Skip to main content

Fundamentals in Colloid Science

  • Chapter
  • First Online:
Suspensions of Colloidal Particles and Aggregates

Part of the book series: Particle Technology Series ((POTS,volume 20))

Abstract

The macroscopic behaviour of colloidal suspensions is directly related to the fineness of their particles, but is also affected by the interfacial properties and the interaction between neighbouring particles. Specific effects are encountered for nanosized particles, which weakly interact with light and for which surface curvature is relevant. A profound understanding of the physical phenomena prevailing in colloidal suspensions facilitates their preparation, handling, use and characterisation. This chapter addresses the physico-chemical properties of single colloidal particles as well as the processes at the interface and the structure of the interfacial layer. It further examines the non-viscous interactions that occur between colloidal particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With the exception of forward-scattered light (θ = 0), which is in phase for all particles.

  2. 2.

    de Boer (1936) used the approach of pairwise sums for the interaction force between two flat surfaces.

References

General Matter

  • A.W. Adamson, A.P. Gast, Physical chemistry of surfaces, 6th edn. (Wiley, New York, 1997). ISBN 0-471-14873-3

    Google Scholar 

  • H.-D. Dörfler, Grenzflächen- und Kolloidchemie (Wiley, Weinheim, 1994). ISBN 3-527-29072-9

    Google Scholar 

  • R.J. Hunter, Zeta potential in colloid science: principles and applications. In series: Colloid science, vol. 2, 3rd edn. (Academic Press, London, 1988). ISBN 0-12-361961-0

    Google Scholar 

  • R.J. Hunter, Foundations in Colloid Sciences, vol. I (Oxford University Press, Oxford, 1993). ISBN 0-19-855187-8

    Google Scholar 

  • R.J. Hunter, Foundations in Colloid Sciences, vol. II (Oxford University Press, Oxford, 1995). ISBN 0-19-855392-7

    Google Scholar 

  • J.N. Israelachvili, Intermolecular and surface forces (Academic Press, London, 1992). ISBN 0-12-375181-0

    Google Scholar 

  • J. Lyklema, Fundamentals of Interface and Colloid Science I: Fundamentals (Academic Press, San Diego, 1991). ISBN 0-12-460525-7

    Google Scholar 

  • J. Lyklema, Fundamentals of Interface and Colloid Science II: Solid-Liquid Interfaces (Academic Press, San Diego, 1995). ISBN 0-12-460524-9

    Google Scholar 

  • J. Lyklema, Fundamentals of Interface and Colloid Science III: Liquid-fluid Interfaces (Academic Press, San Diego, 2000). ISBN 0-12-460523-0

    Google Scholar 

Scattering

Diffusion, Interfacial Tension, and Bulk Properties

  • L. Belloni, Yes, pair correlations alone do determine sedimentation profiles of highly charged colloids. J. Chem. Phys. 123(20), 204705 (2005). doi:10.1063/1.2121527

    Article  Google Scholar 

  • W.C. Hinds, Aerosol Technology: Properties, Behaviour, and Measurement of Airborne Particles, 2nd edn. (John Wiley & Sons, Hosoken, 1999). ISBN 0-471-19410-7

    Google Scholar 

  • R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979). ISBN 0-471-02404-X

    Google Scholar 

  • M. Kreth, Numerische Simulation von strukturellen Änderungen in Festkörpern und Nanopartikeln. Ph.D. thesis, (Gerhard-Mercator-Universität Duisburg, 2001)

    Google Scholar 

  • J. Lyklema, Fundamentals of Interface and Colloid Science III: Liquid-Fluid Interfaces (Academic Press, San Diego, 2000). ISBN 0-12-460523-0

    Google Scholar 

  • J. Perrin, L’agitation molèculaire et le mouvement brownien. CR Hebd. Seance Acad. Sci. 146(19), 970 (1908)

    Google Scholar 

  • J. Perrin, Mouvement brownien et realité moléculaire. Ann. Chim. Phys. 8(18), 1–114 (1909)

    Google Scholar 

  • A.P. Philipse, G.H. Koenderink, Sedimentation–diffusion profiles and layered sedimentation of charged colloids at low ionic strength. Adv. Colloid Interface Sci. 100–102, 613–639 (2003). doi:10.1016/S0001-8686(02)00078-7

    Article  Google Scholar 

  • S. Ripperger, J. Altmann, Crossflow microfiltration–state of the art. Sep. Purif. Technol. 26(1), 19–31 (2002). doi:10.1016/S1383-5866(01)00113-7

    Article  Google Scholar 

Electric Double Layer and Zeta-Potential

  • M.D. Afonso, G. Hagmeyer, R. Gimbel, Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions. Sep. Purif. Technol. 22–23, 529–541 (2001). doi:10.1016/S1383-5866(00)00135-0

    Article  Google Scholar 

  • C. Bellmann, C. Klinger, A. Opfermann, F. Böhme, H.-J.P. Adler, Evaluation of surface modification by electrokinetic measurements. Prog. Org. Coat. 44(2), 93–98 (2002). doi:10.1016/S0300-9440(01)00248-X

    Article  Google Scholar 

  • L. Belloni, Yes, pair correlations alone do determine sedimentation profiles of highly charged colloids. J. Chem. Phys. 123(20), 204705 (2005). doi:10.1063/1.2121527

    Article  Google Scholar 

  • F. Carrasco, P. Mutjé, M.A. Pelach, Control of retention in paper-making titration and zeta potential techniques by colloid. Wood Sci. Technol. 32(2), 145–155 (1998). doi:10.1007/BF00702595

    Article  Google Scholar 

  • D.L. Chapman, A contribution to the theory of electrocapillarity. Philos. Mag. S. 6, 25(148), 475–481 (1913). doi: 10.1080/14786440408634187

    Google Scholar 

  • A.V. Delgado, F. González-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309(2), 194–224 (2007). doi:10.1016/j.jcis.2006.12.075

    Article  Google Scholar 

  • L.G. Gouy, Sur la constitution de la charge électrique à la surface d’un électrolyte. CR Hebd. Seance Acad. Sci. 149(17), 354–357 (1909)

    MATH  Google Scholar 

  • R. Greenwood, Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics. Adv. Colloid Interface Sci. 106(1–3), 55–81 (2003). doi:10.1016/S0001-8686(03)00105-2

    Article  Google Scholar 

  • R.J. Hunter, Zeta potential in colloid science: principles and applications. In series: Colloid science, vol. 2, 3rd edn. (Academic Press, London, 1988). ISBN 0-12-361961-0

    Google Scholar 

  • R.J. Hunter, Foundations in Colloid Sciences, vol. I (Oxford University Press, Oxford, 1993). ISBN 0-19-855187-8

    Google Scholar 

  • M. Kosmulski, pH-dependent surface charging and points of zero charge. J. Colloid Interface Sci. 253(1), 77–87 (2002). doi:10.1006/jcis.2002.8490

    Article  Google Scholar 

  • M. Kosmulski, pH-dependent surface charging and points of zero charge–II. Update. J. Colloid Interface Sci. 275(1), 214–224 (2004). doi:10.1016/j.jcis.2004.02.029

    Article  Google Scholar 

  • M. Kosmulski, pH-dependent surface charging and points of zero charge. III. Update. J. Colloid Interface Sci. 298(2), 730–741 (2006). doi:10.1016/j.jcis.2006.01.003

    Article  Google Scholar 

  • M. Kosmulski, pH-dependent surface charging and points of zero charge. IV. Update and new approach. J. Colloid Interface Sci. 337(2), 439–448 (2009). doi: 10.1016/j.jcis.2009.04.072

    Google Scholar 

  • J. Lyklema, Fundamentals of Interface and Colloid Science II: Solid-liquid interfaces (Academic Press, San Diego, 1995). ISBN 0-12-460524-9

    Google Scholar 

  • J. Lyklema, Molecular interpretation of electrokinetic potentials. Curr. Opin. Colloid Interface Sci. 15(3), 125–130 (2010). doi:10.1016/j.cocis.2010.01.001

    Article  Google Scholar 

  • S. Mende, F. Stenger, W. Peukert, J. Schwedes, Production of sub-micron particles by wet comminution in stirred media mills. J. Mat. Sci. 39(16–17), 5223–5226 (2004). doi:10.1023/B:JMSC.0000039214.12131.58

    Article  Google Scholar 

  • R. Nitzsche, H. Friedrich, G. Boden, W. Hermel, in Elektrokinetic Surface Investigations—An Important Technique for Ceramic Powder Processing. ed by R.A. Williams, N.C. De Jaeger. Advances in Measurement and Control of Colloidal Processes. (Butterworth-Heinemann, 1991), pp. 280–291

    Google Scholar 

  • J.-S. Park, H.-J. Lee, S.-J. Choi, K.E. Geckeler, J. Cho, S.-H. Moon, Fouling mitigation of anion exchange membrane by zeta potential control. J. Colloid Interface Sci. 259(2), 293–300 (2003). doi:10.1016/S0021-9797(02)00095-4

    Article  Google Scholar 

  • C. Schnitzer, S. Ripperger, Influence of surface roughness on streaming potential method. Chem. Eng. Technol. 31(11), 1696–1700 (2008). doi:10.1002/ceat.200800180

    Article  Google Scholar 

  • E. Skwarek, S. Khalameida, W. Janusz, V. Sydorchuk, N. Konovalova, V. Zazhigalov, J. Skubi-szew-ska-Zięba, R. Leboda, Influence of mechanochemical activation on structure and some properties of mixed vanadium–molybdenum oxides. J. Therm. Anal. Calorim. 106(3), 881–894 (2011). doi:10.1007/s10973-011-1744-x

    Article  Google Scholar 

  • J. Sonnefeld, M. Lobbus, W. Vogelsberger, Determination of electric double layer parameters for spherical silica particles under application of the triple layer model using surface charge density data and results of electrokinetic sonic amplitude measurements. Colloids Surf. A 195(1–3), 215–225 (2001). doi:10.1016/S0927-7757(01)00845-7

    Article  Google Scholar 

  • G. Téllez, T. Biben, Equilibrium sedimentation profiles of charged colloidal suspensions. Eur. Phys. J. E 2(2), 137–143 (2000). doi:10.1007/s101890050047

    Article  Google Scholar 

  • D.M.E. Thies-Weesie, A.P. Philipse, G. Nägele, B. Mandl, R. Klein, Nonanalytical concentration dependence of sedimentation of charged silica spheres in an organic solvent: experiments and calculations. J. Colloid Interface Sci. 176(1), 43–54 (1995). doi:10.1006/jcis.1995.0006

    Article  Google Scholar 

  • B. van Lent, B. Klinksiek, Korrelation physikaIischer mit anwendungstechnischen Größen bei Dispersionen. Chem. Ing. Tech. 69(6), 793–798 (1997). doi:10.1002/cite.330690605

    Article  Google Scholar 

  • P. Wilhelm, D. Stephan, On-line tracking of the coating of nanoscaled silica with titania nanoparticles via zeta-potential measurements. J. Colloid Interface Sci. 293(1), 88–92 (2006). doi:10.1016/j.jcis.2005.06.047

    Article  Google Scholar 

Electro-Viscous Effects

  • F. Booth, The electroviscous effect for suspensions of solid spherical particles. Proc. Roy. Soc. A 203(1075), 533–551 (1950). doi:10.1098/rspa.1950.0155

    Article  MathSciNet  MATH  Google Scholar 

  • F. Booth, Sedimentation potential and velocity of solid spherical particles. J. Chem. Phys. 22(11), 1968 (1954). doi: 10.1063/1.1739975

    Google Scholar 

  • H.B. Bull, Die Bedeutung der Kapillarenweite für das Strömungspotential. Kolloid Z. 60(2), 130–132 (1932). doi:10.1007/BF01428359

    Article  Google Scholar 

  • R.J. Hunter, Zeta potential in colloid science: principles and applications. In series: Colloid science, vol. 2, 3rd ed. (Academic Press, London, 1988). ISBN 0-12-361961-0

    Google Scholar 

  • H.J. Keh, J.M. Ding, Sedimentation velocity and potential in concentrated suspensions of charged spheres with arbitrary double-layer thickness. J. Colloid Interface Sci. 227(2), 540–552 (2000). doi:10.1006/jcis.2000.6918

    Article  Google Scholar 

  • S. Levine, J.R. Marriott, K. Robinson, Theory of electrokinetic flow in a narrow parallel-plate channel. J. Chem. Soc. Faraday Trans. 2(71), 1–11 (1975). doi:10.1039/F29757100001

    Article  Google Scholar 

  • J. Lyklema, Molecular interpretation of electrokinetic potentials. Curr. Opin. Colloid Interface Sci. 15(3), 125–130 (2010). doi:10.1016/j.cocis.2010.01.001

    Article  Google Scholar 

  • J. Lyklema, J.T.G. Overbeek, On the interpretation of electrokinetic potentials. J. Colloid Sci. 16(5), 501–512 (1961). doi:10.1016/0095-8522(61)90029-0

    Article  Google Scholar 

  • H. Ohshima, T.W. Healy, L.R. White, R.W. O’Brien, Sedimentation velocity and potential in a dilute suspension of charged spherical colloidal particles. J. Chem. Soc. Faraday Trans. 2 80(10), 1299–1317 (1984). doi:10.1039/f29848001299

    Article  Google Scholar 

  • E. Overbeck, C. Sinn, M. Watzlawek, Enhanced structural correlations accelerate diffusion in charge-stabilized colloidal suspensions. Phys. Rev. E 60(2), 1936–1939 (1999). doi:10.1103/PhysRevE.60.1936

    Article  Google Scholar 

  • D. Quemada, C. Berli, Energy of interaction in colloids and its implications in rheological modeling. Adv. Colloid Interface Sci. 98(1), 51–85 (2002). doi:10.1016/S0001-8686(01)00093-8

    Article  Google Scholar 

  • F.J. Rubio-Hernandez, F. Carrique, E. Ruiz-Reina, The primary electroviscous effect in colloidal suspensions. Adv. Colloid Interface Sci. 107(1), 51–60 (2004). doi:10.1016/j.cis.2003.09.001

    Article  Google Scholar 

  • E. Ruiz-Reina, F. Carrique, F.J. Rubio-Hernández, A.I. Gómez-Merino, P. Garcia-Sánchez, Electroviscous effect of moderately concentrated colloidal suspensions. J. Phys. Chem. B 107(35), 9528–9534 (2003). doi:10.1021/jp034795i

    Article  Google Scholar 

  • W.B. Russel, Rheology of suspensions of charged rigid spheres. J. Fluid Mech. 85(2), 209–232 (1978). doi:10.1017/S0022112078000609

    Article  MATH  Google Scholar 

  • M. von Smoluchowski, Przyczynek do teorji endosmozy elektrycznej i kilku pokrewnych zjawisk. Rozprawy Wydziału matematyczno-przyrodiczego Akademji Umiejętnosci w Krakowie, T. XLIII, Serja A, 110–127, 1903; reprint in French: Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs. Bull. Int. Acad. Sci. Cracovie, Cl. Sci. Math. Nat. 8, 182–200 (1903)

    Google Scholar 

  • M. Watzlawek, G. Nägele, Self-diffusion coefficients of charged particles: Prediction of nonlinear volume fraction dependence. Phys. Rev. E 56(1), 1258–1261 (1997). doi:10.1103/PhysRevE.56.1258

    Article  Google Scholar 

  • M. Watzlawek, G. Nägele, Sedimentation of strongly and weakly charged colloidal particles: Prediction of fractional density dependence. J. Colloid Interface Sci. 214(2), 170–179 (1999). doi: 10.1006/jcis.1999.6181

    Google Scholar 

Surface Charging

  • M. Boström, V. Deniz, G.V. Franks, B.W. Ninham, Extended DLVO theory: Electrostatic and non-electrostatic forces in oxide suspensions. Adv. Colloid Interface Sci. 123–126, 5–15 (2006). doi:10.1016/j.cis.2006.05.001

    Article  Google Scholar 

  • M. Colic, M.L. Fisher, G.V. Franks, Influence of ion size on short-range repulsive forces between silica surfaces. Langmuir 14(21), 6107–6112 (1998). doi:10.1021/la980489y

    Article  Google Scholar 

  • J.A. Davis, R.O. James, J.O. Leckie, Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. J. Colloid Interface Sci. 63(3), 480–499 (1978). doi:10.1016/S0021-9797(78)80009-5

    Article  Google Scholar 

  • K.J. Farley, D.A. Dzombak, F.M.M. Morel, A surface precipitation model for the sorption of cations on metal oxides. J. Colloid Interface Sci. 106(1), 226–242 (1985). doi:10.1016/0021-9797(85)90400-X

    Article  Google Scholar 

  • L.E. Firment, H.E. Bergna, D.G. Swartzfager, P.E. Bierstedt, L. van Kavelaar, Silica coatings on α-alumina particles: Analysis and deposition mechanism. Surf. Interface Anal. 14(1–2), 46–52 (1989). doi:10.1002/sia.740140111

    Article  Google Scholar 

  • G.V. Franks, S.B. Johnson, P.J. Scales, D.V. Boger, T.W. Healy, Ion-specific strength of attractive particle networks. Langmuir 15(13), 4411–4420 (1999). doi:10.1021/la9815345

    Article  Google Scholar 

  • G.V. Franks, Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: Isoelectric point shift and additional attraction. J. Colloid Interface Sci. 249(1), 44–51 (2002). doi:10.1006/jcis.2002.8250

    Article  MathSciNet  Google Scholar 

  • R.J. Hunter, Zeta potential in colloid science: principles and applications. In series: Colloid science, vol. 2, 3rd ed. (Academic Press, London, 1988). ISBN 0-12-361961-0

    Google Scholar 

  • J. Jabłoński, W. Janusz, M. Reszka, R. Sprycha, J. Szszypa, Mechanism of adsorption of selected monovalent and divalent inorganic ions at the alumina/electrolyte interface. Pol. J. Chem. 74(10), 1399–1409 (2000)

    Google Scholar 

  • R.O. James, T.W. Healy, Adsorption of hydrolyzable metal ions at the oxide–water interface. II. Charge reversal of SiO2 and TiO2 colloids by adsorbed Co(II), La(III), and Th(IV) as model systems. J. Colloid Interface Sci. 40(1), 53–64 (1972). doi:10.1016/0021-9797(72)90173-7

    Article  Google Scholar 

  • J.-Q. Jiang, N.J.D. Graham, Pre-polymerised inorganic coagulants and phosphorus removal by coagulation-a review. Water SA 24(3), 237–244 (1998)

    Google Scholar 

  • S.B. Johnson, P.J. Scales, T.W. Healy, The binding of monovalent electrolyte ions on α-alumina. I. electroacoustic studies at high electrolyte concentrations. Langmuir 15(8), 2836–2843 (1999). doi:10.1021/la980875f

    Article  Google Scholar 

  • M. Kosmulski, P. Eriksson, J. Gustafsson, J.B. Rosenholm, Specific adsorption of nickel and z potential of silica at various solid-to-liquid ratios. J. Colloid Interface Sci. 220(1), 128–132 (1999a). doi:10.1006/jcis.1999.6520

    Article  Google Scholar 

  • M. Kosmulski, J. Gustafsson, J.B. Rosenholm, Correlation between the zeta potential and rheological properties of anatase dispersions. J. Colloid Interface Sci. 209(1), 200–206 (1999b). doi:10.1006/jcis.1998.5884

    Article  Google Scholar 

  • W.H. Kuan, S.L. Lo, M.K. Wang, Modeling and electrokinetic evidences on the processes of the Al(III) sorption continuum in SiO2(s) suspension. J. Colloid Interface Sci. 272(2), 489–497 (2004). doi:10.1016/j.jcis.2003.12.034

    Article  Google Scholar 

  • Y.K. Leong, Yield stress and zeta potential of nanoparticulate silica dispersions under the influence of adsorbed hydrolysis products of metal ions—Cu(II), Al(III) and Th(IV). J. Colloid Interface Sci. 292(2), 557–566 (2005). doi:10.1016/j.jcis.2005.06.004

    Article  Google Scholar 

  • S. Levine, D. Calvert, G.M. Bell, Discreteness-of-charge effect in electric double layer theory. Can. J. Chem. 40(3), 518–538 (1962). doi:10.1139/v62-080

    Article  Google Scholar 

  • J. Lyklema, Quest for ion–ion correlations in electric double layers and overcharging phenomena. Adv. Colloid Interface Sci. 147–148, 205–213 (2009). doi:10.1016/j.cis.2008.12.002

    Article  Google Scholar 

  • H.J. Modi, D.W. Fuerstenau, Streaming potential studies on corundum in aqueous solutions of inorganic electrolytes. J. Phys. Chem. 61(5), 640–643 (1957). doi:10.1021/j150551a029

    Article  Google Scholar 

  • B.W. Ninham, V. Yaminsky, Ion binding and ion specificity: the Hofmeister effect and Onsager and Lifshitz theories. Langmuir 13(7), 2097–2108 (1997). doi:10.1021/la960974y

    Article  Google Scholar 

  • K. Osseo-Asare, Etching kinetics of silicon dioxide in aqueous fluoride solutions: a surface complexation model. J. Electrochem. Soc. 143(4), 1339–1347 (1996). doi:10.1149/1.1836640

    Article  Google Scholar 

  • K. Osseo-Asare, Surface chemical processes in chemical mechanical polishing: Relationship between silica material removal rate and the point of zero charge of the abrasive material. J. Electrochem. Soc. 149(12), 651–655 (2002). doi:10.1149/1.1516777

    Article  Google Scholar 

  • K.M. Paciejewska, Untersuchung des Stabilitätsverhaltens von binären kolloidalen Suspensionen. Ph.D. thesis, (Technische Universität Dresden, 2010). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-65050

  • M. Quesada-Pérez, E. González-Tovar, A. Martín-Molina, M. Lozada-Cassou, R. Hidalgo-Álvarez, Overcharging in colloids: Beyond the Poisson-Boltzmann approach. Chem. Phys. Chem. 4(3), 234–248 (2003). doi:10.1002/cphc.200390040

    Google Scholar 

  • M. Quesada-Pérez, E. González-Tovar, A. Martín-Molina, M. Lozada-Cassou, R. Hidalgo-Álvarez, Ion size correlations and charge reversal in real colloids. Colloids Surf. A 267(1–3), 24–30 (2005). doi:10.1016/j.colsurfa.2005.06.034

    Article  Google Scholar 

  • W. Szczepaniak, H. Kościelna, Specific adsorption of halogen anions on hydrous gamma-Al2O3. Anal. Chim. Acta 470(2), 263–276 (2002). doi:10.1016/S0003-2670(02)00661-X

    Article  Google Scholar 

  • G.R. Wiese, R.O. James, T.W. Healy, Discreteness of charge and solvation effects in cation adsorption at the oxide/water interface. Discuss. Faraday Soc. 52, 302–311 (1971). doi:10.1039/DF9715200302

    Article  Google Scholar 

Surfactants

  • R. Atkin, V.S.J. Craig, E.J. Wanless, S. Biggs, Mechanism of cationic surfactant adsorption at the solid–aqueous interface. Adv. Colloid Interface Sci. 103(3), 219–304 (2003). doi:10.1016/S0001-8686(03)00002-2

    Article  Google Scholar 

  • N.K. Dimov, V.L. Kolev, P.A. Kralchevsky, L.G. Lyutov, G. Broze, A. Mehreteab, Adsorption of ionic surfactants on solid particles determined by zeta-potential measurements: Competitive binding of counterions. J. Colloid Interface Sci. 256(1), 23–32 (2002). doi:10.1006/jcis.2001.7821

    Article  Google Scholar 

  • A. Fan, P. Somasundaran, N.J. Turro, Adsorption of alkyltrimethylammonium bromides on negatively charged alumina. Langmuir 13(3), 506–510 (1997). doi:10.1021/la9607215

    Article  Google Scholar 

  • K. Holmberg, B. Jönsson, B. Kronberg, B. Lindman, Surfactants and polymers in aqueous solution, 2nd edn. (Wiley, Chichester, 2002). ISBN 0-471-49883-1

    Book  Google Scholar 

  • D. Myers, Surfaces, interfaces, and colloids: Principles and applications, 2nd edn. (Wiley, New-York, 1999). ISBN 0-471-33060-4

    Book  Google Scholar 

  • S. Paria, K.C. Khilar, A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv. Colloid Interface Sci. 110(3), 75–95 (2004). doi:10.1016/j.cis.2004.03.001

    Article  Google Scholar 

Surface Dissolution

  • Z. Adamczyk, B. Jachimska, M. Kolasińska, Structure of colloid silica determined by viscosity measurements. J. Colloid Interface Sci. 273(2), 668–674 (2004). doi:10.1016/j.jcis.2004.01.008

    Article  Google Scholar 

  • C.F. Baes, R.E. Mesmer, The Hydrolysis of Cations, (Wiley, New York, 1976), p. 58. ISBN 0-471-03985-3

    Google Scholar 

  • S. Bai, S. Urabe, Y. Okaue, T. Yokoyama, Acceleration effect of sulfate ion on the dissolution of amorphous silica. J. Colloid Interface Sci. 331(2), 551–554 (2009). doi:10.1016/j.jcis.2008.11.076

    Google Scholar 

  • B. Bonelli, P. Palmero, F. Lomello, M. Armandi, M. Lombardi, Study of the effect of prolonged magnetic stirring on the physico-chemical surface properties of nanometric transition alumina. J. Mater. Sci. 45(22), 6115–6125 (2010). doi:10.1007/s10853-010-4698-7

    Article  Google Scholar 

  • X. Carrier, E. Marceau, J.F. Lambert, M. Che, Transformations of γ-alumina in aqueous suspensions. 1. Alumina chemical weath-ering studied as a function of pH. J. Colloid Interface Sci. 308(2), 429–437 (2007). doi:10.1016/j.jcis.2006.12.074

    Article  Google Scholar 

  • I. Gunnarson, S. Arnórsson, Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0° to 350°C at Psat. Geochim. Cosmochim. Acta 64(13), 2295–2307 (2000). doi:10.1016/S0016-7037(99)00426-3

    Article  Google Scholar 

  • R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979). ISBN 0-471-02404-X

    Google Scholar 

  • J.-Q. Jiang, N.J.D. Graham, Pre-polymerised inorganic coagulants and phosphorus removal by coagulation-a review. Water SA 24(3), 237–244 (1998)

    Google Scholar 

  • W.H. Kuan, S.L. Lo, M.K. Wang, Modeling and electrokinetic evidences on the processes of the Al(III) sorption continuum in SiO2(s) suspension. J. Colloid Interface Sci. 272(2), 489–497 (2004). doi:10.1016/j.jcis.2003.12.034

    Article  Google Scholar 

  • G. Lefèvre, M. Duc, P. Lepeut, R. Caplain, M. Fédoroff, Hydration of γ-alumina in water and its effects on surface reactivity. Langmuir 18(20), 7530–7537 (2002). doi:10.1021/la025651i

    Article  Google Scholar 

  • W.L. Lindsay, Chemical Equilibria in Soils (Wiley, New York, 1979), pp. 35–49. ISBN 0-471-02704-9

    Google Scholar 

  • K.M. Paciejewska, Untersuchung des Stabilitätsverhaltens von binären kolloidalen Suspensionen. Ph.D. thesis, (Technische Universität Dresden, 2010). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-65050

  • D. Rickert, Dissolution kinetics of biogenic silica in marine environments. Ph.D. thesis, (Geomar Forschungszentrum für marine Geowissenschaften Kiel, 2000)

    Google Scholar 

  • F. Roelofs, W. Vogelsberger, Dissolution kinetics of nanodispersed γ-alumina in aqueous solution at different pH: Unusual kinetic size effect and formation of a new phase. J. Colloid Interface Sci. 303(2), 450–459 (2006). doi:10.1016/j.jcis.2006.08.016

    Article  Google Scholar 

  • W. Stumm, R. Wollast, Coordination chemistry of weathering: Kinetics of the surface-controlled dissolution of oxide minerals. Rev. Geophys. 28(1), 53–69 (1990). doi:10.1029/RG028i001p00053

    Article  Google Scholar 

  • G. Vigil, Z. Xu, S. Steinberg, J. Israelachvili, Interactions of silica surfaces. J. Colloid Interface Sci. 165(2), 367–385 (1994). doi:10.1006/jcis.1994.1242

    Article  Google Scholar 

  • W. Vogelsberger, M. Löbbus, J. Sonnefeld, A. Seidel, The influence of ionic strength on the dissolution process of silica. Colloids. Surf. A 159(2–3), 311–319 1999. doi: 10.1016/S0927-7757(99)00268-X

    Google Scholar 

  • V.V. Yaminsky, B.W. Ninham, R.M. Pashley, Interaction between surfaces of fused silica in water. Evidence of cold fusion and effects of cold plasma treatment. Langmuir 14(12), 3223–3235 (1998). doi:10.1021/la9713762

    Article  Google Scholar 

Van-der-Waals Interaction

Double Layer Interaction

  • G.M. Bell, S. Levine, L.N. McCartney, Approximate methods of determining the double-layer free energy of interaction between two charged colloidal spheres. J. Colloid Interface Sci. 33(3), 335–359 (1970). doi:10.1016/0021-9797(70)90228-6

    Article  Google Scholar 

  • S.L. Carnie, D.Y.C. Chan, Interaction free energy between plates with charge regulation: a linearized model. J. Colloid Interface Sci. 161(1), 260–264 (1993). doi:10.1006/jcis.1993.1464

    Article  Google Scholar 

  • S.L. Carnie, D.Y.C. Chan, J.S. Gunning, Electrical double-layer interaction between dissimilar spherical colloidal particles and between a sphere and a plate: The linearized Poisson-Boltzmann theory. Langmuir 10(9), 2993–3009 (1994a). doi:10.1021/la00021a024

    Article  Google Scholar 

  • S.L. Carnie, D.Y.C. Chan, J. Stankovich, Computation of forces between spherical colloidal particles: Nonlinear Poisson-Boltzmann theory. J. Colloid Interface Sci. 165(1), 116–128 (1994b). doi:10.1006/jcis.1994.1212

    Article  Google Scholar 

  • D. Chan, T.W. Healy, L.R. White, Electrical double layer interactions under regulation by surface ionization equilibria–dissimilar amphoteric surfaces. J. Chem. Soc. Faraday Trans. 1(72), 2844–2865 (1976). doi:10.1039/f19767202844

    Article  Google Scholar 

  • D.Y.C. Chan, D.J. Mitchell, The free energy of an electrical double layer. J. Colloid Interface Sci. 95(1), 193–197 (1983). doi:10.1016/0021-9797(83)90087-5

    Article  Google Scholar 

  • D.Y.C. Chan, in Free energies of electrical double layers at the oxide-solution interface. ed. by J.A. Davis, K.F. Hayes Geochemical Processes at Mineral Surfaces, (ACS Symposium Series 323, American Chemical Society, 1987), Chapter 6, pp 99–112. doi: 10.1021/bk-1987-0323.ch006

    Google Scholar 

  • D.Y.C. Chan, T.W. Healy, T. Supasiti, S. Usui, Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern-Grahame layers. J. Colloid Interface Sci. 296(1), 150–158 (2006). doi:10.1016/j.jcis.2005.09.003

    Article  Google Scholar 

  • S.S. Dukhin, J. Lyklema, Electrostatic interaction of colloidal particles and deviations of their double-layers from electrical neutrality (in Russian: Elektrostatićeskoe Vsaïmodejstwie kolloidnich ćastic i otklonenie ich dwoinich sloew ot elektronejtralnosti). Colloid J. USSR 51(2), 212–221 (1989)

    Google Scholar 

  • A.B. Glendinning, W.B. Russel, The electrostatic repulsion between charged spheres from exact solutions to the linearized Poisson-Boltzmann equation. J. Colloid Interface Sci. 93(1), 95–104 (1983). doi:10.1016/0021-9797(83)90388-0

    Article  Google Scholar 

  • R. Hogg, T.W. Healy, D.W. Fuerstenau, Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 62, 1638–1651 (1966). doi:10.1039/TF9666201638

    Article  Google Scholar 

  • J.-P. Hsu, Interfacial forces and fields: theory and applications. In series: Surfactant science, vol. 85. (Dekker, New York, 1999). ISBN 0-8247-1964-6

    Google Scholar 

  • R.J. Hunter, Foundations in Colloid Sciences, vol. I (Oxford University Press, Oxford, 1993). ISBN 0-19-855187-8

    Google Scholar 

  • J.W. Krozel, D.A. Saville, Electrostatic interactions between two spheres: solutions of the Debye-Hückel equation with a charge regulation boundary condition. J. Colloid Interface Sci. 150(2), 365–373 (1992). doi:10.1016/0021-9797(92)90206-2

    Article  Google Scholar 

  • J. Lyklema, J.F.L. Duval, Hetero-interaction between Gouy–Stern double layers: Charge and potential regulation. Adv. Colloid Interface Sci. 114–115, 27–45 (2005). doi:10.1016/j.cis.2004.05.002

    Article  Google Scholar 

  • D. McCormack, S.L. Carnie, D.Y.C. Chan, Calculations of electric double-layer force and interaction free energy between dissimilar surfaces. J. Colloid Interface Sci. 169(1), 177–196 (1995). doi:10.1006/jcis.1995.1019

    Article  Google Scholar 

  • J.E. Sader, S.L. Carnie, D.Y.C. Chan, Accurate analytic formulas for the double-layer interaction between spheres. J. Colloid Interface Sci. 171(1), 46–54 (1995). doi:10.1006/jcis.1995.1149

    Article  Google Scholar 

  • S. Usui, Interaction between dissimilar double layers with like signs under charge regulation on the basis of the Gouy–Chapman–Stern–Grahame model. J. Colloid Interface Sci. 280(1), 113–119 (2004). doi:10.1016/j.jcis.2004.07.014

    Article  Google Scholar 

  • S. Usui, Electrical double-layer interaction between oppositely charged dissimilar oxide surfaces with charge regulation and Stern-Grahame layers. J. Colloid Interface Sci. 320(1), 353–359 (2008). doi:10.1016/j.jcis.2007.12.016

    Article  MathSciNet  Google Scholar 

DLVO Theory (Including Born Repulsion)

  • A. Bleier, C.G. Westmoreland, Effects of pH and particle size on the processing of and the development of microstructure in alumina-zirconia composites. J. Am. Ceram. Soc. 74(12), 3100–3111 (1991). doi:10.1111/j.1151-2916.1991.tb04307.x

    Article  Google Scholar 

  • B. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged-particles in solutions of electrolytes. Prog. Surf. Sci. 43(1–4), 30–59 (1993); reprinted from: Acta phys.-chim. 14(6), 633–662 (1941). doi: 10.1016/0079-6816(93)90013-L

    Google Scholar 

  • D.L. Feke, N.D. Prabhu, J.A. Mann Jr, J.A. Mann III, A formulation of the short-range repulsion between spherical colloidal particles. J. Phys. Chem. 88(23), 5735–5739 (1984). doi:10.1021/j150667a055

    Article  Google Scholar 

  • W.B. Hardy, Preliminary investigation of the conditions which determine the stability of irreversible hydrosols. J. Phys. Chem. 4(4), 235–253 (1900). doi:10.1021/j150022a001

    Article  Google Scholar 

  • T.W. Healy, A. Homola, R.O. James, R.J. Hunter, Coagulation of amphoteric latex colloids: reversibility and specific ion effects. Faraday Discuss. Chem. Soc. 65, 156–163 (1978). doi:10.1039/dc9786500156

    Article  Google Scholar 

  • J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992). ISBN 0-12-375181-0

    Google Scholar 

  • P.A. Kralchevsky, K.D. Danov, N.D. Denkov, in Chemical Physics of Colloid Systems and Interfaces. ed. by K.S. Birdi, Handbook of Surface and Colloid Chemistry, 2nd edn, Chapter 5, pp. 137–344. (CRC Press, New York, 2002). ISBN 0-8493-1079-2

    Google Scholar 

  • J. Lyklema, Fundamentals of Interface and Colloid Science I: Fundamentals (Academic Press, San Diego, 1991). ISBN 0-12-460525-7

    Google Scholar 

  • P. Mulvaney, L.M. Liz-Marzan, M. Giersig, T. Ung, Silica encapsulation of quantum dots and metal clusters. J. Mater. Chem. 10(6), 1259–1270 (2000). doi:10.1039/b000136h

    Article  Google Scholar 

  • W. Ostwald, Elektrolytkoagulation schwach solvatisierter Sole und Elektrolytaktivität. KolIoid Z. 73(3), 301–323 (1935). doi:10.1007/BF01428785

    Article  Google Scholar 

  • R. Pagel, Laserpulsinduzierte Deaggregation von TiO2-Nanopartikeln in wässriger Suspension. Ph.D. thesis, (Freie Universität Berlin, 2005)

    Google Scholar 

  • E. Ruckenstein, D.C. Prieve, Adsorption and desorption of particles and their chromatographic separation. AIChE J. 22(2), 276–283 (1976). doi:10.1002/aic.690220209

    Article  Google Scholar 

  • E.J.W. Verwey, J.T.G. Overbeek, Theory of stability of lyophobic colloids (Elsevier, New York, 1948)

    Google Scholar 

Steric and Depletion Interaction

  • S. Asakura, F. Oosawa, On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22(7), 1255–1256 (1954). doi:10.1063/1.1740347

    Google Scholar 

  • S. Asakura, F. Oosawa, Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 33(126), 183–192 (1958). doi:10.1002/pol.1958.1203312618

    Article  Google Scholar 

  • X.L. Chu, A.D. Nikolov, D.T. Wasan, Effects of particle size and polydispersity on the depletion and structural forces in colloidal dispersions. Langmuir 12(21), 5004–5010 (1996). doi:10.1021/la960359u

    Article  Google Scholar 

  • M. Faraday, Experimental relations of gold (and other metals) to light. In: Experimental Researches in Chemistry and Physics, pp. 391–443. (Taylor and Francis, London, 1857); as cited by: J.W. Gentry, The aerosol science contributions of Michael Faraday. J. Aerosol Sci. 26(2), 341–349 (1995)

    Google Scholar 

  • R.I. Feigin, D.H. Napper, Depletion stabilization and depletion flocculation. J. Colloid Interface Sci. 75(2), 525–541 (1980). doi:10.1016/0021-9797(80)90475-0

    Article  Google Scholar 

  • W. Heller, T.L. Pugh, “Steric protection” of hydrophobic colloidal particles by adsorption of flexible macromolecules. J. Chem. Phys. 22(10), 1778 (1954). doi:10.1063/1.1739900

    Google Scholar 

  • D.H. Napper, The steric stabilization of hydrosols by nonionic macromolecules. J. Colloid Interface Sci. 29(1), 168–170 (1969). doi:10.1016/0021-9797(69)90363-4

    Article  Google Scholar 

  • D.H. Napper, A. Netschey, Studies of the steric stabilization of colloidal particles. J. Colloid Interface Sci. 37(3), 528–535 (1971). doi:10.1016/0021-9797(71)90330-4

    Article  Google Scholar 

  • D.H. Napper, Steric stabilization. J. Colloid Interface Sci. 58(2), 390–407 (1977). doi:10.1016/0021-9797(77)90150-3

    Article  Google Scholar 

  • D.H. Napper, Polymeric stabilization of colloidal dispersions. In series: Colloid science, vol. 3. (Academic Press, London, 1983). ISBN 0-12-513980-2

    Google Scholar 

  • M. van der Waarden, Stabilization of carbon-black dispersions in hydrocarbons. J. Colloid Sci. 5(4), 325 (1950). doi: 10.1016/0095-8522(50)90056-0

    Google Scholar 

  • R. Zsigmondy, Die hochrothe Goldlösung als Reagens auf Colloide. Z. Anal. Chem. 40(11), 697–719 (1901). doi:10.1007/BF01334022

    Article  Google Scholar 

Hydration Interaction

  • P. Attard, M.T. Batchelor, A mechanism for the hydration force demonstrated in a model system. Chem. Phys. Lett. 149(2), 206–211 (1988). doi:10.1016/0009-2614(88)87223-3

    Article  Google Scholar 

  • S. Basu, M.M. Sharma, Effect of dielectric saturation on disjoining pressure in thin films of aqueous electrolytes. J. Colloid Interface Sci. 165(2), 355–366 (1994). doi:10.1006/jcis.1994.1241

    Article  Google Scholar 

  • M.L. Belaya, M.V. Feigel’man, V.G. Levadny, Hydration forces as a result of non-local water polarizability. Chem. Phys. Lett. 126(3–4), 361–364 (1986). doi:10.1016/S0009-2614(86)80099-9

    Article  Google Scholar 

  • B.P. Binks, S.O. Lumsdon, Stability of oil-in-water emulsions stabilised by silica particles. Phys. Chem. Chem. Phys. 1(12), 3007–3016 (1999). doi:10.1039/a902209k

    Article  Google Scholar 

  • M. Boström, V. Deniz, G.V. Franks, B.W. Ninham, Extended DLVO theory: electrostatic and non-electrostatic forces in oxide suspensions. Adv. Colloid Interface Sci. 123–126, 5–15 (2006). doi:10.1016/j.cis.2006.05.001

    Article  Google Scholar 

  • M. Colic, M.L. Fisher, G.V. Franks, Influence of ion size on short-range repulsive forces between silica surfaces. Langmuir 14(21), 6107–6112 (1998). doi:10.1021/la980489y

    Article  Google Scholar 

  • A. Grabbe, Double layer interactions between silylated silica surfaces. Langmuir 9(3), 797–801 (1993). doi:10.1021/la00027a032

    Article  Google Scholar 

  • A. Grabbe, R.G. Horn, Double-Layer and hydration forces measured between silica sheets subjected to various surface treatments. J. Colloid Interface Sci. 157(2), 375–383 (1993). doi:10.1006/jcis.1993.1199

    Article  Google Scholar 

  • T.W. Healy, A. Homola, R.O. James, R.J. Hunter, Coagulation of amphoteric latex colloids: reversibility and specific ion effects. Faraday Discuss. Chem. Soc. 65, 156–163 (1978). doi:10.1039/dc9786500156

    Article  Google Scholar 

  • N. Kovalchuk, V. Starov, P. Langston, N. Hilal, V. Zhdanov, Colloidal dynamics: Influence of diffusion, inertia and colloidal forces on cluster formation. J. Colloid Interface Sci. 325(2), 377–385 (2008). doi:10.1016/j.jcis.2008.06.017

    Article  Google Scholar 

  • J.A. Molina-Bolívar, F. Galisteo-González, R. Hidalgo-Álvarez, Colloidal stability of protein-polymer systems: a possible explanation by hydration forces. Phys. Rev. E 55(4), 4522–4530 (1997). doi:10.1103/PhysRevE.55.4522

    Article  Google Scholar 

  • R.M. Pashley, J.N. Israelachvili, Molecular layering of water in thin films between mica surfaces and its relation to hydration forces. J. Colloid Interface Sci. 101(2), 511–523 (1984). doi:10.1016/0021-9797(84)90063-8

    Article  Google Scholar 

  • V.N. Paunov, R.I. Dimova, P.A. Kralchevsky, G. Broze, A. Mehreteab, The hydration repulsion between charged surfaces as an interplay of volume exclusion and dielectric saturation effects. J. Colloid Interface Sci. 182(1), 239–248 (1996). doi:10.1006/jcis.1996.0456

    Article  Google Scholar 

  • E. Ruckenstein, M. Manciu, Specific ion effects via ion hydration: II. Double layer interaction. Adv. Colloid Interface Sci. 105(1–3), 177–200 (2003). doi:10.1016/S0001-8686(03)00068-X

    Article  Google Scholar 

  • J.J. Valle-Delgado, J.A. Molina-Bolívar, F. Galisteo-González, M.J. Gálvez-Ruiz, A. Feiler, M.W. Rutland, Hydration forces between silica surfaces: Experimental data and predictions from different theories. J. Chem. Phys. 123(3), 034708 (2005). doi:10.1063/1.1954747

    Article  Google Scholar 

  • G. Vigil, Z. Xu, S. Steinberg, J. Israelachvili, Interactions of silica surfaces. J. Colloid Interface Sci. 165(2), 367–385 (1994). doi:10.1006/jcis.1994.1242

    Article  Google Scholar 

  • V.V. Yaminsky, B.W. Ninham, R.M. Pashley, Interaction between surfaces of fused silica in water. Evidence of cold fusion and effects of cold plasma treatment. Langmuir 14(12), 3223–3235 (1998). doi:10.1021/la9713762

    Article  Google Scholar 

  • H. Yotsumoto, R.-H. Yoon, Application of extended DLVO-theory: 1. Stability of rutile suspensions. J. Colloid Interface Sci. 157(2), 426–433 (1993a). doi:10.1006/jcis.1993.1205

    Article  Google Scholar 

  • H. Yotsumoto, R.-H. Yoon, Application of extended DLVO-theory: 2. Stability of silica suspensions. J. Colloid Interface Sci. 157(2), 434–441 (1993b). doi:10.1006/jcis.1993.1206

    Article  Google Scholar 

  • J. Zhou, J. Ralston, R. Sedev, D.A. Beattie, Functionalized gold nanoparticles: Synthesis, structure and colloid stability. J. Colloid Interface Sci. 331(2), 251–262 (2009). doi:10.1016/j.jcis.2008.12.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Babick .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Babick, F. (2016). Fundamentals in Colloid Science. In: Suspensions of Colloidal Particles and Aggregates. Particle Technology Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-30663-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30663-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30661-2

  • Online ISBN: 978-3-319-30663-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics