Skip to main content

Characterisation of Colloidal Suspensions

  • Chapter
  • First Online:
Suspensions of Colloidal Particles and Aggregates

Part of the book series: Particle Technology Series ((POTS,volume 20))

  • 1788 Accesses

Abstract

Techniques for particle characterisation are inherently needed when preparing or processing colloidal suspensions. The challenge consist in finding an appropriate technique for the specific analytical task, which may ask for mean particle sizes, size distribution, particle shape, aggregate morphology or interfacial properties. A profound knowledge of the characteristics of relevant measurement techniques supports such a decision. The chapter provides a survey on analytical techniques for the quantification of particle size and morphology as well as interfacial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A cumulable quantity like volume, number, or scattering intensity of a dilute particle system.

  2. 2.

    “Sufficient” means a vanishing likelihood of having two or more particles in the measurement volume.

  3. 3.

    Note that the impact of concentration c r is lost if g(s) refers to the phase shift rather than to the magnitude of a measured quantity.

  4. 4.

    For the sake of convenience only the case ρ p > ρ m is considered throughout this section.

  5. 5.

    Comprehensive tables on X-ray absorption are e.g. provided by Henke et al. (1993).

  6. 6.

    An alternative to the analysis of time curves or radial profiles is to evaluate the shift of the radial profile with time (e.g. Salinas-Salas 2007, pp.76–80; Paciejewska 2010, pp. 62–64).

  7. 7.

    Additionally, small angle neutron scattering (SANS) has some relevance for the characterisation of colloidal particle systems, in particular for dense suspensions (Romer et al. 2001; Qiu et al. 2005). With regard to particle characterisation, SANS is mainly used for disclosing the structure of particle aggregates (Hurd et al. 1987; Bugnicourt et al. 2007). A brief introduction to SANS is, for example, given by Glatter and May (2006).

  8. 8.

    1 for vertical polarisation, cos²θ for horizontal polarisation, ½(1 + cos²θ) for unpolarised light.

  9. 9.

    There is some confusion in the literature regarding the terms homodyne and heterodyne (cf. Xu 2000, pp. 84–86). The terminology used here agrees with the modern convention in laser technology (e.g. Paschotta 2008).

  10. 10.

    DLS instruments typically employ vertically polarised light (Ivv; Xu 2000, p. 230). Depolarised scattered light (Ivh) results from anisometry or multiple scattering—signals are usually very weak.

  11. 11.

    with C ext being proportional to the particle volume for absorbing substances and to the squared volume for non-absorbing ones.

  12. 12.

    The same applies to the calculation of sound dispersion, i.e. frequency impact on sound speed.

  13. 13.

    Even so, the spectrum can only be reproduced as sphere-spectrum by assuming polydispersity.

References

General Matter

  • R. Polke, M. Schäfer, N. Scholz, Charakterisierung disperser Systeme, in Handbuch der Mechanischen Verfahrenstechnik, Bd. 1; Chapter 2, ed. by H. Schubert (Wiley-VCH, Weinheim, 2003), pp. 7–100. ISBN 3-527-30577-7

    Google Scholar 

  • R. Xu, Particle Characterization: Light Scattering Methods (Kluwer Academic Publishers, Dortrecht, 2000). ISBN 0-7923-6300-0

    Google Scholar 

Sizing

  • F. Babick, S. Ripperger, Information content of acoustic attenuation spectra. Part. Part. Syst. Charact. 19(3), 176–185 (2002). doi:10.1002/1521-4117(200207)19:3<176:AID-PPSC176>3.0.CO;2-8

    Article  Google Scholar 

  • R. Finsy, N. De Jaeger, R. Sneyers, E. Geladé, Particle sizing by photon correlation spectroscopy. Part III: Mono and Bimodal Distributions and Data Analysis. Part. Part. Sys. Charact. 9(1–4), 125–137 (1992). doi:10.1002/ppsc.19920090117

    Google Scholar 

  • ISO 9276-1:1998, Representation of Results of Particle Size Analysis—Part 1: Graphical Representation (Beuth-Verlag, Berlin, 2004)

    Google Scholar 

  • M. Kandlikar, G. Ramachandran, Inverse methods for analysing aerosol spectrometer measurements: a critical review. J. Aerosol Sci. 30(4), 413–437 (1999). doi:10.1016/0021-8502(98)00066-4

    Article  Google Scholar 

  • C. Knösche, Möglichkeiten und Grenzen der elektroakustischen Spektroskopie zur Gewinnung von Partikelgrößeninformationen. PhD thesis, Technische Universität Dresden, 2001

    Google Scholar 

  • J.H. Koo, E.D. Hirleman, Synthesis of integral transform solutions for the reconstruction of particle-size distributions from forward-scattered light. Appl. Opt. 31(12), 2130–2140 (1992). doi:10.1364/AO.31.00213

    Article  Google Scholar 

  • K. Leschonski, Representation and evaluation of particle size analysis data. Part. Part. Syst. Char. 1(1–4), 89–95 (1984). doi:10.1002/ppsc.19840010115

    Article  Google Scholar 

  • U. Riebel, F. Löffler, The fundamentals of particle size analysis by means of ultrasonic spectrometry. Part. Part. Syst. Charact. 6(1–4), 135–143 (1989). doi:10.1002/ppsc.19890060124

    Article  Google Scholar 

  • H. Rumpf, K.F. Ebert, Darstellung von Kornverteilungen und Berechnung der spezifischen Oberfläche. Chem. Ing. Tech. 36(5), 523–537 (1964). doi:10.1002/cite.330360516

    Article  Google Scholar 

  • M. Stintz, Technologie-relevante Charakterisierung von Partikeln und Partikelsystemen Habilitation thesis, Technische Universität Dresden, 2005

    Google Scholar 

  • M. Stintz, F. Babick, G. Roebben, Metrology for nanoparticle characterisation: instruments, standard methods and reference materials (Workshop report, Nuremberg, 28./29.04.2010). Co-nanomet Consortium, c/o euspen, Cranfield, 2010. ISBN 978-0-9566809-3-8

    Google Scholar 

  • R.S. Stock, W.H. Ray, Interpretation of photon correlation spectroscopy data: A comparison of analysis methods. J. Polym. Sci. Part B: Polym. Phys. 23(7), 1393–1447 (1985). doi:10.1002/pol.1985.180230707

    Google Scholar 

  • S. Twomey, Introduction to the mathematics of inversion in remote sensing and indirect measurements (Elsevier Scientific Publishing Company, Amsterdam, 1977). ISBN 0-444-41547-5

    Google Scholar 

  • W. Witt, U. Köhler, J. List, Current limits of particle size and shape analysis with high speed image analysis. On the CD-ROM: PARTEC 2007, International Congress for Particle Technology, Nuremberg, 27–29 Mar 2007. (available from NürnbergMesse GmbH, Messezentrum, 90471 Nürnberg, Germany), paper S35_2

    Google Scholar 

Ultramicroscopy

  • C. Bigg, Evident atoms: visuality in Jean Perrin’s Brownian motion research. Stud. Hist. Phil. Sci. 39(3), 312–322 (2008). doi:10.1016/j.shpsa.2008.06.003

    Article  Google Scholar 

  • R.F. Domingos, M.A. Baalousha, Y. Ju-Nam, M.M. Reid, N. Tufenkji, J.R. Lead, G.G. Leppard, K.J. Wilkinson, Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 43(19), 7277–7284 (2009). doi:10.1021/es900249m

    Article  Google Scholar 

  • A. Einstein, Über die von der molekulartheoretischen Theorie der Wärme geforderten Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. IV 17(8), 549–560 (1905). doi:10.1002/andp.19053220806

    Google Scholar 

  • J. Perrin, L’agitation molèculaire et le mouvement brownien. CR Hebd. Seance Acad. Sci. 146(19), 967–970 (1908)

    Google Scholar 

  • J. Perrin, Mouvement brownien et realité moléculaire. Ann. Chim. Phys. 8(18), 1–114 (1909)

    Google Scholar 

  • J. Reissig, Ultramikroskopische Beobachtungen. Ann. Phys. IV 27(11), 186–212 (1908). doi:10.1002/andp.19083321110

    Google Scholar 

  • H. Saveyn, B. De Baets, O. Thas, P. Hole, J. Smith, P. Van der Meeren, Accurate particle size distribution determination by nanoparticle tracking analysis based on 2-D Brownian dynamics simulation. J. Colloid Interface Sci. 352(2), 593–600 (2010). doi:10.1016/j.jcis.2010.09.006

    Article  Google Scholar 

  • H. Siedentopf, R. Zsigmondy, Über Sichtbarmachung und Größenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann. Phys. IV 10(1), 1–39 (1903). doi 10.1002/andp.19023150102

    Google Scholar 

  • R. Zsigmondy, Über ein neues Ultramikroskop. Phys. Z. 14, 975–979 (1913)

    Google Scholar 

  • R. Zsigmondy, W. Bachmann, Handhabung des Immersionsultramikroskops. Kolloid Z. 14(6), 281–295 (1914). doi:10.1007/BF01423340

    Article  Google Scholar 

Imaging

Sedimentation

  • M. Beiser, Sedimentationsverhalten submikroner Partiklen in Abhängigkeit physikalisch-chemischer Einflüsse und ihr Separationverhalten in Dekantierzentrifugen. PhD thesis, Universität Fridericiana Karlsruhe (TH), 2005

    Google Scholar 

  • C. Bernhardt, Sedimentation in particle size analysis, in Encyclopedia of analytical chemistry, ed. by R. A. Meyers (Wiley, 2010). doi:10.1002/9780470027318.a1513

  • G. Bickert, Sedimentation feinster suspendierter Partikeln im Zentrifugalfeld. PhD thesis, Universität Fridericiana Karlsruhe (TH), 1997

    Google Scholar 

  • S.G. Conlin, W.J. Levene, W.F. Volume, An instrument for size analysis of fine powders by X-ray absorption. J. Sci. Instrum. 44(8), 606–610 (1967). doi:10.1088/0950-7671/44/8/306

    Article  Google Scholar 

  • T. Detloff, T. Sobisch, D. Lerche, Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation. Part. Part. Syst. Charact. 23(2), 184–187 (2006). doi:10.1002/ppsc.200601028

    Article  Google Scholar 

  • K. Edelmann, Lehrbuch der Kolloidchemie, vol. I (Verlag der Wissenschaften, Berlin, 1962)

    Google Scholar 

  • S. Enomoto, T. Hiroshi, N. Tachikawa, M. Senoo, Particle size determination by use of 55Fe X-ray absorption. Int. J. Appl. Radiat. Isot. 30(1), 51–54 (1979). doi:10.1016/0020-708X(79)90097-8

    Article  Google Scholar 

  • B. L. Henke, E. M. Gullikson, J. C. Davis, X-Ray Interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54(2), 181–342 (1993). doi:10.1006/adnd.1993.1013

    Google Scholar 

  • H.J. Kamack, A note on centrifugal particle size analysis. J. Phys. D Appl. Phys. 5(10), 1962–1968 (1972). doi:10.1088/0022-3727/5/10/330

    Article  Google Scholar 

  • K. Leschonski, Hochschulkurs Grundlagen und Moderne Verfahren der Partikelmesstechnik. Technische Universität Clausthal, Institut für Mechanische Verfahrenstechnik und Umweltverfahrenstechnik, 1982

    Google Scholar 

  • S. Odén, Eine neue Methode zur Bestimmung der Körnerverteilung in Suspensionen. Kolloid Z. 18(2), 33–48 (1916). doi:10.1007/BF01432659

    Article  Google Scholar 

  • W. Ostwald, F.-V. V. Hahn, Ueber kinetische Flockungsmesser, I. Kolloid-Z. 30(1), 62–70, 1922. doi:10.1007/BF01430381

    Google Scholar 

  • K. M. Paciejewska, Untersuchung des Stabilitätsverhaltens von binären kolloidalen Suspensionen. PhD thesis, Technische Universität Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-65050

  • G. E. Salinas Salas, Sedimentationsverhalten von Submikrometerpartikeln in wässrigen Suspensionen. PhD thesis, Technische Universität Dresden, 2007

    Google Scholar 

  • K. Schilling, Charakterisierung mizellarer Systeme mit der Analytischen Ultrazentrifuge—Synthese von Titandioxid in mizellaren Reaktionsräumen, PhD thesis, Universität Potsdam, 1999

    Google Scholar 

  • T. Svedberg, J.B. Nichols, Determination of size and distribution of size of particle by centrifugal methods. J. Am. Chem. Soc. 45(12), 2910–2917 (1923). doi:10.1021/ja01665a016

    Article  Google Scholar 

  • T. Svedberg, H. Rinde, The ultra-centrifuge, a new instrument for the determination of size and distribution of size of particle in amicroscopic colloids. J. Am. Chem. Soc. 46(2), 2677–2693 (1924). doi:10.1021/ja01677a011

    Article  Google Scholar 

  • H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981). ISBN 0-486-64228-3

    Google Scholar 

Field-Flow Fractionation (FFF)

  • T.J. Cho, V.A. Hackley, Fractionation and characterization of gold nanoparticles in aqueous solution: asymmetric-flow field flow fractionation with MALS, DLS, and UV-Vis detection. Anal. Bioanal. Chem. 398(5), 2003–2018 (2010). doi:10.1007/s00216-010-4133-6

    Article  Google Scholar 

  • J.C. Giddings, A new separation concept based on a coupling of concentration and flow nonuniformities. Separ. Sci. 1(1), 123–125 (1966). doi:10.1080/01496396608049439

    Article  Google Scholar 

  • J.C. Giddings, Nonequilibrium theory of field-flow fractionation. J. Chem. Phys. 49(1), 81–85 (1968). doi:10.1063/1.1669863

    Article  Google Scholar 

  • J.C. Giddings, G. Karaiskakis, K.D. Caldwell, M.N. Myers, Colloid characterization by sedimentation field-flow fractionation. I. Monodisperse population. J. Colloid Interface Sci. 92(1), 66–80 (1983). doi:10.1016/0021-9797(83)90117-0

    Article  Google Scholar 

  • E. Grushka, K.D. Caldwell, M.N. Myers, Marcus, J. C. Giddings, Field flow fractionation. Sep. Purif. Rev. 2(1), 127–151 (1974). doi:10.1080/03602547408068793

    Article  Google Scholar 

  • J. Laudan, Untersuchung von ultrahochmolekularen Polymeren mittels asymmetrischer Fluss Feld-Fluss-Fraktionierung und Lichtstreu-/Konzentrationsdetektor-Kombination. PhD thesis, Universität Hamburg, 2004

    Google Scholar 

  • Y. Mori, B. Scarlett, H.G. Merkus, Effects of ionic strength of eluent on size analysis of submicrometre particles by sedimentation field-flow fractionation. J. Chromatogr. A 515, 21–35 (1990). doi:10.1016/S0021-9673(01)89298-0

    Article  Google Scholar 

  • K.L. Plathe, F. von der Kammer, M. Hassellov, J. Moore, M. Murayama, T. Hofmann, M.F. Hochella Jr, Using FlFFF and aTEM to determine trace metal-nanoparticle associations in riverbed sediment. Environ. Chem. 7(1), 82–93 (2010). doi:10.1071/EN09111

    Article  Google Scholar 

  • T. Schauer, Symmetrical and asymmetrical flow field-flow fractionation for particle size determination. Part. Part. Syst. Charact. 12(6), 284–288 (1995). doi:10.1002/ppsc.19950120606

    Article  Google Scholar 

  • P.J. Wyatt, Submicrometre particle sizing by multiangle light scattering following fractionation. J. Colloid Interface Sci. 197(1), 9–20 (1998). doi:10.1006/jcis.1997.5215

    Article  Google Scholar 

  • F.-S. Yang, K.D. Caldwell, J.C. Giddings, Colloid characterization by sedimentation field-flow fractionation. II. Particle size distribution. J. Colloid Interface Sci. 92(1), 81–91 (1983). doi:10.1016/0021-9797(83)90118-2

    Article  Google Scholar 

Size-Exclusive Chromatography (SEC)

  • P.S. Fedotov, N.G. Vanifatova, V.M. Shkinev, B.Y. Spivakov, Fractionation and characterization of nano- and microparticles in liquid media. Anal. Bioanal. Chem. 400(6), 1787–1804 (2011). doi:10.1007/s00216-011-4704-1

    Article  Google Scholar 

  • F.-K. Liu, Analysis and applications of nanoparticles in the separation sciences: a case of gold nanoparticles. J. Chromatogr. A 1216(52), 9034–9047 (2009). doi:10.1016/j.chroma.2009.07.026

    Article  Google Scholar 

  • G.T. Wei, F.-K. Liu, C.R.C. Wang, Shape separation of nanometre cold particles by size-exclusion chromotography. Anal. Chem. 71(11), 2085–2091 (1999). doi:10.1021/ac990044u

    Article  Google Scholar 

  • T. Yamaguchi, Y. Azuma, K. Okuyama, Development of a photon correlation spectroscopy instrument to measure size distributions of nanoparticles. Part. Part. Syst. Charact. 23(2), 188–192 (2006). doi:10.1002/ppsc.200601029

    Article  Google Scholar 

Static Light Scattering (SLS)

  • P. Debye, Molecular-weight determination by light scattering. J. Phys. Colloid Chem. 51(1), 18–32 (1947). doi:10.1021/j150451a002

    Article  Google Scholar 

  • A. Einstein, Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes (Theory of opalescence of homogenous liquids and liquid mixtures near critical conditions). Ann. Phys. IV 33(16), 1275–1298 (1910). doi:10.1002/andp.19103381612

    Google Scholar 

  • S. Heimer, D. Težak, Structure of polydispersed colloids characterised by light scattering and electron microscopy. Adv. Colloid Interface Sci. 98(1), 1–23 (2002). doi:10.1016/S0001-8686(01)00090-2

    Article  Google Scholar 

  • W.C.K. Poon, A.D. Pirie, P.N. Pusey, Gelation in colloid-polymer mixtures. Faraday Discuss. 101, 65–76 (1995). doi:10.1039/fd9950100065

    Article  Google Scholar 

  • H.M. Wyss, J. Innerlohinger, L.P. Meier, L.J. Gauckler, O. Glatter, Small-angle static light scattering of concentrated silica suspensions during in situ destabilization. J. Colloid Interface Sci. 271(2), 388–399 (2004). doi:10.1016/j.jcis.2003.09.051

    Article  Google Scholar 

  • R. Xu, Particle Characterization: Light Scattering Methods (Kluwer Academic Publishers, Dortrecht, 2000). ISBN 0-7923-6300-0

    Google Scholar 

  • B.H. Zimm, Molecular theory of the scattering of light in fluids. J. Chem. Phys. 13(4), 141–145 (1945). doi:10.1063/1.1724013

    Article  Google Scholar 

  • B.H. Zimm, Apparatus and methods for measurement and interpretation of the angular variation of light scattering; Preliminary results on polystyrene solutions. J. Chem. Phys. 16(12), 1099–1116 (1948). doi:10.1063/1.1746740

    Article  Google Scholar 

Laser Diffraction

  • A. Büchtemann, H. Dautzenberg, I. Müller, Ermittlung der Größenverteilung sphärischer Teilchen mittels Laserdiffraktion an elektronenmikroskopischen Aufnahmen. Acta Polym. 33(10), 605–612 (1982). doi:10.1002/actp.1982.010331008

    Article  Google Scholar 

  • N. Chigier, Comparative measurements using different particle size instruments, in Liquid particle size measurement techniques, ASTM STP 848, eds. by J. M. Tishkoff, R. D. Ingelbo, J. B. Kennedy (American Society for Testing and Materials, Philadelphia, 1984), pp. 169–189. ISBN 0-8031-0227-5

    Google Scholar 

  • G.B.J. de Boer, C. de Weerd, D. Thoenes, H.W.J. Goossens, Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering. Part. Charact. 4(1), 14–19 (1987). doi:10.1002/ppsc.19870040104

    Article  Google Scholar 

  • N. Gabas, N. Hiquily, C. Laguérie, Response of laser diffraction particle sizer to anisometric particles. Part. Part. Syst. Charact. 11(2), 121–126 (1994). doi:10.1002/ppsc.19940110203

    Article  Google Scholar 

  • C.M.G. Heffels, P.J.T. Verheijen, D. Heitzmann, B. Scarlett, Correction of the effect of particle shape on the size distribution measured with a laser diffraction instrument. Part. Part. Syst. Charact. 13(5), 271–279 (1996). doi:10.1002/ppsc.19960130504

    Article  Google Scholar 

  • M. Heuer, K. Leschonski, Results obtained with a new instrument for the measurement of particle size distributions from diffraction patterns. Part. Charact. 2(1-4), 7-13 (1985). doi: 10.1002/ppsc.1985002010210.1002/ppsc.19850020102

    Article  Google Scholar 

  • ISO 13320:2009, Particle Size Analysis—Laser Diffraction Methods (Beuth-Verlag Berlin, 2009)

    Google Scholar 

  • A.R. Jones, Fraunhofer diffraction by random irregular particles. Part. Part. Syst. Charact. 4(4), 123–127 (1987). doi:10.1002/ppsc.19870040126

    Article  Google Scholar 

  • C. Knösche, Möglichkeiten und Grenzen der elektroakustischen Spektroskopie zur Gewinnung von Partikelgrößeninformationen. PhD thesis, Technische Universität Dresden, 2001

    Google Scholar 

  • P. Kuchenbecker, M. Gemeinert, T. Rabe, Interlaboratory study of particle size distribution measurements by laser diffraction. Part. Part. Syst. Charact. 29(4), 304–310 (2012). doi:10.1002/ppsc.201000026

    Article  Google Scholar 

  • M.N. Lodi, E.P. Osmolovskaya, Laser diffraction systems for measuring small objects. Meas. Techn. 18(7), 1006–1008 (1975). doi:10.1007/BF00818603

    Google Scholar 

  • M. Ludwig, Methodeneruierung zur Charakterisierung von Sprühtröpfchen verschiedener Sprühlösungen, public report, Technische Universität Dresden, Institut für Verfahrenstechnik und Umwelttechnik, 2010

    Google Scholar 

  • T. Matsuyama, H. Yamamoto, B. Scarlett, Transformation of diffraction pattern due to ellipsoids into equivalent diameter distribution for spheres. Part. Part. Syst. Charact. 17(2), 41–46 (2000). doi:10.1002/1521-4117(200006)17:2<41:AID-PPSC41>3.0.CO;2-W

    Article  Google Scholar 

  • G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Goldlösungen. Ann. Phys. IV 25(3), 377–445 (1908). doi:10.1002/andp.19083300302

    Google Scholar 

  • Y. Mori, H. Yoshida, H. Masuda, Characterization of reference particles of transparent glass by laser diffraction method. Part. Part. Syst. Charact. 24(2), 91–96 (2007). doi:10.1002/ppsc.200601048

    Article  Google Scholar 

  • Y. Mori, H. Yoshida, H. Masuda, Round robin test results of reference particle candidates of submicrometer size range. On the CD-ROM: Particulate Systems Analysis 2008, Stratford-Upon-Avon, 02–04 Sept 2008. (available from PCIG, C/o Particle Technology Ltd, Station Yard Industrial Estate, Hatton, Derbyshire, DE65 5DU, United Kingdom), paper 38

    Google Scholar 

  • N. Stevens, J. Shrimpton, M. Palmer, D. Prime, B. Johal, Accuracy assessments for laser diffraction measurements of pharmaceutical lactose. Meas. Sci. Technol. 18(12), 3697–3706 (2007). doi:10.1088/0957-0233/18/12/004

    Article  Google Scholar 

  • T. Stromgren, Linear measurements of growth of shells using laser diffraction. Limnol. Oceanogr. 20(5), 845–848 (1975). doi:10.4319/lo.1975.20.5.0845

    Article  Google Scholar 

  • T. Stübinger, U. Köhler, W. Witt, Verification of Mie scattering algorithms by extreme precision calculations. On the CD-ROM: WCPT6 2010, World Congress on Particle Technology, Nuremberg, 2–29 Apr 2010. ISBN 978-3-00-030570-2. (available from NürnbergMesse GmbH, Messezentrum, 90471 Nürnberg, Germany), paper 00272

    Google Scholar 

  • B.J. Thompson, Hybrid processing systems—assessment. Proc. IEEE 65(1), 62–76 (1977). doi:10.1109/PROC.1977.10431

    Article  Google Scholar 

  • A.P. Tinke, A. Carnicer, R. Govoreanu, G. Scheltjens, L. Lauwerysen, N. Mertens, Particle shape and orientation in laser diffraction and static image analysis. Powder Technol. 186(2), 154–167 (2008). doi:10.1016/j.powtec.2007.11.017

    Article  Google Scholar 

  • H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981). ISBN 0-486-64228-3

    Google Scholar 

  • J. von Fraunhofer, Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben. Denkschr. K. Akad. Wiss. München 8, 3–76 (1821)

    Google Scholar 

  • W. Witt, T. Stübinger, U. Köhler, J. List, J. Jordan, Partikelgrößenanalyse mit absoluter Genauigkeit. Chem. Ing. Tech. 84(3), 211–222 (2012). doi:10.1002/cite.201100172

    Article  Google Scholar 

  • R. Xu, Particle Characterization: Light Scattering Methods (Kluwer Academic Publishers, Dortrecht, 2000). ISBN 0-7923-6300-0

    Google Scholar 

  • T. Yamauchi, Y. Ohyama, A study on the measurement of particle size distribution with laser diffraction systems. Bull. Jpn. Soc. Mech. Eng. 25(210), 1931–1937 (1982). doi:10.1299/jsme1958.25.1931

    Article  Google Scholar 

Small Angle Neutron and X-ray Scattering (SANS and SAXS)

  • J.W. Anderegg, W.W. Beeman, S. Shulman, P. Kaesberg, An investigation of the size, shape and hydration of serum albumin by small-angle X-ray scattering. J. Am. Chem. Soc. 77(11), 2927–2937 (1955). doi:10.1021/ja01616a002

    Article  Google Scholar 

  • E. Bugnicourt, J. Galy, J.-F. Gérarda, F. Bouéb, H. Barthel, Structural investigations of pyrogenic silica–epoxy composites: combining small-angle neutron scattering and transmission electron microscopy. Polymer 48(4), 949–958 (2007). doi:10.1016/j.polymer.2006.12.012

    Article  Google Scholar 

  • H.-D. Dörfler, Grenzflächen- und Kolloidchemie (Wiley-VCH, Weinheim, 1994). ISBN 3-527-29072-9

    Google Scholar 

  • G. Fritz, O. Glatter, Structure and interaction in dense colloidal systems: evaluation of scattering data by the generalized indirect Fourier transformation method. J. Phys. Condens. Matter 18(36), S2403–S2419 (2006). doi:10.1088/0953-8984/18/36/S14

    Article  Google Scholar 

  • O. Glatter, R. May, Small-angle techniques, in International tables for crystallography volume C: Mathematical, physical and chemical tables, Chapter 2.6, IUCr Series. International Tables for Crystallography, ed. by E. Prince (Springer, Luxembourg, 2006), pp. 89–112. ISBN 978-1-4020-1900-5; doi:10.1107/97809553602060000581

    Google Scholar 

  • O. Glatter, O. Kratky (eds.), Small angle X-ray scattering (Academic Press, London, 1982). ISBN 0-12-286280-5

    Google Scholar 

  • A. Guinier, La diffusion des rayons X sous les très faibles angles appliquèe á l’etude de fines particules et de suspensions colloidales (The diffusion of X-rays under the extremely weak angles applied to the study of fine particles and colloidal suspension). CR Hebd. Seance Acad. Sci. 206(19), 1374–1376 (1938)

    Google Scholar 

  • B. L. Henke, E. M. Gullikson, J. C. Davis, X-Ray Interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54(2), 181–342 (1993). doi:10.1006/adnd.1993.1013

    Google Scholar 

  • A.J. Hurd, D.W. Schaefer, J.E. Martin, Surface and mass fractals in vapor-phase aggregates. Phys. Rev. A 35(5), 2361–2364 (1987). doi:10.1103/PhysRevA.35.2361

    Article  Google Scholar 

  • J. Ilavsky, A.J. Allen, G.G. Long, P.R. Jemian, Effective pinhole-collimated ultrasmall-angle X-ray scattering instrument for measuring anisotropic microstructures. Rev. Sci. Instrum. 73(3), 1660–1662 (2002). doi:10.1063/1.1425387

    Article  Google Scholar 

  • H.K. Kammler, G. Beaucage, R. Mueller, S.E. Pratsinis, Structure of flame-made silica nanoparticles by ultra-small-angle X-ray scattering. Langmuir 20(5), 1915–1921 (2004). doi:10.1021/la030155v

    Article  Google Scholar 

  • O. Kratky, H. Stabinger, X-ray small angle camera with block-collimation system an instrument of colloid research. Colloid Polym. Sci. 262(5), 345–360 (1984). doi:10.1007/BF01410252

    Article  Google Scholar 

  • D. Qiu, C.A. Dreiss, T. Cosgrove, A.M. Howe, Small-angle neutron scattering study of concentrated colloidal dispersions: The interparticle interactions between sterically stabilized particles. Langmuir 21(22), 9964–9969 (2005). doi:10.1021/la050322m

    Article  Google Scholar 

  • S. Romer, C. Urban, H. Bissig, A. Stradner, F. Scheffold, P. Schurtenberger, Dynamics of concentrated colloidal suspensions: diffusion, aggregation and gelation. Phil. Trans. R. Soc. Lond. A 359(1782), 977–984 (2001). doi:10.1098/rsta.2000.0812

    Article  Google Scholar 

  • P.W. Schmidt, D. Avnir, D. Levy, A. Höhr, M. Steiner, A. Röll, Small angle X-ray scattering from the surfaces of reversed phase silicas: power-law scattering exponents of magnitudes greater than four. J. Chem. Phys. 94(2), 1474–1479 (1991). doi:10.1063/1.460006

    Article  Google Scholar 

Dynamic Light Scattering (DLS)

  • L.B. Aberle, P. Hülstede, S. Wiegand, W. Schröer, W. Staude, Effective suppression of multiply scattered light in static and dynamic light scattering. Appl. Opt. 37(27), 6511–6524 (1998). doi:10.1364/AO.37.006511

    Article  Google Scholar 

  • S.R. Aragón, R. Pecora, Theory of dynamic light scattering from large anisotropic particles. J. Chem. Phys. 66(6), 2506–2516 (1977). doi:10.1063/1.434246

    Article  Google Scholar 

  • F.T. Arecchi, M. Giglio, U. Tartari, Scattering of coherent light by a statistical medium. Phys. Rev. 163(1), 186–197 (1967). doi:10.1103/PhysRev.163.186

    Article  Google Scholar 

  • H. Auweter, D. Horn, Fiber-optical quasi-elastic light scattering of concentrated dispersions. J. Colloid Interface Sci. 105(2), 399–409 (1985). doi:10.1016/0021-9797(85)90313-3

    Article  Google Scholar 

  • F. Babick, M. Vorbau, M. Stintz, Characterization of pyrogenic powders with conventional particle sizing technique: II. Experimental data. Part. Part. Syst. Charact. 29(2), 116–127 (2012). doi:10.1002/ppsc.201000025

    Article  Google Scholar 

  • A. Banchio, G. Nägele, J. Bergenholtz, Collective diffusion, self-diffusion and freezing criteria of colloidal suspensions. J. Chem. Phys. 113(8), 3381–3396 (2000). doi:10.1063/1.1286964

    Article  Google Scholar 

  • G.K. Batchelor, Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. J. Fluid Mech. 119, 379–408 (1982). doi:10.1017/S0022112082001402

    Article  MATH  Google Scholar 

  • G.K. Batchelor, C.-S. Wen, Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results. J. Fluid Mech. 124, 495–528 (1982). doi:10.1017/S0022112082002602

    Article  MATH  Google Scholar 

  • G. Bolle, C. Cametti, P. Codastefano, P. Tartaglia, Kinetics of salt-induced aggregation in polystyrene lattices studied by quasielastic light scattering. Phys. Rev. A 35(2), 837–841 (1987). doi:10.1103/PhysRevA.35.837

    Article  Google Scholar 

  • A. Braun, K. Franks, V. Kestens, G. Roebben, A. Lamberty, T. Linsinger, Certification Report. Certification of Equivalent Spherical Diameters of Silica Nanoparticles in Water. Certified Reference Material ERM®-FD100 (Publications Office of the European Union, Luxembourg, 2011). ISSN 1018-5593, doi:10.2787/33725

  • L.G.B. Bremer, L. Deriemaeker, R. Finsy, E. Gelad, J.G.H. Joosten, Fiber optic dynamic light scattering, neither homodyne nor heterodyne. Langmuir 9(8), 2008–2014 (1993). doi:10.1021/la00032a019

    Article  Google Scholar 

  • B. Chu, F.J. Schoenes, The laser homodyne “self-beating” technique in light scattering. J. Colloid Interface Sci. 27(3), 424–431 (1968). doi:10.1016/0021-9797(68)90180-X

    Article  Google Scholar 

  • H.Z. Cummins, Y. Yeh, N. Knable, Observation of diffusion broadening of Rayleigh scattered light. Phys. Rev. Lett. 12(6), 150–153 (1964). doi:10.1103/PhysRevLett.12.150

    Article  Google Scholar 

  • J.K.G. Dhont, C.G. de Kruif, Scattered light intensity cross correlation. I. Theory. J. Chem. Phys. 79(4), 1658–1683 (1983). doi:10.1063/1.446009

    Google Scholar 

  • A. di Biasio, G. Bolle, C. Cametti, P. Codastefano, F. Sciortino, P. Tartaglia, Crossover region in the aggregation of colloids. Phys. Rev. E 50(2), 1649–1652 (1994). doi:10.1103/PhysRevE.50.1649

    Article  Google Scholar 

  • M. Drewel, J. Ahrens, U. Podschus, Decorrelation of multiple scattering for an arbitrary scattering angle. J. Opt. Soc. Am. A: 7(2), 206–210 (1990). doi:10.1364/JOSAA.7.000206

    Article  Google Scholar 

  • J.W. Dunning Jr, J.C. Angus, Particle-size measurement by doppler-shifted laser light, a test of the Stokes-Einstein relation. J. Appl. Phys. 39(5), 2479–2480 (1968). doi:10.1063/1.1656588

    Article  Google Scholar 

  • R. Finsy, P. de Groen, L. Deriemaeker, M. van Laethem, Singular value analysis and reconstruction of photon correlation data equidistant in time. J. Chem. Phys. 91(12), 7374–7383 (1989). doi:10.1063/1.457260

    Article  Google Scholar 

  • R. Finsy, Particle sizing by quasi-elastic light scattering. Adv. Colloid Interface Sci. 52, 79–143 (1994). doi:10.1016/0001-8686(94)80041-3

    Article  Google Scholar 

  • R. Foord, E.R. Pike, E. Jakeman, R.J. Blagove, E. Wood, A.R. Peacocke, Determination of diffusion coefficients of haemocyanin at low concentration by intensity fluctuation spectroscopy of scattered laser light. Nature 227(5255), 242–245 (1970). doi:10.1038/227242a0

    Article  Google Scholar 

  • H. Geers, W. Witt, Direct calculation of the volume based particle size distribution from PCS or PCCS measurements. On the CD-ROM: Particulate Systems Analysis 2008, Stratford-Upon-Avon, 02–04 Sept 2008. (available from PCIG, C/o Particle Technology Ltd, Station Yard Industrial Estate, Hatton, Derbyshire, DE65 5DU, United Kingdom), paper 28

    Google Scholar 

  • S.E. Harding, On the hydrodynamic analysis of macromolecular conformation. Biophys. Chem. 55(1–2), 69–93 (1995). doi:10.1016/0301-4622(94)00143-8

    Article  Google Scholar 

  • T.M. Herrington, B.R. Midmore, The rapid aggregation of dilute suspensions—an experimental investigation of Smoluchowski theorem using photon-correlation spectroscopy. Powder Technol. 65(1–3), 251–256 (1991). doi:10.1016/0032-5910(91)80188-O

    Article  Google Scholar 

  • M. Hoffmann, C.S. Wagner, L. Harnau, A. Wittemann, 3D Brownian diffusion of submicron-sized particle clusters. ACS Nano 3(10), 3326–3334 (2009). doi:10.1021/nn900902b

    Article  Google Scholar 

  • K. Ishii, T. Iwai, Theoretical analysis of path-length-resolved power spectrum measurement using low-coherence dynamic light scattering. Jpn. J. Appl. Phys. 47(11), 8397–8401 (2008). doi:10.1143/JJAP.47.8397

    Article  Google Scholar 

  • M. Itoh, K. Takahashi, Measurement of aerosol particles by dynamic light scattering—I. Effects of non-Gaussian concentration fluctuation in real time photon correlation spectroscopy. J. Aerosol Sci. 22(7), 815–822 (1991). doi:10.1016/0021-8502(91)90076-T

    Article  Google Scholar 

  • E. Jakeman, E.R. Pike, Spectrum of clipped photon-counting fluctuations of Gaussian light. Phys. A 2(3), 411–412 (1969). doi:10.1088/0305-4470/2/3/021

    Article  Google Scholar 

  • E. Jakeman, Theory of optical spectroscopy by digital autocorrelation of photon-counting fluctuations. J. Phys. A 3(2), 201–215 (1970). doi:10.1088/0305-4470/3/2/012

    Article  MathSciNet  Google Scholar 

  • S.S. Jena, H.B. Bohidar, Determination of absolute polydispersity and molecular-weight distribution of high-molecular-weight polymers from dynamic light-scattering. J. Chem. Phys. 99(1), 673–681 (1993). doi:10.1063/1.465739

    Article  Google Scholar 

  • R.B. Jones, P.N. Pusey, Dynamics of suspended colloidal spheres. Ann. Rev. Phys. Chem. 42, 137–169 (1991). doi:10.1146/annurev.physchem.42.1.137

    Article  Google Scholar 

  • U. Kätzel, T. Richter, M. Stintz, H. Barthel, T. Gottschalk-Gaudig, Phase transitions of pyrogenic silica suspensions: a comparison to model laponite. Phys. Rev. E 76(3), 031402 (2007). doi:10.1103/PhysRevE.76.031402

    Article  Google Scholar 

  • A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse. Math. Ann. 109(1), 604–615 (1934). doi:10.1007/BF01449156

    Article  MathSciNet  MATH  Google Scholar 

  • D.E. Koppel, Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J. Chem. Phys. 57(11), 4814–4820 (1972). doi:10.1063/1.1678153

    Article  Google Scholar 

  • M. Kroon, G.H. Wegdam, R. Sprik, Dynamic light scattering studies on the sol-gel transition of a suspension of anisotropic colloidal particles. Phys. Rev. E 54(6), 6541–6550 (1996). doi:10.1103/PhysRevE.54.6541

    Article  Google Scholar 

  • A. Lamberty, K. Franks, A. Braun, V. Kestens, G. Roebben, T. Linsinger, Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension. J. Nanopart. Res. 13(12), 7317–7329 (2011). doi:10.1007/s11051-011-0624-4

    Article  Google Scholar 

  • C. L. Lawson, R. J. Hanson, Solving least squares problems. In series: Classics in applied mathematics, vol. 15 (Society for Industrial Mathematics, Philadelphia, 1995), pp. 158–165. ISBN 0-898-71356-0

    Google Scholar 

  • D. Maier, M. Marth, J. Honerkamp, J. Weese, Influence of correlated errors on the estimation of the relaxation time spectrum in dynamic light scattering. J. Appl. Opt. 38(21), 4671–4680 (1999). doi:10.1364/AO.38.004671

    Article  Google Scholar 

  • S. Manley, B. Davidovitch, N.R. Davies, L. Cipelletti, A.E. Bailey et al., Time-dependent strength of colloidal gels. Phys. Rev. Lett. 95(4), 048302 (2005). doi:10.1103/PhysRevLett.95.048302

    Article  Google Scholar 

  • M. Nakamura, M. Suzuki, H. Takano, M. Itoh, Simultaneous rotational and translational diffusion measurement of ellipsoidal fine particles by dual-polarization photon correlation spectroscopy. On the CD-ROM: 10th International Conference on Liquid Atomization and Spray Systems ICLASS-2006, Kyoto, 27 Aug–01 Sept 2006. (available from Institute for Liquid Atomization and Spray Systems—Japan, 2-14-9, Kasugadenaka, Konohana-ku, Osaka-shi, 554-0022, JAPAN), paper 217

    Google Scholar 

  • E. Overbeck, C. Sinn, Three-dimensional dynamic light scattering. J. Mod. Opt. 46(2), 303–326 (1999). doi:10.1080/09500349908231273

    Article  Google Scholar 

  • R. Paschotta, Encyclopedia of Laser Physics and Technology, vol. A—M (Wiley-VCH, Berlin, 2008). ISBN 978-3-527-40828-3

    Google Scholar 

  • G.L. Paul, P.N. Pusey, Observation of a long-time tail in Brownian motion. J. Phys. A: Math. Gen. 14(12), 3301–3327 (1981). doi:10.1088/0305-4470/14/12/025

    Article  Google Scholar 

  • R. Pecora, Doppler shifts in light scattering from pure liquids and polymer solutions. J. Chem. Phys. 40(6), 1604–1614 (1964). doi:10.1063/1.1725368

    Article  Google Scholar 

  • R. Peters, Y. Georgalis, W. Sänger, Accessing lysozyme nucleation with a novel dynamic light scattering detector. Acta Cryst. D 54(5), 873–877 (1998). doi:10.1107/S0907444998002455

    Article  Google Scholar 

  • G.D.J. Phillies, Suppression of multiple scattering effects in quasielastic light scattering by homodyne cross-correlation techniques. J. Chem. Phys. 74(1), 260–262 (1981a). doi:10.1063/1.440884

    Article  MathSciNet  Google Scholar 

  • G.D.J. Phillies, Experimental demonstration of multiple-scattering suppression in quasielastic-light-scattering spectroscopy by homodyne coincidence techniques. Phys. Rev. A 24(4), 1939–1943 (1981b). doi:10.1103/PhysRevA.24.1939

    Article  MathSciNet  Google Scholar 

  • S.W. Provencher, CONTIN. A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 27(3), 229–242 (1982). doi:10.1016/0010-4655(82)90174-6

    Article  Google Scholar 

  • V. Ruzicka, L. Zulian, G. Ruocco, Routes to gelation in a clay suspension. Phys. Rev. Lett. 93(25), 258301 (2004). doi:10.1103/PhysRevLett.93.258301

    Article  Google Scholar 

  • K. Schätzel, Suppression of multiple scattering by photon cross-correlation techniques. J. Mod. Opt. 38(9), 1849–1865 (1991). doi:10.1080/09500349114551951

    Article  Google Scholar 

  • P.N. Segré, W. van Megen, P.N. Pusey, K. Schätzel, W. Peters, Two-colour dynamic light scattering. J. Mod. Opt. 42(9), 1929–1952 (1995). doi:10.1080/09500349514551681

    Article  Google Scholar 

  • M. Siddiq, C. Wu, B. Li, Dynamic light-scattering characterization of the molecular weight distribution of a broadly distributed phenolphthalein poly(ary1 ether ketone). J. Appl. Polymer Sci. 60(11), 1995–1999 (1996). doi:10.1002/(SICI)1097-4628(19960613)60:11<1995:AID-APP24>3.0.CO;2-Z

    Article  Google Scholar 

  • A. J. F. Siegert, On the fluctuations in signals returned by many independently moving scatterers. MIT Rad. Lab. Rep. 465, Massachusetts Institute of Technology, 1943

    Google Scholar 

  • R.S. Stock, W.H. Ray, Interpretation of photon correlation spectroscopy data: a comparison of analysis methods. J. Polym. Sci. Part B Polym. Phys. 23(7), 1393–1447 (1985). doi:10.1002/pol.1985.180230707

    Article  Google Scholar 

  • C. Urban, P. Schurtenberger, Application of a new light scattering technique to avoid the influence of dilution in light scattering experiments with milk. Phys. Chem. Chem. Phys. 1(17), 3911–3915 (1999). doi:10.1039/a903906f

    Article  Google Scholar 

  • N. Wiener, Generalized harmonic analysis. Acta Math. 55(1), 117–258 (1930). doi:10.1007/BF02546511

    Article  MathSciNet  MATH  Google Scholar 

  • H. Wiese, D. Horn, Single-mode fibers in fiber-optic quasielastic light scattering: a study of the dynamics of concentrated latex dispersions. J. Chem. Phys. 94(10), 6429–6443 (1991). doi:10.1063/1.460272

    Article  Google Scholar 

  • A.W. Willemse, J.C.M. Marijnissen, A.L. van Wuyckhuyse, R. Roos, H.G. Merkus, B. Scarlett, Low-concentration photon correlation spectroscopy. Part. Part. Syst. Charact. 14(4), 157–162 (1997)

    Google Scholar 

  • G. Williams, D.C. Watts, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970). doi:10.1039/tf9706600080

    Article  Google Scholar 

  • R. Xu, Particle Characterization: Light Scattering Methods (Kluwer Academic Publishers, Dortrecht, 2000). ISBN 0-7923-6300-0

    Google Scholar 

Diffusive Wave Spectroscopy (DWS)

Fluorescence and X-ray Spectroscopy

Optical Spectroscopy

  • M.-T. Celis, A. Forgiarini, M.-I. Briceno, L.H. García-Rubio, Spectroscopy measurements for determination of polymer particle size distribution. Colloids Surf. A 331(1–2), 91–96 (2008). doi:10.1016/j.colsurfa.2008.07.024

    Article  Google Scholar 

  • G. Crawley, M. Cournil, D.D. Benedetto, Size analysis of fine suspensions by spectral turbidimetry. Powder Technol. 91(3), 197–208 (1997). doi:10.1016/S0032-5910(96)03252-4

    Article  Google Scholar 

  • G.E. Elicabe, L.H. Garcia-Rubio, Latex particle size distribution from turbidimetry using inversion techniques. J. Coll. Int. Sci. 129(1), 192–200 (1989). doi:10.1016/0021-9797(89)90430-X

    Article  Google Scholar 

  • S. Gabsch, B. Wessely, S. Ripperger, L. Steinke, Dynamic extinction spectroscopy as a new method to investigate precipitation processes in micro scale, in VDI Berichte, Band 1901, ed. by J. Ulrich (VDI Verlag GmbH, Düsseldorf, 2005), pp. 1189–1193. ISBN 3-18-091901-9

    Google Scholar 

  • J.S. Gaffney, N.A. Marley, M.M. Cunningham, Measurement of the absorption constants for nitrate in water between 270 and 335 nm. Environ. Sci. Technol. 26(1), 207–209 (1992). doi:10.1021/es00025a027

    Article  Google Scholar 

  • E. Gulari, G. Bazzi, E. Gulari, A. Annapragada, Latex particle size distributions from multiwavelength turbidity spectra. Part. Part. Syst. Charact. 4(1–4), 96–100 (1987). doi:10.1002/ppsc.19870040120

    Article  Google Scholar 

  • W. Haiss, N. T. K. Thanh J. Aveyard, D. G. Fernig, Determination of size and concentration of gold nanoparticles from uv-vis spectra. Anal. Chem. 79(11), 4215–4221 (2007). doi:10.1021/ac0702084

    Google Scholar 

  • T. Kuntzsch, Erfassung und Beeinflussung des Zustandes von Poliersuspensionen für das chemisch-mechanische Polieren (CMP) in der Halbleiterbauelementfertigung. PhD thesis, Technische Universität Dresden, 2004

    Google Scholar 

  • F. Li, R. Schafer, C.-T. Hwang, C.E. Tanner, S.T. Ruggiero, High-precision sizing of nanoparticles by laser transmission spectroscopy. Appl. Opt. 49(34), 6602–6611 (2010). doi:10.1364/AO.49.006602

    Article  Google Scholar 

  • D.H. Melik, H.S. Fogler, Turbidimetric determination of particle size distributions of colloidal systems. J. Coll. Int. Sci. 92(1), 161–180 (1983). doi:10.1016/0021-9797(83)90125-X

    Article  Google Scholar 

  • G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Goldlösungen. Ann. Phys. IV 25(3), 377–445 (1908). doi:10.1002/andp.19083300302

    Google Scholar 

  • P.N. Njoki, I.S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, C.-J. Zhong, Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 111(40), 14664–14669 (2007). doi:10.1021/jp074902z

    Article  Google Scholar 

  • H. Römer, C. V. Fragstein, Bestimmung des Absorptionskoeffizienten und des Brechungsquotienten von kolloidalem Gold. Ein Beitrag zur Anomalie der optischen Konstanten. Z. Phys. 163(1), 27-43 (1961). doi:10.1007/BF01328913

    Google Scholar 

  • J.M.J. Santillán, F.A. Videla, M.B. Fernández van Raap, D. Muraca, L.B. Scaffardi, D.C. Schinca, Influence of size-corrected bound-electron contribution on nanometric silver dielectric function. Sizing through optical extinction spectroscopy. J. Phys. D Appl. Phys. 46(43), 435301 (2013). doi:10.1088/0022-3727/46/43/435301

    Article  Google Scholar 

  • L.B. Scaffardi, J.O. Tocho, Size dependence of refractive index of gold nanoparticles. Nanotechnol 17(5), 1309–1315 (2006). doi:10.1088/0957-4484/17/5/024

    Article  Google Scholar 

  • D. Segets, J. Gradl, R. Klupp Taylor, V. Vassilev, W. Peukert, Analysis of optical absorbance spectra for the determination of zno nanoparticle size distribution, solubility, and surface energy. ACS Nano 3(7), 1703–1710 (2009). doi:10.1021/nn900223b

    Google Scholar 

  • L. Steinke, B. Wessely, S. Ripperger, Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme. (Optical extinction measurement procedures to control Inline substance dispersed systems). Chem. Ing. Tech. 81(6), 735–747 (2009). doi:10.1002/cite.200800129

    Article  Google Scholar 

  • R.L. Zollars, Turbidimetric method for on-line determination of latex particle number and particle size distribution. J. Colloid Interface Sci. 74(1), 163–172 (1980). doi:10.1016/0021-9797(80)90179-4

    Article  Google Scholar 

Ultrasonic Spectroscopy

Electroacoustic Mobility Spectroscoppy

  • F. Babick, C. Knösche, M. Schäfer, F. Stenger, Characterisation of emulsions with the ultrasonic spectroscopy. On the CD-ROM: PARTEC 2001, International Congress for Particle Technology, Nuremberg, 27–29 Mar 2001. (available from NürnbergMesse GmbH, Messezentrum, 90471 Nürnberg, Germany), paper 10/1

    Google Scholar 

  • M.L. Carasso, W.N. Rowlands, R.A. Kennedy, Electroacoustic determination of droplet size and zeta potential in concentrated intravenous fat emulsions. J. Colloid Interface Sci. 174(2), 405–413 (1995). doi:10.1006/jcis.1995.1408

    Article  Google Scholar 

  • R. J. Hunter, Recent developments in the electroacoustic characterisation of colloidal suspensions and emulsions. Colloids Surf. A 141(1), 37–65 (1998). doi: 10.1016/S0927-7757(98)00202-7

    Google Scholar 

  • C. Knösche, Möglichkeiten und Grenzen der elektroakustischen Spektroskopie zur Gewinnung von Partikelgrößeninformationen. PhD thesis, Technische Universität Dresden, 2001

    Google Scholar 

  • M. Loewenberg, R.W. O’Brien, The dynamic mobility of nonspherical particles. J. Colloid Interface Sci. 150(1), 158–168 (1992). doi:10.1016/0021-9797(92)90276-R

    Article  Google Scholar 

  • R.W. O’Brien, Electro-acoustic effects in a dilute suspension of spherical particles. J. Fluid Mech. 190, 71–86 (1988). doi:10.1017/S0022112088001211

    Article  MATH  Google Scholar 

  • R.W. O’Brien, D.W. Cannon, W.N. Rowlands, Electroacoustic determination of particle size and zeta potential. J. Colloid Interface Sci. 173(2), 406–418 (1995). doi:10.1006/jcis.1995.1341

    Article  Google Scholar 

Zeta-Potential and Electrophoresis

  • P. Debye, E. Hückel, Bemerkungen zu einem Satze über die kataphoretische Wanderungsgeschwindigkeit suspendierter Teilchen (Remarks on a rate concerning cataphoretic appearances in suspended parts). Phys. Z. 25(3), 49–52 (1924)

    Google Scholar 

  • A.V. Delgado, F. González-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309(2), 194–224 (2007). doi:10.1016/j.jcis.2006.12.075

    Article  Google Scholar 

  • R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications. In Series: Colloid science, vol. 2; 3rd edn. (Academic Press, London, 1988). ISBN 0-12-361961-0

    Google Scholar 

  • R.W. O’Brien, L.R. White, Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 2 74(9), 1607–1626 (1978). doi:10.1039/F29787401607

    Article  Google Scholar 

  • M. von Smoluchowski, Przyczynek do teorji endosmozy elektrycznej i kilku pokrewnych zjawisk. Rozprawy Wydziału matematyczno-przyrodiczego Akademji Umiejętnosci w Krakowie, T. XLIII, Serja A, 110–127 (1903). (reprint in French: Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs. Bull. Int. Acad. Sci. Cracovie, Cl. Sci. Math. Nat. 8, 182–200 (1903))

    Google Scholar 

  • R. Xu, Progress in nanoparticles characterization: Sizing and zeta potential measurement. Particuology 6(2), 112–115 (2008). doi:10.1016/j.partic.2007.12.002

    Article  Google Scholar 

Electroacoustic Zeta-Potential Measurement

Second Harmonic Generation (SHG)

  • H.M. Eckenrode, S.-H. Jen, J. Han, A.-G. Yeh, H.-L. Dai, Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: Effect of surface charge and composition probed by second harmonic generation. J. Phys. Chem. B 109(10), 4646–4653 (2005). doi:10.1021/jp045610q

    Article  Google Scholar 

  • D.B. Hollis, Review of hyper-Rayleigh and second-harmonic scattering in minerals and other inorganic solids. Am. Mineral. 73(7–8), 701–706 (1988)

    Google Scholar 

  • L. Schneider, W. Peukert, Review: Second harmonic generation spectroscopy as a method for in situ and online characterization of particle surface properties. Part. Part. Syst. Charact. 23(5), 351–359 (2007). doi:10.1002/ppsc.200601084

    Article  Google Scholar 

  • L. Schneider, H.J. Schmid, W. Peukert, Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces. Appl. Phys. B 87(2), 333–339 (2007). doi:10.1007/s00340-007-2597-7

    Article  Google Scholar 

  • B. Schürer, W. Peukert, In situ surface characterization of polydisperse colloidal particles by second harmonic generation. Part. Sci. Technol. 28(5), 458–471 (2010). doi:10.1080/02726351.2010.504131

    Article  Google Scholar 

  • E.C.Y. Yan, Y. Liu, K.B. Eisenthal, New method for determination of surface potential of microscopic particles by second harmonic generation. J. Phys. Chem. B 102(33), 6331–6336 (1998). doi:10.1021/jp981335u

    Article  Google Scholar 

Final Remarks

  • O. Ruscitti, R. Franke, H. Hahn, F. Babick, T. Richter, M. Stintz, Application of particle measurement technology in process intensification. Chem. Eng. Technol. 31(2), 270–277 (2008). doi:10.1002/ceat.200700465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Babick .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Babick, F. (2016). Characterisation of Colloidal Suspensions. In: Suspensions of Colloidal Particles and Aggregates. Particle Technology Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-30663-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30663-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30661-2

  • Online ISBN: 978-3-319-30663-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics