google Scholar 

  38. Preissner S, Kroll K, Dunkel M, Goldsobel G, Kuzmann D, Senger S, Günther S, Winnenburg R, Schroeder M, Preissner R (2010) SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res 38(Database issue):D237–D243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meyer UA (1991) Genotype or phenotype: the definition of a pharmacogenetics polymorphism. Pharmacogenetics 1:66–67

    Article  CAS  PubMed  Google Scholar 

  40. Chadwick B, Waller DF, Edwards JG (2005) Potentially hazardous drug interactions with psychotropics. Adv Psychiatr Treat 11:440–449

    Article  Google Scholar 

  41. Kirchheiner J, Schmidt H, Tzvetkov M, Keulen JT, Lötsch J, Roots I, Brockmöller J (2007) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7(4):257–265, Epub 2006 Jul 4

    Article  CAS  PubMed  Google Scholar 

  42. Obach RS, Cox LM, Tremaine LM (2005) Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos 33(2):262–270, Epub 2004 Nov 16

    Article  CAS  PubMed  Google Scholar 

  43. Lin JH, Lu AY (1997) Role of pharmacokinetics and metabolism in drug discovery and metabolism. Pharmacol Rev 49(4):403–449

    CAS  PubMed  Google Scholar 

  44. Lin JH, Lu AY (1998) Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 35(5):361–390

    Article  CAS  PubMed  Google Scholar 

  45. Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RC (1992) The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 34:262–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reilly JG, Ayis SA, Ferrier IN, Jones SH, Thomas SH (2000) QTc-interval abnormalities and psychotropic drug therapy in psychiatric patients. Lancet 355(9202):1048–1052

    Article  CAS  PubMed  Google Scholar 

  47. Prozac(R) [package insert] (2011) Eli Lilly and Company, Indianapolis

    Google Scholar 

  48. Chen ZR, Somogyi AA, Bochner F (1988) Polymorphic O-demethylation of codeine. Lancet 32(8616):914–915

    Article  Google Scholar 

  49. Moore LB, Goodwin B, Jones SA et al (2000) St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci U S A 97(13):7500–7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Markowitz JS, Donovan JL, DeVane C et al (2003) Effect of St John’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA 290(11):1500–1504. doi:10.1001/jama.290.11.1500

    Article  CAS  PubMed  Google Scholar 

  51. Hewitt NJ, Lecluyse EL, Ferguson SS (2007) Induction of hepatic cytochrome P450 enzymes: methods, mechanisms, recommendations, and in vitro–in vivo correlations. Xenobiotica 37(10–11):1196–1224. doi:10.1080/00498250701534893

    Article  CAS  PubMed  Google Scholar 

  52. Park BK, Kitteringham NR, Pirmohamed M, Tucker GT (1996) Relevance of induction of human drug-metabolizing enzymes: pharmacological and toxicological implications. Br J Clin Pharmacol 41:477–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barone GW, Gurley BJ, Ketel BL, Lightfoot ML, Abul-Ezz SR (2000) Drug interaction between St. John’s wort and cyclosporine. Ann Pharmacother 34(9):1013–1016

    Article  CAS  PubMed  Google Scholar 

  54. Kahn EM, Schulz SC, Perel JM, Alexander JE (1990) Change in haloperidol level due to carbamazepine--a complicating factor in combined medication for schizophrenia. J Clin Psychopharmacol 10(1):54–57

    Article  CAS  PubMed  Google Scholar 

  55. Jann MW, Ereshefsky L, Saklad SR et al (1985) Effects of carbamazepine on plasma haloperidol levels. J Clin Psychopharmacol 5(2):106–109

    Article  CAS  PubMed  Google Scholar 

  56. Johannessen SI, Landmark CJ (2010) Antiepileptic drug interactions – principles and clinical implications. Curr Neuropharmacol 8(3):254–267. doi:10.2174/157015910792246254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van der Weide J, Steijns LS, van Weelden MJ (2003) The effect of smoking and cytochrome P450 CYP1A2 genetic polymorphism on clozapine clearance and dose requirement. Pharmacogenetics 13(3):169–172

    Article  PubMed  Google Scholar 

  58. Kudriakova TB, Sirota LA, Rozova GI, Gorkov VA (1992) Autoinduction and steady-state pharmacokinetics of carbamazepine and its major metabolites. Br J Clin Pharmacol 33(6):611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Browne TR, Mikati MA, Collins VA (1987) Time course of carbamazepine autoinduction (abstract). Neurology 37:100

    Article  Google Scholar 

  60. Flesch G (2004) Overview of the clinical pharmacokinetics of oxcarbazepine. Clin Drug Investig 24:185–203

    Article  CAS  PubMed  Google Scholar 

  61. Troy SM, Schultz RW, Parker VD, Chiang ST, Blum RA (1994) The effect of renal disease on the disposition of venlafaxine. Clin Pharmacol Ther 56(1):14–21

    Article  CAS  PubMed  Google Scholar 

  62. Finley PR, Warner MD, Peabody CA (1995) Clinical relevance of drug interactions with lithium. Clin Pharmacokinet 29(3):172–191

    Article  CAS  PubMed  Google Scholar 

  63. Rollins DE, Klaassen CD (1979) Biliary excretion of drugs in man. Clin Pharmacokinet 4(5):368–379

    Article  CAS  PubMed  Google Scholar 

  64. Dencker H, Dencker SJ, Green A, Nagy A (1976) Intestinal absorption, demethylation, and enterohepatic circulation of imipramine. Clin Pharmacol Ther 19(5 Pt 1):584–586

    Article  CAS  PubMed  Google Scholar 

  65. Ouellet DM, Pollack GM (1995) Biliary excretion and enterohepatic recirculation of morphine-3-glucuronide in rats. Drug Metab Dispos 23(4):478–484

    CAS  PubMed  Google Scholar 

  66. Beierle I, Meibohm B, Derendorf H (1999) Gender differences in pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther 37(11):529–547

    CAS  PubMed  Google Scholar 

  67. Gandhi M, Aweeka F, Greenblatt RM, Blaschke TF (2004) Sex differences in pharmacokinetics and pharmacodynamics. Annu Rev Pharmacol Toxicol 44:499–523

    Article  CAS  PubMed  Google Scholar 

  68. Schwartz JB (2003) The influence of sex on pharmacokinetics. Clin Pharmacokinet 42(2):107–121

    Article  CAS  PubMed  Google Scholar 

  69. Soldin OP, Chung SH, Mattison DR (2011) Sex differences in drug disposition. J Biomed Biotechnol 2011:187103. doi:10.1155/2011/187103

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen ML, Lee SC, Ng MJ, Schuirmann DJ, Lesko LJ, Williams RL (2000) Pharmacokinetic analysis of bioequivalence trials: implications for sex-related issues in clinical pharmacology and biopharmaceutics. Clin Pharmacol Ther 68(5):510–521

    Article  CAS  PubMed  Google Scholar 

  71. Parlesak A, Billinger MH, Bode C, Bode JC (2002) Gastric alcohol dehydrogenase activity in man: influence of gender, age, alcohol consumption and smoking in a Caucasian population. Alcohol Alcohol 37(4):388–393

    Article  CAS  PubMed  Google Scholar 

  72. Greenblatt DJ, von Moltke LL (2008) Gender has a small but statistically significant effect on clearance of CYP3A substrate drugs. J Clin Pharmacol 48(11):1350–1355

    Article  CAS  PubMed  Google Scholar 

  73. Ochs HR, Greenblatt DJ, Divoll M (1981) Diazepam kinetics in relation to age and sex. Pharmacology 23(1):24–30

    Article  CAS  PubMed  Google Scholar 

  74. Klotz U (2009) Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev 41(2):67–76

    Article  CAS  PubMed  Google Scholar 

  75. Rodighiero V (1999) Effects of liver disease on pharmacokinetics. An update. Clin Pharmacokinet 37(5):399–431

    Article  CAS  PubMed  Google Scholar 

  76. Greenblatt DJ (1981) Clinical pharmacokinetics of oxazepam and lorazepam. Clin Pharmacokinet 6(2):89–105

    Article  CAS  PubMed  Google Scholar 

  77. Peppers MP (1996) Benzodiazepines for alcohol withdrawal in the elderly and in patient is with liver disease. Pharmacotherapy 16(1):49–57

    CAS  PubMed  Google Scholar 

  78. Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16(2):176–185

    Article  CAS  PubMed  Google Scholar 

  79. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57. doi:10.1016/j.nbd.2009.07.028, Epub 2009 Aug 5

    Article  CAS  PubMed  Google Scholar 

  81. Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972. doi:10.1038/jcbfm.2012.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pardridge WM, Boado RJ (2012) Reengineering biopharmaceuticals for targeted delivery across the blood–brain barrier. Methods Enzymol 503:269–292. doi:10.1016/B978-0-12-396962-0.00011-2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Luer PharmD, FCCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luer, M.S., Penzak, S.R. (2016). Pharmacokinetic Properties. In: Jann, M., Penzak, S., Cohen, L. (eds) Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents. Adis, Cham. https://doi.org/10.1007/978-3-319-27883-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27883-4_1

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-27881-0

  • Online ISBN: 978-3-319-27883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics