Skip to main content
  • 2730 Accesses

Abstract

Patients undergoing surgery require anesthesia that involves using a variety of medications that promote sedation, pain mitigation, and abate any response to stimulation. Early agents used for sedation induction were thiopental and etomidate. Although ketamine is commonly used in veterinary medicine, this agent is often employed in combination with a benzodiazepine to induce analgesia and sedation. Ketamine is a racemic mixture where the S(+) isomer is two to four times more potent. Midazolam is a water-soluble benzodiazepine where at pH>4, the molecule’s ring structure closes, and it becomes a highly lipophilic agent. Both ketamine and midazolam pharmacokinetics fit into a two-compartment open model and primarily metabolized by CYP3A4. The muscle relaxant agents succinyolcholine, d-tubocurarine, roncuronium, and vencuronium induce muscle paralysis used for anesthesia. Succinylcholine pharamacokinetics has been described as a one-compartment open model whereas the other agents a two- or three-compartment open model. Their pharmacodynamics effects are closely linked with their pharmacokinetic profiles. The short-acting opioids fentanyl, sufentanil, and alfentanil are used in anesthesia for pain management and maintain cardiovascular stability. The pharmacokinetics of these agents are expressed as either a two- or three-compartment open model and mainly metabolized by CYP3A4. Propofol and thiopental display a three-compartment open model. Various factors can alter anesthetic drug disposition and their pharmacodynamic actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eilers H Niemann (2003) Clinically important drug interactions with intravenous anesthetic agents in older patients. Drug Aging 20:969–980

    Google Scholar 

  2. Stanski DR, Shafer SL (1995) Quantifying anesthetic drug interactions. Anesthesiology 83:1–5

    Article  CAS  PubMed  Google Scholar 

  3. Feingold A, Holaday DA (1997) The pharmacokinetics of metabolism of inhalation anaesthetics. Br J Anaesth 49:155–162

    Article  Google Scholar 

  4. Tanner G (1982) Pharmacokinetics of inhalation anesthetics: a three-compartment linear model. Anesth Analg 61:587–594

    Article  CAS  PubMed  Google Scholar 

  5. Doenicke A (1975) Etomidate: a new intravenous hypnotic. Acta Anaesthesia Belg 25:5–8

    Google Scholar 

  6. Morgan N, Lumley J, Whitwam JA (1975) Etomidate, a new water insoluble nonbarbiturate intravenous induction agent. Lancet 1:955–956

    Article  CAS  PubMed  Google Scholar 

  7. Geise JL, Stanley TH (1983) Etomidate: a new intravenous anesthetic induction agent. Pharmacotherapy 3:251–258

    Article  Google Scholar 

  8. Van Hamme MJ, Ghoneim MM, Ambre JJ (1978) Pharmacokinetics of etomidate, a new intravenous anesthetic. Anesthesiology 49:274–277

    Article  PubMed  Google Scholar 

  9. Kay B (1976) A dose-response relationship for etomidate, with some observations on cumulation. Br J Anaesth 48:213–216

    Article  CAS  PubMed  Google Scholar 

  10. Ghoneim MM, Yamada T (1977) Etomidate: a clinical and electroencephalographic comparison to thiopental. Anesthesia Analg 56:479–485

    CAS  Google Scholar 

  11. Austin KR (1976) Ketamine hydrochloride: a potent analgesic. Br Med J 2:943–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kronenberg RH (2002) Ketamine as an analgesic: parenteral, oral, rectal, subcutaneous, transdermal, and intranasal administration. J Pain Palliat Care Pharmacother 16:27–35

    PubMed  Google Scholar 

  13. Hatch RC (1973) Ketamine – excellent anesthetic. J Am Vet Assoc 162:835

    Google Scholar 

  14. Clements JA, Nimmo WS (1981) Pharmacokinetics and analgesic effect of ketamine in man. Br J Anaesth 53:27–30

    Article  CAS  PubMed  Google Scholar 

  15. Grant IS, Nimmo WS, Clements JA (1981) Pharmacokinetics and analgesic effects of IM and oral ketamine. Br J Anaesth 53:805–810

    Article  CAS  PubMed  Google Scholar 

  16. Clements JA, Nimmo WS, Grant IS (1982) Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J Pharm Sci 71:539–541

    Article  CAS  PubMed  Google Scholar 

  17. Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of NMDA receptors. J Pharmacol Exp Ther 260:1209–1213

    CAS  PubMed  Google Scholar 

  18. Zeilhofer HU, Swandulala D, Geisslinger G, Brune K (1992) Differential effects of ketamine enantiomers on NMDA receptor currents in cultured neurons. Eur J Pharmacol 213:155–158

    Article  CAS  PubMed  Google Scholar 

  19. Hijazi Y, Boulieu R (2002) Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 30:853–858

    Article  CAS  PubMed  Google Scholar 

  20. Geisslinger G, Hering W, Thomann P et al (1993) Pharmacokinetics and pharmacodynamics of ketamine enantiomers in surgical patients using a stereoselective analytical method. Br J Anaesth 70:666–671

    Article  CAS  PubMed  Google Scholar 

  21. Ihmsen H, Geisslinger G, Schuttler J (2001) Stereoselective pharmacokinetics of ketamine: R(−) ketamine inhibits the elimination of S(+) ketamine. Clin Pharmacol Ther 70:431–438

    Article  CAS  PubMed  Google Scholar 

  22. Kanto JH (1985) Midazolam: the first water-soluble benzodiazepine. Pharmacotherapy 5:138–155

    Article  CAS  PubMed  Google Scholar 

  23. Kanto JH, Allonen H (1983) Pharmacokinetics and the sedative effect of midazolam. Int J Clin Pharmacol Ther Toxic 21:460–463

    CAS  Google Scholar 

  24. Smith MH, Eadie MJ, Brophy TO (1981) The pharmacokinetic of midazolam in man. Eur J Clin Pharmacol 19:271–278

    Article  PubMed  Google Scholar 

  25. Heizmann P, Eckert M, Ziegler WH (1983) Pharmacokinetics and bioavailability in man. Br J Clin Pharmacol 16:43S–49S

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kronbach T, Mathys D, Umeno M et al (1989) Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 30:89–96

    Google Scholar 

  27. Reves JG, Fragen RJ, Vinik R, Greenblatt DJ (1985) Midazolam: pharmacology and uses. Anesthesiology 62:310–324

    Article  CAS  PubMed  Google Scholar 

  28. Crevoisier C, Ziegler WH, Eckert M, Heizmann P (1983) Relationship between plasma concentration and effect of midazolam after oral and intravenous administration. Br J Clin Pharmacol 16:51S–61S

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gemperle M, Kapp WK (1983) Midazolam and anaesthesia. Br J Clin Pharmacol 16:187S–190S

    Article  PubMed  PubMed Central  Google Scholar 

  30. Forster A, Gardaz JP, Suter PM, Gemperle M (1980) IV midazolam as an induction agent for anaesthesia: a study in volunteers. Br J Anaesth 52:907–911

    Article  CAS  PubMed  Google Scholar 

  31. Sunzel M, Paalzow L, Berggren L, Eriksson I (1988) Respiratory and cardiovascular effects in relation to plasma levels of midazolam and diazepam. Br J Clin Pharmacol 25:561–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Forster A, Gardaz JP, Suter PM, Gemperle M (1980) Respirator depression by midazolam and diazepam. Anesthesiology 53:494–497

    Article  CAS  PubMed  Google Scholar 

  33. Caldwell CB, Gross JB (1982) Physostigmine reversal of midazolam-induced sedation. Anesthesiology 57:125–127

    Article  CAS  PubMed  Google Scholar 

  34. Gross JB, Blouin RT, Zandsberg S et al (1996) Effect of flumazenil on ventilatory drive during sedation with midazolam and alfentanil. Anesthesiology 85:713–720

    Article  CAS  PubMed  Google Scholar 

  35. Ramzan MJ, Somogyi AA, Walker JS et al (1981) Clinical pharmacokinetics of the non-depolarising muscle relaxants. Clin Pharamcokinet 6:25–60

    Article  CAS  Google Scholar 

  36. Kalow W (1956) The relation of plasma cholinesterases to response to clinical doses of succinylcholine. J Arch Can Anaesth 3:22–30

    Article  Google Scholar 

  37. Wingard LB, Cook DR (1977) Clinical pharmacokinetics of muscle relaxants. Clin Pharmacokinet 2:330–343

    Article  CAS  PubMed  Google Scholar 

  38. Agoston S, Vandenbrom RH, Wierda JM (1992) Clinical pharmacokinetics of neuromuscular blocking drugs. Clin Pharmacokinet 22:94–115

    Article  CAS  PubMed  Google Scholar 

  39. Paul D, Atherton L, Huter JM (1999) Clinical pharmacokinetics of the newer neuromuscular blocking drugs. Clin Pharmacokinet 36:169–189

    Article  Google Scholar 

  40. Guay J, Grenier Y, Varin F (1998) Clinical pharmacokinetics of neuromuscular relaxants in pregnancy. Clin Pharmacokinet 34:483–497

    Article  CAS  PubMed  Google Scholar 

  41. Kalow W, Gunn DR (1959) Some statistical data on atypical cholinesterase of human serum. Am J Hum Genet 23:239–250

    Article  CAS  Google Scholar 

  42. Ryan AR (1964) Tubocurarine administration based upon its disappearance and accumulation curves in anaesthesized man. Br J Anaesth 38:287

    Article  Google Scholar 

  43. Matteo RS, Spector S, Horowitz PE (1974) Relation of serum d-tubocurarine concentration to neuromuscular block in man. Anesthesiology 41:440–448

    Article  CAS  PubMed  Google Scholar 

  44. Ramzan MI, Shanks CA, Triggs EJ (1980) Pharmacokinetics of tubocurarine administered by combined IV bolus and infusion. Br J Anaesth 52:893–899

    Article  CAS  PubMed  Google Scholar 

  45. Fisher DM, O’Keefe C, Stanski DR et al (1982) Pharmacokinetics and pharmacodynamics of d-tubocurarine in infants, children, and adults. Anesthesiology 57:203–208

    Article  CAS  PubMed  Google Scholar 

  46. Ham J, Stanski DR, Newfield P, Miller RD (1981) Pharmacokinetics and dynamics of d-tubocurarine during hypothermia in humans. Anesthesiology 55:631–633

    Article  Google Scholar 

  47. Sheiner LB, Stanski DR, Vozeh S et al (1979) Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 25:358–371

    Article  CAS  PubMed  Google Scholar 

  48. Ltorre F, deAlemeida MC, Stanek A, Kleeman PP (1997) The effect of smoking on neuromuscular transmission after rocuronium. Anaesthesist 46L:493–495

    Article  Google Scholar 

  49. Drage A, Varin F, Plaud B, Donati F (2002) Rocuronium pharmacokinetics-pharmacodynamic relationship under stable propofol or isoflurane anesthesia. Can J Anesth 49:353–360

    Article  Google Scholar 

  50. Van Miert MM, Estwood NB, Boyd AH et al (1997) The pharmacokinetic and pharmacodynamics of rocuronium in patients with hepatic cirrhosis. Br J Clin Pharmacol 44:139–144

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang ZM, Zhang P, Lin MJ et al (2013) Influence of obstructive jaundice on pharmacodynamics of rocuronium. PLoS One 8:e78052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caldwell JE, Szenohradszky J, Segredo V et al (1994) The pharmacodynamics and pharmacokinetics of the metabolite 3-desacetylvencuronium (ORG 7268) and its parent compound, vecuronium, in human volunteers. J Pharm Exp Ther 270:1216–1222

    CAS  Google Scholar 

  53. Marshall IG, Gibb AJ, Durant NN (1983) Neuromuscular and vagal blocking actions of pancuronium bromide, its metabolites, and vecuronium bromide (Org NC45) and its potential metabolites in the anesthetized cat. Br J Anaesth 55:703–714

    Article  CAS  PubMed  Google Scholar 

  54. Cronnelly R, Fisher DM, Miller RD et al (1983) Pharmacokinetics and pharmacodynamics of vecuronium (ORG NC 45) and pancuronium in anaesthesized patients. Anesthesiology 58:405–408

    Article  CAS  PubMed  Google Scholar 

  55. Meistelman C, Agoston S, Kersten UW et al (1996) Pharmacokinetics and pharmacodynamics of vencuronium and pancuronium in anesthetized children. Anesth Analg 65:1319–1322

    Google Scholar 

  56. Rupp SM, Castagnoili KP, Fisher DM, Miller RD (1987) Pancuronium and vencuronium pharmacokinetics and pharmacodynamics in younger and elderly adults. Anesthesiology 67:45–49

    Article  CAS  PubMed  Google Scholar 

  57. Lyman DP, Cronnelly R, Castagnoli KP et al (1988) The pharmacodynamics and pharmacokinetics of vecuronium in patients anesthetized with isoflurane with normal renal function or with renal failure. Anesthesiology 69:227–231

    Article  Google Scholar 

  58. Vego-villa KR, Kaneda K, Yamashita S et al (2014) Vecuronium pharmacokinetics in patients with major burns. Br J Anaesthesia 112:304–310

    Article  CAS  Google Scholar 

  59. Davis PJ, Cook DR (1986) Clinical pharmacokinetics of the newer intravenous anaesthetic agents. Clin Pharmacokinet 11:18–35

    Article  CAS  PubMed  Google Scholar 

  60. Willens JS, Myslinski NR (1993) Pharmacodynamics, pharmacokinetics, and clinical uses of fentanyl, sufentanil, and alfentanil. Heart Lung 22:239–251

    CAS  PubMed  Google Scholar 

  61. Fung DL, Eisele JH (1980) Fentanyl pharmacokinetics in awake volunteers. J Clin Pharmacol 20:652–658

    Article  CAS  PubMed  Google Scholar 

  62. Gepts E, Shafer SL, Camu F et al (1998) Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology 83:1194–1204

    Article  Google Scholar 

  63. Metz C, Gobel L, Gruber M et al (2000) Pharmacokinetics of human cerebral opioid extraction: a comparative study on sufentanil, fentanyl, and alfentanil in a patient after severe head injury. Anesthesiology 92:1559–1567

    Article  CAS  PubMed  Google Scholar 

  64. Meuldermans WE, Hurkmans RM, Heykants JJ (1982) Plasma protein binding and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. Arch Int Pharmacodyn Ther 257:4–19

    CAS  PubMed  Google Scholar 

  65. Labroo RB, Paine FP, Thummel KE, Khararsch ED (1997) Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos 25:1072–1080

    CAS  PubMed  Google Scholar 

  66. Yun CH, Wood M, Wood AJ (1992) Identification of the pharmacogenetic determination of alfentanil metabolism cytochrome P450 3A4. An explanation of the variable elimination clearance. Anesthesiology 77:467–474

    Article  CAS  PubMed  Google Scholar 

  67. Roscow CE (1984) Sufentanil citrate: a new opioid analgesic for use in anesthesia. Pharmacotherapy 4:11–19

    Article  Google Scholar 

  68. Lundberg S, Roelofse JA (2011) Aspects of pharmacokinetics and pharmacodynamics of sufentanil in pediatric practice. Paediatr Anaesth 21:274–279

    Article  Google Scholar 

  69. Bartkowski RR, Goldberg ME, Huffnagle S, Epstein RH (1993) Sufentanil disposition. Is it affected by erythromycin administration? Anesthesiology 78:260–265

    Article  CAS  PubMed  Google Scholar 

  70. Ibrahim AE, Feldman J, Karim A, Kharasch ED (2003) Simultaneous assessment of drug interactions with low and high extraction opioids. Anesthesiology 98:853–861

    Article  CAS  PubMed  Google Scholar 

  71. Wandel C, Kim R, Wood M, Wood A (2002) Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology 96:913–920

    Article  CAS  PubMed  Google Scholar 

  72. Shafer A, Sung ML, White PF (1986) Pharmacokinetic and pharmacodynamics of alfentanil infusions during general anesthesia. Anesth Analg 65:1021–1028

    Article  CAS  PubMed  Google Scholar 

  73. Thomson IR, Henderson BT, Singh K, Hudson RJ (1998) Concentration-response relationship for fentanyl and sufentanil in patients undergoing coronary artery bypass grafting. Anesthesiology 89:852–861

    Article  CAS  PubMed  Google Scholar 

  74. Thompson IR, Harding G, Hudson RJ (2000) A comparison of fentanyl and sufentanil in patients undergoing coronary artery bypass graft surgery. J Cardiothoracic Vas Anesth 14:652–656

    Article  Google Scholar 

  75. Jeleazcov C, Saari TI, Ihmsen H et al (2012) Changes in total and unbound concentrations of sufentanil during target controlled infusion for cardiac surgery with cardiopulmonary bypass. Br J Anaesth 109:698–706

    Article  CAS  PubMed  Google Scholar 

  76. Scholz J, Steinfath M, Schulz M (1996) Clinical pharmacokinetics of alfentanil, fentanyl, and sufentanil. An update. Clin Pharmacokinet 31:275–292

    Article  CAS  PubMed  Google Scholar 

  77. Davis PJ, Killian A, Stiller RL et al (1988) Alfentanil pharmacokinetics in premature infants and older children. Anesthesiology 69:A758

    Article  Google Scholar 

  78. Guay J, Gaudreault P, Tang A et al (1992) Pharmacokinetics of sufentanil in normal children. Can J Anaesth 39:14–20

    Article  CAS  PubMed  Google Scholar 

  79. Scott JC, Stanski DR (1987) Decreased fentanyl and alfentanil dose requirements with age: a simultaneous pharmacokinetic and pharmacodynamics evaluation. J Pharmacol Exp Ther 240:159–163

    CAS  PubMed  Google Scholar 

  80. Bovill JG, Sebel PS, Blackburn CL, Oei-Lim V, Heykants JJ (1984) The pharmacokinetics of sufentanil in surgical patients. Anesthesiology 61:502–506

    Article  CAS  PubMed  Google Scholar 

  81. Hudson RJ, Bergstrom RG, Thomson IR et al (1989) Pharmacokinetics of sufentanil in patients undergoing abdominal aortic surgery. Anesthesiology 70:426–431

    Article  CAS  PubMed  Google Scholar 

  82. Hudson RJ, Thomson IR, Burgess PM, Rosenbloom M (1991) Alfentanil pharmacokinetics in patients undergoing abdominal aortic surgery. Can J Anaesth 38:61–67

    Article  CAS  PubMed  Google Scholar 

  83. Baylaen WA, Herregods LL, Mortier EP et al (1989) Cardiopulmonary bypass and the pharmacokinetics of drugs. An update. Clin Pharmacokinet 17:10–22

    Article  Google Scholar 

  84. Hall R (1991) The pharmacokinetic behavior of opioids administered during cardiac surgery. Can J Anaesth 38:747–756

    Article  CAS  PubMed  Google Scholar 

  85. Cummings GC, Dixon J, Kay NH et al (1984) Dose requirements of ICI 35868 (propofol, Diprivan) in a new formulation for induction of anaesthesia. Anaesthesia 39:1168–1173

    Article  CAS  PubMed  Google Scholar 

  86. Kay NH, Sear JW, Uppington J et al (1986) Disposition of propofol in patients undergoing surgery. Br J Anaesth 58:1075–1079

    Article  CAS  PubMed  Google Scholar 

  87. Kirkpatirck T, Cockshott ID, Douglas EJ, Nimmo WS (1988) Pharmacokinetics of propofol (Diprivan) in elderly patients. Br J Anaesth 60:146–150

    Article  Google Scholar 

  88. Schnider TW, Minto CF, Gambus PL et al (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88:1170–1182

    Article  CAS  PubMed  Google Scholar 

  89. Marsh B, White M, Morton N, Kenny GNC (1991) Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 67:41–48

    Article  CAS  PubMed  Google Scholar 

  90. Puri A, Medhi B, Panda NB et al (2012) Propofol pharmacokinetics in young healthy Indian subjects. Indian J Pharmacol 44:402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ye HB, Li JH, Rui JZ et al (2012) Propofol pharmacokinetics in China: a multicentric study. Indian J Pharmacol 44:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Court MH, Duan SX, Hesse LM et al (2001) Cytochrome P450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology 94:110–119

    Article  CAS  PubMed  Google Scholar 

  93. Guitton J, Buronfosse T, Desage M et al (1998) Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth 80:788–795

    Article  CAS  PubMed  Google Scholar 

  94. Turpeinen M, Zanger UM (2012) Cytochrome P450 2B6: function, genetics, and clinical relevance. Drug Metab Drug Interact 27:185–197

    Article  CAS  Google Scholar 

  95. Kansaku F, Kuma T, Sasaki K et al (2011) Individual differences in pharmacokinetics and pharmacodynamics of anesthetic agent propofol with regard to CYP2B6 and UGR1A9 genotype and patient age. Drug Metab Pharmacokinet 26:532–537

    Article  CAS  PubMed  Google Scholar 

  96. Coetzee JF (2012) Allometric or lean body mass scaling of propofol pharmacokinetics. Clin Pharmacokinet 51:137–145

    Article  CAS  PubMed  Google Scholar 

  97. Martin-Mateos I, Perez JAM, Reboso JA, Leon A (2013) Modeling propofol pharmacodynamics using BIS-guided anaesthesia. Anaesthesia 68:1132–1140

    Article  CAS  PubMed  Google Scholar 

  98. Echevarria CG, Elgueta MF, Donoso MT et al (2012) The effective effect-site propofol concentration for induction and intubation with two pharmacokinetic models in morbidly obese patients using total body weight. Anesth Analg 115:823–829

    Article  CAS  PubMed  Google Scholar 

  99. Diepstraten J, Chidambaran V, Sadhasivan S et al (2012) Propofol clearance in morbidly obese children and adolescents. Clin Pharmacokinet 51:543–551

    Article  CAS  PubMed  Google Scholar 

  100. Chidambaran V, Sadhasivan S, Diepstraten J et al (2013) Evaluation of propofol anesthesia in morbidly obese children and adolescents. BMC Anesthesiol 13:1–9

    Article  CAS  Google Scholar 

  101. Loryan I, Lindqvist M, Johansson I et al (2012) Influence of sex on propofol metabolism, a pilot study: implications for propofol anesthesia. Eur J Clin Pharmacol 68:397–406

    Article  CAS  PubMed  Google Scholar 

  102. Choong E, Loryan I, Lindqvist M et al (2013) Sex difference in formation of propofol metabolites: a replication study. Basic Clin Pharmacol Toxic 113:126–131

    Article  CAS  Google Scholar 

  103. Hiraoka H, Yamamoto K, Okana N et al (2004) Changes in drug plasma concentrations of an extensively bound and highly extracted drug propofol, in response to altered plasma binding. Clin Pharmacol Ther 75:324–330

    Article  CAS  PubMed  Google Scholar 

  104. Takizawa D, Sato E, Hiraoka H et al (2005) Changes in apparent systemic clearance of propofol during transplantation of living related donor liver. Br J Anaesth 95:643–647

    Article  CAS  PubMed  Google Scholar 

  105. Przybylowski K, Tyczka J, Szczesny D et al (2015) Pharmacokinetic and pharmacodynamics of propofol in cancer patients undergoing major kung surgery. J Pharmacokinet Pharmacodyn 42:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Glen JB (2013) Propofol effect-site concentration: hunt the Keo. Anesth Anal 117:535–536

    Article  Google Scholar 

  107. Guerra F (1980) Thiopental forever after. In: Aldrete JA, Stanley TH (eds) Trends in intravenous anesthesia. Yearbook, Chicago, pp 143–151

    Google Scholar 

  108. Bischoff KB, Dedrick RL (1968) Thiopental pharmacokinetics. J Pharm Sci 57:1346–1351

    Article  CAS  PubMed  Google Scholar 

  109. Morgan DJ, Blackman GL, Paull JD et al (1981) Pharmacokinetics and plasma binding of thiopental. I. Studies in surgical patients. Anesthesiology 54:468–473

    Article  CAS  PubMed  Google Scholar 

  110. Stanski DR (1981) Pharmacokinetic modelling of thiopental. Anesthesiology 54:446–448

    Article  CAS  PubMed  Google Scholar 

  111. Burch PG, Stanski DR (1983) The role of metabolism and protein binding in thiopental anesthesia. Anesthesiology 58:146–152

    Article  CAS  PubMed  Google Scholar 

  112. Stanski DR, Burch PG, Harapat S, Richards RK (1983) Pharmacokinetics and anesthetic potency of a thiopental isomer. J Pharm Sci 72:937–940

    Article  CAS  PubMed  Google Scholar 

  113. Christensen JH, Andreasen F, Jansen JA (1980) Pharmacokinetics of thiopentone in a group of young women and a group of young men. Br J Anesth 52:913–918

    Article  CAS  Google Scholar 

  114. Sorbo S, Hudson RJ, Loomis JC (1984) The pharmacokinetics of thiopental in pediatric surgical patients. Anesthesiology 61:666–670

    Article  CAS  PubMed  Google Scholar 

  115. Christensen JH, Andreasen F, Jansen JA (1981) Influence of age and sex on the pharmacokinetics of thiopentone. Br J Anesth 53:1189–1195

    Article  CAS  Google Scholar 

  116. Christensen JH, Andreasen F, Jansen JA (1982) Pharmacokinetics and pharmacodynamics of thiopentone, a comparison between young and elderly patients. Anaesthesia 37:398–404

    Article  CAS  PubMed  Google Scholar 

  117. Christensen JH, Andreasen F, Jansen JA (1983) Pharmacokinetics and pharmacodynamics of thiopentone in patients undergoing renal transplantation. Acta Anaesthesiol Scand 27:513–518

    Article  CAS  PubMed  Google Scholar 

  118. Pandele G, Chaux F, Salvadori C et al (1985) Thiopental pharmacokinetics in patients with cirrhosis. Anesthesiology 59:123–125

    Article  Google Scholar 

  119. Couderc E, Ferrier C, Haberer JP et al (1984) Thiopentone pharmacokinetics in patients with chronic alcoholism. Br J Anaesth 56:1393–1397

    Article  CAS  PubMed  Google Scholar 

  120. Kharasch KD, Russell M, Mautz D et al (1997) The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 87:36–50

    Article  CAS  PubMed  Google Scholar 

  121. Santamaria R, Pailleux F, Beaudry F (2013) In vitro ketamine CYP3A-mediated metabolism study using mammalian liver S9 fractions, cDNA expressed enzymes and liquid chromatography tandem mass spectrometry. Biomed Chromatogr. doi:10.1002/bmc3199

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Jann PharmD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jann, M.W. (2016). Anesthetic Drugs Pharmacokinetics and Pharmacodynamics. In: Jann, M., Penzak, S., Cohen, L. (eds) Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents. Adis, Cham. https://doi.org/10.1007/978-3-319-27883-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27883-4_15

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-27881-0

  • Online ISBN: 978-3-319-27883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics