Skip to main content

Abstract

Membrane transporters are present in a variety of anatomical locations and organ systems throughout the body. Transporters control the absorption, distribution, intracellular penetration, and excretion of numerous drugs. ATP-binding cassette (ABC) and solute carrier (SLC) superfamilies comprise the majority of clinically relevant transport proteins. In intestinal and liver epithelia, transport proteins control the access of certain medications to systemic circulation. In the kidney, transporters may facilitate or impair drug excretion depending on their specific location and function. However, it is at the blood-brain barrier (BBB) where membrane transporters regulate access of endogenous and exogenous compounds to the central nervous system (CNS). This chapter will review the common drug transport proteins in the intestine and liver as they impact the systemic exposure of drugs that exert their primary pharmacologic effects in the CNS; drug transporters in the kidney that may influence the excretion of such agents will also be addressed. The primary focus of this chapter will be drug transport of centrally acting agents at the BBB, primarily via the efflux transporter and ABCB1 gene product, P-glycoprotein (P-gp). Additional transport proteins will be considered for their documented or putative involvement in drug interactions involving centrally acting medications. Lastly, approaches to circumvent the influence of drug efflux at the BBB will be considered, including modulation of centrally located membrane transporters. Approaches to developing drugs that bypass the effects of efflux transporters at the BBB will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giacomini KM, Huang SM, Tweedie DJ et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    Article  CAS  PubMed  Google Scholar 

  2. Shugarts S, Benet LZ (2009) The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 26:2039–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morrissey KM, Stocker SL, Wittwer MB et al (2013) Renal transporters in drug development. Annu Rev Pharmacol Toxicol 53:503–529

    Article  CAS  PubMed  Google Scholar 

  4. Löscher W, Potschka H (2005) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76:22–76

    Article  PubMed  CAS  Google Scholar 

  5. Lee G, Dallas S, Hong M et al (2001) Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 53:569–596

    Article  CAS  PubMed  Google Scholar 

  6. Löscher W, Potschka H (2005) Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2:86–98

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yoo H-D, Lee Y-B (2011) Interplay of pharmacogenetic variations in ABCB1 transporters and cytochrome P450 enzymes. Arch Pharm Res 34:1817–1828

    Article  CAS  PubMed  Google Scholar 

  8. Tozer TN, Rowland M (2006) Extravascular dose and systemic absorption. In: Introduction to pharmacokinetics and pharmacodynamics. Lippincott Williams & Wilkins, Baltimore, pp 105–136

    Google Scholar 

  9. Choudhuri S, Klaassen CD (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 25:231–259

    Article  CAS  PubMed  Google Scholar 

  10. Kosters A, Karpen SJ (2008) Bile acid transporters in health and disease. Xenobiotica 38:1043–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Waterschoot RA, Schinkel AH (2011) A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol Rev 63:390–410

    Article  PubMed  CAS  Google Scholar 

  12. Yasui-Furukori N, Saito M, Niioka T et al (2007) Effect of itraconazole on pharmacokinetics of paroxetine: the role of gut transporters. Ther Drug Monit 29:45–48

    Article  CAS  PubMed  Google Scholar 

  13. Kim RB, Fromm MF, Wandel C et al (1998) The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101:289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee CGL, Gottesman MM (1998) HIV protease inhibitors and the MDR1 multidrug transporter. J Clin Invest 101:287–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin JH (1999) Role of pharmacokinetics in the discovery and development of indinavir. Adv Drug Deliv Rev 39:33–49

    Article  CAS  PubMed  Google Scholar 

  16. Winans E (2003) Aripiprazole. Am J Health Syst Pharm 60:2437–2445

    CAS  PubMed  Google Scholar 

  17. He H, Richardson JS (1995) A pharmacological, pharmacokinetic and clinical overview of risperidone, a new antipsychotic that blocks serotonin 5-HT2 and dopamine D2 receptors. Int Clin Psychopharmacol 10:19–30

    Article  CAS  PubMed  Google Scholar 

  18. Rambeck B, Wolf P (1993) Lamotrigine clinical pharmacokinetics. Clin Pharmacokinet 25:433–443

    Article  CAS  PubMed  Google Scholar 

  19. Van Harten J (1993) Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin Pharmacokinet 24:203–220

    Article  PubMed  Google Scholar 

  20. Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98

    Article  CAS  PubMed  Google Scholar 

  21. Name of website: DrugBank. Available from: http://www.drugbank.ca/drugs/DB01267. Accessed 18 July 2014

  22. Penzak SR (2005) Mechanisms of drug interactions II: transport proteins. In: Piscitelli SC, Rodvold KA (eds) Drug interactions in infectious diseases, 2nd edn. Human Press, Totowa, pp 41–82

    Chapter  Google Scholar 

  23. Benet LZ (2009) The drug transporter- metabolism alliance: uncovering and defining the interplay. Mol Pharm 6:1631–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Name of website: Indiana University, Division of Clinical Pharmacology, P450 Drug Interaction Table. http://medicine.iupui.edu/clinpharm/ddis/main-table/. Accessed 18 July 2014

  25. Crismon ML, Argo TR, Buckley PF (2014) Schizophrenia. In: DiPiro JT, Talbert RL, Yee GC et al (eds) Pharmacotherapy: a pathophysiologic approach, 9th edn. McGraw-Hill, New York, pp 1019–1045

    Google Scholar 

  26. Name of website: Micromedex 2.0. DRUGDEX Evaluations. http://www.micromedexsolutions.com.proxy.hsc.unt.edu/micromedex2/librarian/ND_T/evidencexpert/ND_PR/evidencexpert/CS/F912E4/ND_AppProduct/evidencexpert/DUPLICATIONSHIELDSYNC/63B994/ND_PG/evidencexpert/ND_B/evidencexpert/ND_P/evidencexpert/PFActionId/evidencexpert.DisplayDrugdexDocument?docId=0229&contentSetId=31&title=Diazepam&servicesTitle=Diazepam&topicId=pharmacokineticsSection. Accessed 19 July 2014

  27. Name of website: Micromedex 2.0. DRUGDEX evaluations. http://www.micromedexsolutions.com.proxy.hsc.unt.edu/micromedex2/librarian/ND_T/evidencexpert/ND_PR/evidencexpert/CS/11248C/ND_AppProduct/evidencexpert/DUPLICATIONSHIELDSYNC/6005E9/ND_PG/evidencexpert/ND_B/evidencexpert/ND_P/evidencexpert/PFActionId/evidencexpert. DisplayDrugdexDocument?docId=2303&contentSetId=31&title=Aprepitant&servicesTitle=Aprepitant&topicId=pharmacokineticsSection. Accessed 19 July 2014

  28. Name of website: Micromedex 2.0. DRUGDEX evaluations. http://www.micromedexsolutions.com.proxy.hsc.unt.edu/micromedex2/librarian/ND_T/evidencexpert/ND_PR/evidencexpert/CS/54400D/ND_AppProduct/evidencexpert/DUPLICATIONSHIELDSYNC/EF9157/ND_PG/evidencexpert/ND_B/evidencexpert/ND_P/evidencexpert/PFActionId/evidencexpert. DisplayDrugdexDocument?docId=2467&contentSetId=31&title=Buspirone+Hydrochloride&servicesTitle=Buspirone+Hydrochloride&topicId=pharmacokineticsSection. Accessed 19 July 2014

  29. Name of website: Micromedex 2.0. DRUGDEX evaluations. http://www.micromedexsolutions.com.proxy.hsc.unt.edu/micromedex2/librarian/ND_T/evidencexpert/ND_PR/evidencexpert/CS/EC38F4/ND_AppProduct/evidencexpert/DUPLICATIONSHIELDSYNC/89C445/ND_PG/evidencexpert/ND_B/evidencexpert/ND_P/evidencexpert/PFActionId/evidencexpert. DisplayDrugdexDocument?docId=0482&contentSetId=31&title=Methadone+Hydrochloride&servicesTitle=Methadone+Hydrochloride&topicId=pharmacokineticsSection. Accessed 19 July 2014

  30. Langtry HD, Benfield P (1990) Zolpidem. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 40:291–313

    Article  CAS  PubMed  Google Scholar 

  31. Christofaki M, Papaioannou A (2014) Ondansetron: a review of pharmacokinetics and clinical experience in postoperative nausea and vomiting. Expert Opin Drug Metab Toxicol 10:437–444

    Article  CAS  PubMed  Google Scholar 

  32. Balant-Gorgia AE, Balant L (1987) Clinical pharmacokinetics of potential candidates for plasma concentration monitoring. Antipsychotic drugs. Clin Pharmacokinet 13:65–90

    Article  CAS  PubMed  Google Scholar 

  33. Misaka S, Müller F, Fromm MF (2013) Clinical relevance of drug efflux pumps in the gut. Curr Opin Pharmacol 13:847–852

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura T, Sakaeda T, Horinouchi M et al (2002) Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clin Pharmacol Ther 71:297–303

    Article  CAS  PubMed  Google Scholar 

  35. Kurata Y, Ieiri I, Kimura M et al (2002) Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther 72:209–219

    Article  CAS  PubMed  Google Scholar 

  36. Chinn LW, Kroetz DL (2007) ABCB1 pharmacogenetics: progress, pitfalls, and promise. Clin Pharmacol Ther 81:265–269

    Article  CAS  PubMed  Google Scholar 

  37. Lazarowski A, Sevlever G, Taratuto A et al (1999) Tuberous sclerosis associated with MDR1 gene expression and drug-resistant epilepsy. Pediatr Neurol 21:731–734

    Article  CAS  PubMed  Google Scholar 

  38. Fukui N, Suzuki Y, Sawamura K et al (2007) Dose-dependent effects of the 3435 C>T genotype of ABCB1 gene on the steady-state plasma concentration of fluvoxamine in psychiatric patients. Ther Drug Monit 29:185–189

    Article  CAS  PubMed  Google Scholar 

  39. Franke RM, Gardner ER, Sparreboom A (2010) Pharmacogenetics of drug transporters. Curr Pharm Des 16:220–230

    Article  CAS  PubMed  Google Scholar 

  40. Cascorbi I (2006) Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 112:457–473

    Article  CAS  PubMed  Google Scholar 

  41. Lin JH (2003) Drug-drug interaction mediated by inhibition and induction of P-glycoprotein. Adv Drug Deliv Rev 55:53–81

    Article  CAS  PubMed  Google Scholar 

  42. Greiner B, Eichelbaum M, Fritz P et al (1999) The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 104:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Westphal K, Weinbrenner A, Zschiesche M et al (2000) Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 68:345–355

    Article  CAS  PubMed  Google Scholar 

  44. Hebert MF, Roberts JP, Prueksaritanont T et al (1992) Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 52:453–457

    Article  CAS  PubMed  Google Scholar 

  45. Niemi M, Pasanen MK, Neuvonen PJ (2011) Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 63:157–181

    Article  CAS  PubMed  Google Scholar 

  46. Kiser JJ, Gerber JG, Predhomme JA et al (2008) Drug/drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers. J Acquir Immune Defic Syndr 47:570–578

    Article  CAS  PubMed  Google Scholar 

  47. Kalliokoski A, Niemi M (2009) Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 158:693–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leibovitz A, Bilchinsky T, Gil I et al (1998) Elevated serum digoxin level associated with coadministered fluoxetine. Arch Intern Med 158:1152–1153

    Article  CAS  PubMed  Google Scholar 

  49. Product Information: ULTRAM(R)ER extended-release oral tablets, tramadol hcl extended-release oral tablets. PriCara, Raritan, 12/00/2005

    Google Scholar 

  50. Ni Z, Bikadi Z, Rosenberg MF et al (2010) Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 11:603–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    Article  CAS  PubMed  Google Scholar 

  52. Launay-Vacher V, Izzedine H, Karie S et al (2006) Renal tubular drug transporters. Nephron Physiol 103:97–106

    Article  CAS  Google Scholar 

  53. Linnet K, Broeng Ejsing T (2008) A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drug. Eur Neuropsychopharmacol 18:157–169

    Article  CAS  PubMed  Google Scholar 

  54. Golden PL, Pollack GM (2003) Blood–brain barrier efflux transport. J Pharm Sci 92:1739–1753

    Article  CAS  PubMed  Google Scholar 

  55. Cornford EM, Hyman S (1999) Blood–brain barrier permeability to small and large molecules. Adv Drug Deliv Rev 36:145–163

    Article  CAS  PubMed  Google Scholar 

  56. Pardridge WM (1999) Blood–brain barrier biology and methodology. J Neurovirol 5:556–569

    Article  CAS  PubMed  Google Scholar 

  57. Tsuji A, Tamai I (1999) Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv Drug Deliv Rev 36:277–290

    Article  CAS  PubMed  Google Scholar 

  58. Segal MB (2000) The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol 20:183–196

    Article  CAS  PubMed  Google Scholar 

  59. Spector R (2000) Drug transport in the mammalian central nervous system: multiple complex systems. A critical analysis and commentary. Pharmacology 60:58–73

    Article  CAS  PubMed  Google Scholar 

  60. Graff CL, Pollack GM (2004) Drug transport at the blood–brain barrier and choroid plexus. Curr Drug Metab 5:95–108

    Article  CAS  PubMed  Google Scholar 

  61. Cordon-Cardo C, O’Brien JP, Casals D et al (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at the blood–brain barrier sites. Proc Natl Acad Sci U S A 86:695–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Demeule M, Regina A, Jodoin J et al (2002) Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood–brain barrier. Vascul Pharmacol 38:339–348

    Article  CAS  PubMed  Google Scholar 

  63. Sun H, Dai H, Shaik N et al (2003) Drug efflux transporters in the CNS. Adv Drug Deliv Rev 55:83–105

    Article  CAS  PubMed  Google Scholar 

  64. Schinkel AH, Smit JJ, van Tellingen O et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  CAS  PubMed  Google Scholar 

  65. Paul AJ, Tranquilli WJ, Seward RL et al (1987) Clinical observations in collies given ivermectin orally. Am J Vet Res 48:684–685

    CAS  PubMed  Google Scholar 

  66. Neff MW, Robertson KR, Wong AK et al (2004) Breed distribution and history of canine mdr1-1Delta, a pharmacogenetic mutation that marks the emergence of breeds from the collie lineage. Proc Natl Acad Sci U S A 101:11725–11730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. De Boer AG, van der Sandt ICJ, Gaillard PJ (2003) The role of drug transporters at the blood–brain barrier. Annu Rev Pharmacol Toxicol 43:629–656

    Article  PubMed  CAS  Google Scholar 

  68. Xie R, Hammarlund-Udenaes M, de Boer AG et al (1999) The role of P-glycoprotein in blood–brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (−/−) and mdr1a (+/+) mice. Br J Pharmacol 128:563–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zong J, Pollack GM (2000) Morphine antinociception in enhanced in mdr1a gene-deficient mice. Pharm Res 17:749–753

    Article  CAS  PubMed  Google Scholar 

  70. Thompson SJ, Koszdin K, Bernards CM (2000) Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 92:1392–1399

    Article  CAS  PubMed  Google Scholar 

  71. Letrent SP, Pollack GM, Brouwer KR et al (1999) Effects of a potent and specific P-glycoprotein inhibitor on the blood–brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos 28:827–834

    Google Scholar 

  72. Rodriguez M, Ortega I, Soengas I et al (2004) Effect of P-glycoprotein inhibition on methadone analgesia and brain distribution in the rat. J Pharm Pharmacol 56:367–374

    Article  CAS  PubMed  Google Scholar 

  73. Sadeque AJM, Wandel C, He H et al (2000) Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 68:231–237

    Article  CAS  PubMed  Google Scholar 

  74. Heykants J, Michiels M, Knaeps A et al (1974) Loperamide (R 18553), a novel type of antidiarrheal agent. Arzneimittelforschung 24:1649–1653

    CAS  PubMed  Google Scholar 

  75. Doser K, Meyer B, Nitsche V et al (1995) Bioequivalence evaluation of two different oral formulations of loperamide (Diarex lactab vs Immodium capsules). Int J Clin Pharmacol Ther 33:431–436

    CAS  PubMed  Google Scholar 

  76. Schinkel AH, Wagenaar E, Mol CAAM et al (1996) P-glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Skarke C, Jarrar M, Schmidt H et al (2003) Effects of ABCB1 (multidrug resistance transporter) gene mutations on disposition and central nervous effects of loperamide in healthy volunteers. Pharmacogenetics 13:651–660

    Article  CAS  PubMed  Google Scholar 

  78. Skarke C, Jarrar M, Erb K et al (2003) Respiratory and miotic effects of morphine in healthy volunteers when P-glycoprotein is blocked by quinidine. Clin Pharmacol Ther 74:303–311

    Article  CAS  PubMed  Google Scholar 

  79. Dagenais C, Graff CL, Pollack GM (2004) Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol 67:269–276

    Article  CAS  PubMed  Google Scholar 

  80. Upton RN (2002) Theoretical aspects of P-glycoprotein mediated drug efflux on the distribution volume of anaesthetic-related drugs in the brain. Anaesth Intensive Care 30:183–191

    CAS  PubMed  Google Scholar 

  81. Shapiro AB, Ling V (1997) Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem 250:130–137

    Article  CAS  PubMed  Google Scholar 

  82. Yasuda K, Lan LB, Sanglard D, Furuya K, Schuetz JD, Schuetz EG (2002) Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J Pharmacol Exp Ther 303:323–332

    Article  CAS  PubMed  Google Scholar 

  83. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  CAS  PubMed  Google Scholar 

  84. Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349:1257–1266

    Article  PubMed  Google Scholar 

  85. Luna-Tortós C, Fedrowitz M, Löscher W (2008) Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 55:1364–1375

    Article  PubMed  CAS  Google Scholar 

  86. Sperling MR (2004) The consequences of uncontrolled epilepsy. CNS Spectr 9:98–99

    PubMed  Google Scholar 

  87. Löscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602

    Article  PubMed  CAS  Google Scholar 

  88. Löscher W, Potschka H (2002) Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 301:7–14

    Article  PubMed  Google Scholar 

  89. Volk HA, Burkhardt K, Potschka H, Chen J et al (2004) Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures. Neuroscience 123:751–759

    Article  CAS  PubMed  Google Scholar 

  90. Volk HA, Löscher W (2005) Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhances brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain 2005(128):1358–1368

    Article  Google Scholar 

  91. Volk HA, Potschka H, Löscher W (2005) Immunohistochemical localization of P-glycoprotein in rat brain and detection of its increased expression by seizures are sensitive to fixation and staining variables. J Histochem Cytochem 53:517–531

    Article  CAS  PubMed  Google Scholar 

  92. Tishler DM, Weinberg KT, Hinton DR et al (1995) MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 36:1–6

    Article  CAS  PubMed  Google Scholar 

  93. Sisodiya SM, Lin WR, Squier MV et al (2001) Multidrug resistance protein 1 in focal cortical dysplasia. Lancet 357:42–43

    Article  CAS  PubMed  Google Scholar 

  94. Sisodiya SM, Lin WR, Harding BN et al (2002) Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 125:22–31

    Article  CAS  PubMed  Google Scholar 

  95. Dombrowski SM, Desai SY, Marroni M et al (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501–1506

    Article  CAS  PubMed  Google Scholar 

  96. Aronica E, Gorter JA, Jansen GH et al (2003) Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors. Neuroscience 118:417–429

    Article  CAS  PubMed  Google Scholar 

  97. Aronica E, Gorter JA, Ramkema M et al (2004) Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients of with mesial temporal lobe epilepsy. Epilepsia 45:441–451

    Article  CAS  PubMed  Google Scholar 

  98. Sisodiya SM, Martinian L, Scheffer GL et al (2003) Major vault protein, a marker of drug resistance, is upregulated in refractory epilepsy. Epilepsia 2003:1388–1396

    Article  Google Scholar 

  99. Rizzi M, Caccia S, Guiso G et al (2002) P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci 22:5833–5839

    CAS  PubMed  Google Scholar 

  100. Brandt C, Bethmann K, Gastens AM et al (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24:202–211

    Article  CAS  PubMed  Google Scholar 

  101. Van Vliet EA, van Schaik R, Edelbroek PM et al (2007) Region-specific overexpression of P-glycoprotein at the blood–brain barrier affects brain uptake of phenytoin in epileptic rats. J Pharmacol Exp Ther 332:141–147

    Article  CAS  Google Scholar 

  102. Nicita F, Spalice A, Papetti L et al (2014) Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy: a pilot study. Seizure 23:36–40

    Article  PubMed  Google Scholar 

  103. Asadi-Pooya AA, Razavizadegan SMA, Abdi-Ardekani A et al (2013) Adjunctive use of verapamil in patients with refractory temporal lobe epilepsy: a pilot study. Epilepsy Behav 29:150–154

    Article  PubMed  Google Scholar 

  104. Betts T, Yarrow H, Greenhill L et al (2003) Clinical experience of marketed levetiracetam in an epilepsy clinic – a one year follow up study. Seizure 12:136–140

    Article  PubMed  Google Scholar 

  105. Seegers U, Potschka H, Löscher W (2002) Lack of effects of prolonged treatment with phenobarbital or phenytoin on the expression of P-glycoprotein in various rat brain regions. Eur J Pharmacol 451:149–155

    Article  CAS  PubMed  Google Scholar 

  106. Kerb R, Hoffmeyer S, Brinkmann U (2001) ABC drug transporters: hereditary polymorphisms and pharmacological impact in MDR1, MRP1, and MRP2. Pharmacogenomics 2:51–64

    Article  CAS  PubMed  Google Scholar 

  107. Siddiqui A, Kerb R, Weale ME et al (2003) Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 348:1442–1448

    Article  CAS  PubMed  Google Scholar 

  108. Li M, Tan J, Yang X et al (2014) The ABCB1-C3435T polymorphism likely acts as a risk factor for resistance to antiepileptic drugs. Epilepsy Res 108:1052–1067

    Article  CAS  PubMed  Google Scholar 

  109. Alpman A, Ozkinay F, Tekgul H et al (2010) Multidrug resistance 1 (MDR1) gene polymorphisms in childhood drug-resistant epilepsy. J Child Neurol 25:1485–1490

    Article  PubMed  Google Scholar 

  110. Di Q, Wang L, Xu L et al (2011) Association between the C3435T polymorphism of human multidrug resistance 1 gene and refractory epilepsy. Chin J Neuromed 10:127–131

    CAS  Google Scholar 

  111. Ebid AH, Ahmed MM, Mohammed SA (2007) Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients: a gene polymorphism perspective study. Ther Drug Monit 29:305–312

    Article  PubMed  Google Scholar 

  112. Haerian BS, Lim KS, Mohamed EH et al (2004) Lack of association of ABCB1 and PXR polymorphisms with response to treatment in epilepsy. Seizure 20:387–394

    Article  Google Scholar 

  113. Haerian BS, Lim KS, Tan HJ et al (2011) Association between ABCB1 polymorphism and response to sodium valproate treatment in Malaysian epilepsy patients. Epileptic Discord 13:65–75

    Google Scholar 

  114. Hajnsek S, Basic S, Poljakovic Z et al (2004) The effect of MDR1 gene C3435T polymorphism in pharmacotherapeutic efficacy in epilepsy. Neurol Croat 53:69–78

    Google Scholar 

  115. Hung CC, Jen Tai J, Kao PJ et al (2007) Association of polymorphisms in NRNR1I2 and ABCB1 genes with epilepsy treatment responses. Pharmacogenomics 8:1151–1158

    Article  CAS  PubMed  Google Scholar 

  116. Hung CC, Tai JJ, Lin CJ et al (2005) Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response. Pharmacogenomics 6:411–417

    Article  CAS  PubMed  Google Scholar 

  117. Kwan P, Baum L, Wong V et al (2007) Association between ABCB1 C3435T polymorphism and drug-resistant epilepsy in Han Chinese. Epilepsy Behav 11:112–117

    Article  PubMed  Google Scholar 

  118. Kwan P, Wong V, Ng PW et al (2009) Gene-wide tagging study of association between ABCB1 polymorphisms and multidrug resistance in epilepsy in Han Chinese. Pharmacogenomics 10:723–732

    Article  CAS  PubMed  Google Scholar 

  119. Sanchez MB, Herranz JL, Leno C et al (2010) Genetic factors associated with drug-resistance of epilepsy: relevance of stratification by patient age and aetiology of epilepsy. Seizure 19:93–101

    Article  PubMed  Google Scholar 

  120. Soranzo N, Cavalleri GL, Weale ME et al (2004) Identifying candidate causal variants responsible for altered activity of the ABCB1 multidrug resistance gene. Genome Res 14:1333–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bournissen FG, Moretti ME, Juurlink DN et al (2009) Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs: a meta-analysis. Epilepsia 50:898–903

    Article  CAS  PubMed  Google Scholar 

  122. Haerian BS, Lim KS, Tan CT et al (2011) Association of ABCB1 gene polymorphisms and their haplotypes with response to antiepileptic drugs. A systematic review and meta-analysis. Pharmacogenomics 12:713–725

    Article  CAS  PubMed  Google Scholar 

  123. Haerian BS, Roslan H, Raymond AA et al (2010) ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis. Seizure 19:339–346

    Article  CAS  PubMed  Google Scholar 

  124. Leschziner GD, Andrew T, Leach JP et al (2007) Common ABCB1 polymorphisms are not associated with multidrug resistance in epilepsy using a gene-wide tagging approach. Pharmacogenet Genomics 17:217–220

    Article  CAS  PubMed  Google Scholar 

  125. Nurmohamed L, Garcia-Bournissen F, Buono RJ et al (2010) Predisposition to epilepsy – does the ABCB1 gene play a role? Epilepsia 51:1882–1885

    Article  CAS  PubMed  Google Scholar 

  126. Subenthiran S, Abdullah NR, Josepj JP et al (2013) Linkage disequilibrium between polymorphisms of ABCB1 and ABCB2 to predict the treatment outcome of Malaysians with complex partial seizures on treatment with carbamazepine mono-therapy at the Kuala Lumpur hospital. PLoS One 8:e64827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Seo T, Ishitsu T, Ueda N et al (2006) ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics 7:555–561

    Article  Google Scholar 

  128. Subenthiran S, Abdullah NR, Muniandy PK et al (2013) G2677T polymorphism can predict treatment outcome of Malaysians with complex partial seizures being treated with carbamazepine. Genet Mol Res 12:5937–5944

    Article  CAS  PubMed  Google Scholar 

  129. Qu J, Zhou BT, Yin JY et al (2012) ABCB2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci Ther 18:647–651

    Article  CAS  PubMed  Google Scholar 

  130. Ufer M, Mosyagin I, Muhle H et al (2009) Non-response to antiepileptic pharmacotherapy is associated with the ABCB2 -24C>T polymorphism in young and adult patients with epilepsy. Pharmacogenet Genomics 19:353–362

    Article  CAS  PubMed  Google Scholar 

  131. Haenisch S, Zimmerman U, Dazert E et al (2007) Influence of polymorphisms of ABCB1 and ABCB2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenomics 7:56–65

    Article  CAS  Google Scholar 

  132. Fava M, Davidson KG (1996) Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Am 17:179–200

    Article  Google Scholar 

  133. O’brien FE, Dinan T, Griffen BT et al (2012) Interactions between antidepressants and P-glycoprotein at the blood–brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol 165:289–312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Pariante CM, Thomas SA, Lovestone S et al (2004) Do antidepressants regulate how cortisol affects the brain? Psychoneuroendocrinology 29:423–447

    Article  CAS  PubMed  Google Scholar 

  135. Bauer B, Hartz AMS, Fricker G et al (2004) Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood–brain barrier. Mol Pharmacol 66:413–419

    CAS  PubMed  Google Scholar 

  136. Narang VS, Fraga C, Kumar N et al (2008) Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood–brain barrier. Am J Physiol Cell Physiol 295:C440–C450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bauer B, Hartz AMS, Miller DS (2007) Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood–brain barrier. Mol Pharmacol 71:667–675

    Article  CAS  PubMed  Google Scholar 

  138. Yu CH, Kastin AJ, Tu H et al (2007) TNF activates P-glycoprotein in cerebral microvascular endothelial cells. Cell Physiol Biochem 20:853–858

    Article  CAS  PubMed  Google Scholar 

  139. Liptrott NJ, Penny M, Bray PG et al (2009) The impact of cytokines on the expression of drug transporters, cytochrome P450 enzymes and chemokine receptors in human PBMC. Br J Pharmacol 156:497–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lin KM, Chiu YF, Tsai IK et al (2011) ABCB1 gene polymorphisms are associated with the severity of major depressive disorder and its response to escitalopram treatment. Pharmacogenet Genomics 21:163–170

    CAS  PubMed  Google Scholar 

  141. Uhr M, Tontsch A, Namendorf C et al (2008) Polymorphisms in the drug transporter gene ABAB1 predict antidepressant treatment response in depression. Neuron 57:203–209

    Article  CAS  PubMed  Google Scholar 

  142. Sarginson JE, Lazzeroni LC, Ryan HS et al (2010) ABCB1 (MDR1) polymorphisms and antidepressant response in geriatric depression. Pharmacogenet Genomics 20:467–475

    Article  CAS  PubMed  Google Scholar 

  143. Peters EJ, Slager SL, Kraft JB et al (2008) Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS One 3:e1872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468

    Article  CAS  PubMed  Google Scholar 

  145. Carroll BJ, Cassidy F, Naftolowitz D et al (2007) Pathophysiology of hypercortisolism in depression. Acta Psychiatr Scand Suppl 443:90–103

    Article  Google Scholar 

  146. Yau JLW, Noble J, Thomas S et al (2007) The antidepressant desipramine requires the ABCB1 (Mdr1)-Type p-glycoprotein to upregulate the glucocorticoid receptor in mice. Neuropsychopharmacology 32:2520–2529

    Article  CAS  PubMed  Google Scholar 

  147. Mason BL, Thomas SA, Lightman SL et al (2011) Desipramine treatment has minimal effects on the brain accumulation of glucocorticoids in P-gp-deficient and wild-type mice. Psychoneuroendocrinology 36:1351–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Clarke G, O’Mahony SM, Cryan JF et al (2009) Verapamil in treatment resistant depression: a role from the P-glycoprotein transporter? Hum Psychopharmacol 24:217–223

    CAS  PubMed  Google Scholar 

  149. Phillip NS, Carpenter LL, Tyrka AR et al (2010) Pharmacologic approaches to treatment resistant depression: a re-examination for the modern era. Expert Opin Pharmacother 11:709–722

    Article  Google Scholar 

  150. Wang JS, DeVane CL, Gibson BB et al (2006) Population pharmacokinetic analysis of drug-drug interactions among risperidone, bupropion, and sertraline in CF1 mice. Psychopharmacology (Berl) 183:490–499

    Article  CAS  Google Scholar 

  151. Conley RR, Buchanan RW (1997) Evaluation of treatment-resistant schizophrenia. Schizophr Bull 23:663–674

    Article  CAS  PubMed  Google Scholar 

  152. Meltzer HY (1992) Treatment of the neuroleptic-nonresponsive schizophrenic patient. Schizophr Bull 18:515–542

    Article  CAS  PubMed  Google Scholar 

  153. Juarez-Reyes MG, Shumway M, Battle C et al (1995) Effects of stringent criteria on eligibility for clozapine among public mental health clients. Psychiatr Serv 46:801–806

    Article  CAS  PubMed  Google Scholar 

  154. Essock SM, Hargreaves WA, Covell NH et al (1996) Clozapine’s effectiveness for patients in state hospitals: results from a randomized trial. Psychopharmacol Bull 32:683–697

    CAS  PubMed  Google Scholar 

  155. Yasui-Furukori N, Saito M, Nakagami T et al (2006) Association between multidrug resistance 1 (MDR1) gene polymorphisms and therapeutic response to bromperidol in schizophrenic patients: a preliminary study. Pro Neuropsychopharmacol Biol Psychiatry 30:286–291

    Article  CAS  Google Scholar 

  156. Shinkai T, De Luca V, Utsunomiya K et al (2008) Functional polymorphism of the human multidrug resistance gene (MDR1) and polydipsia-hyponatremia in schizophrenia. Neuromolecular Med 10:362–367

    Article  CAS  PubMed  Google Scholar 

  157. Kuzman MR, Medved V, Bozina N et al (2008) The influence of 5-HT2C and MDR1 genetic polymorphisms on antipsychotic-induced weight gain in female schizophrenic patients. Psychiatry Res 160:308–315

    Article  CAS  PubMed  Google Scholar 

  158. Lin YC, Ellingrod VL, Bishop JR et al (2006) The relationship between P-glycoprotein (PGP) polymorphisms and response to olanzapine treatment in schizophrenia. Ther Drug Monit 28:668–672

    Article  CAS  PubMed  Google Scholar 

  159. Kastelic M, Koprivšek J, Plesničar BK et al (2010) MDR1 gene polymorphisms and response to acute risperidone treatment. Prog Neuropsychopharmacol Biol Psychiatry 34:387–392

    Article  CAS  PubMed  Google Scholar 

  160. Bozina N, Kuzman MR, Medved V et al (2008) Associations between MDR1 gene polymorphisms and schizophrenia and therapeutic response to olanzapine in female schizophrenic patients. J Psychiatr Res 42:89–97

    Article  PubMed  Google Scholar 

  161. Alenius M, Wadelius M, Dahl ML et al (2008) Gene polymorphism influencing treatment response in psychotic patients in a naturalistic setting. J Psychiatr Res 42:884–893

    Article  PubMed  Google Scholar 

  162. Xing Q, Gau R, Li H et al (2006) Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenic patients. Pharmacogenomics 7:987–993

    Article  CAS  PubMed  Google Scholar 

  163. Suzuki Y, Tsuneyama N, Fukui N et al (2013) Impact of the ABCB1 gene polymorphism on plasma 9-hydroxyrisperidone and active moiety levels in Japanese patients with schizophrenia. J Clin Psychopharmacol 33:411–414

    Article  CAS  PubMed  Google Scholar 

  164. Nikisch G, Baumann P, Oneda B et al (2011) Cytochrome P450 and ABCB1 genetics: association with quetiapine and norquetiapine plasma and cerebrospinal fluid concentrations and with clinical response in patients suffering from schizophrenia. A pilot study. J Psychopharmacol 25:896–907

    Article  CAS  PubMed  Google Scholar 

  165. Vijayan NN, Mathew A, Balan S et al (2012) Antipsychotic drug dosage and therapeutic drug response in schizophrenia is influences by ABCB1 genotypes: a study from a south Indian perspective. Pharmacogenomics 13:1119–1127

    Article  CAS  PubMed  Google Scholar 

  166. Moons T, de Roo M, Claes S et al (2011) Relationship between P-glycoprotein and second generation antipsychotics. Pharmacogenomics 12:1193–1211

    Article  CAS  PubMed  Google Scholar 

  167. Correia CT, Almeida JP, Santos PE et al (2010) Pharmacogenetics of risperidone therapy in autism: association analysis of eight candidate genes with drug efficacy and adverse drug reactions. Pharmacogenomics J 10:418–430

    Article  CAS  PubMed  Google Scholar 

  168. Jovanovic N, Bozina N, Lovric M et al (2010) Effect of CYP2D6, CYP3A5, and MDR1 genetic polymorphisms on the pharmacokinetics of risperidone and its active moiety. J Clin Pharmacol 50:659–666

    Article  CAS  Google Scholar 

  169. Takao T, Tachikawa H, Kawanishi Y et al (2006) Association of treatment-resistant schizophrenia with the G2677A/T and C3435T polymorphisms in the ATP-binding cassette subfamily B member 1 gene. Psychiatr Genet 16:47–48

    Article  PubMed  Google Scholar 

  170. Mahar Doan KM, Humphreys JE, Webster LO et al (2002) Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 303:1029–1037

    Article  PubMed  CAS  Google Scholar 

  171. Boulton DW, DeVane CL, Liston HL et al (2002) Human recombinant P-glycoprotein specificity for atypical antipsychotics. Life Sci 71:163–169

    Article  CAS  PubMed  Google Scholar 

  172. Bebawy M, Chetty M (2008) Differential pharmacological regulation of drug efflux and pharmacoresistant schizophrenia. Bioessays 30:183–188

    Article  PubMed  CAS  Google Scholar 

  173. Bebawy M, Morris MB, Roufogalis BD (2001) Selective modulation of P-glycoprotein-mediated drug resistance. Br J Cancer 85:1998–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hartz AMS, Bauer B (2010) Regulation of ABC transporters at the blood-brain barrier: new targets for CNS therapy. Mol Interv 10:293–304

    Article  CAS  PubMed  Google Scholar 

  175. Schinkel AH (1999) P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36:179–194

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott R. Penzak PharmD, FCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Penzak, S.R. (2016). Drug Transporters. In: Jann, M., Penzak, S., Cohen, L. (eds) Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents. Adis, Cham. https://doi.org/10.1007/978-3-319-27883-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27883-4_5

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-27881-0

  • Online ISBN: 978-3-319-27883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics