Skip to main content

Diagnostic Tools for Ectatic Corneal Diseases

  • Chapter
  • First Online:
Corneal Collagen Cross Linking

Abstract

Refractive surgery allowed great advances in understanding the pathophysiology, diagnosis, and treatment of corneal ectatic diseases. Identification of mild cases with normal spectacle-corrected distance visual acuity (CDVA) and minimal or no biomicroscopic signs represent a challenge faced by refractive surgeons in daily practice. In fact, the different situations that highlight this importance range from screening the candidates for laser vision correction (LVC) for ectasia risk to the impact of refractive surgery technologies on treatment. This is also fundamental to detect cases that will benefit from therapeutic surgery such as collagen cross linking (CXL). Diagnostic techniques should also be effective for staging, prognosis, and follow up of ectatic corneal diseases, as well as to enhance the efficiency of refractive LVC. Corneal ectasia is a condition of the cornea characterized by chronic biomechanical failure that leads to thinning and tissue protrusion without an acute inflammatory sign. Keratoconus (KC) is the most common disease of this group of corneal disorders. This chapter overviews the clinical diagnosis and characterization, including ancillary and advanced tests that have a role on the diagnosis and management of corneal ectatic diseases, especially KC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol. 1984;28:293–322.

    Article  CAS  PubMed  Google Scholar 

  2. Belin MW, Asota IM, Ambrosio Jr R, Khachikian SS. What’s in a name: keratoconus, pellucid marginal degeneration, and related thinning disorders. Am J Ophthalmol. 2011;152:157–162.e151.

    Article  PubMed  Google Scholar 

  3. Ambrosio Jr R, Klyce SD, Wilson SE. Corneal topographic and pachymetric screening of keratorefractive patients. J Refract Surg. 2003;19:24–9.

    PubMed  Google Scholar 

  4. Ambrosio Jr R, et al. Evaluation of corneal shape and biomechanics before LASIK. Int Ophthalmol Clin. 2011;51:11–38.

    Article  PubMed  Google Scholar 

  5. Roberts CJ, Dupps Jr WJ. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40:991–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319.

    Article  CAS  PubMed  Google Scholar 

  7. Ambrosio Jr R, Randleman JB. Screening for ectasia risk: what are we screening for and how should we screen for it? J Refract Surg. 2013;29:230–2.

    Article  PubMed  Google Scholar 

  8. Krachmer JH. Pellucid marginal corneal degeneration. Arch Ophthalmol. 1978;96:1217–21.

    Article  CAS  PubMed  Google Scholar 

  9. Belin MW, Ambrosio R. Scheimpflug imaging for keratoconus and ectatic disease. Indian J Ophthalmol. 2013;61:401–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dawson DG, et al. Corneal ectasia after excimer laser keratorefractive surgery: histopathology, ultrastructure, and pathophysiology. Ophthalmology. 2008;115:2181–2191.e2181.

    Article  PubMed  Google Scholar 

  11. Randleman JB, Russell B, Ward MA, Thompson KP, Stulting RD. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology. 2003;110:267–75.

    Article  PubMed  Google Scholar 

  12. Randleman JB, Caster AI, Banning CS, Stulting RD. Corneal ectasia after photorefractive keratectomy. J Cataract Refract Surg. 2006;32:1395–8.

    Article  PubMed  Google Scholar 

  13. McMonnies CW. The evidentiary significance of case reports: eye rubbing and keratoconus. Optom Vis Sci. 2008;85:262–9.

    Article  PubMed  Google Scholar 

  14. Tuft SJ, et al. Keratoconus in 18 pairs of twins. Acta Ophthalmol. 2012;90:e482–486.

    Article  PubMed  Google Scholar 

  15. Rabinowitz YS. The genetics of keratoconus. Ophthalmol Clin North Am. 2003;16:607–20, vii.

    Article  PubMed  Google Scholar 

  16. Wang Y, Rabinowitz YS, Rotter JI, Yang H. Genetic epidemiological study of keratoconus: evidence for major gene determination. Am J Med Genet. 2000;93:403–9.

    Article  CAS  PubMed  Google Scholar 

  17. Maeda N, Klyce SD, Tano Y. Detection and classification of mild irregular astigmatism in patients with good visual acuity. Surv Ophthalmol. 1998;43:53–8.

    Article  CAS  PubMed  Google Scholar 

  18. Szczotka LB, Rabinowitz YS, Yang H. Influence of contact lens wear on the corneal topography of keratoconus. CLAO J. 1996;22:270–3.

    CAS  PubMed  Google Scholar 

  19. Ambrosio Jr R, Caldas DL, Silva RS, Pimentel LN, Valbon BF. Impacto da análise do “wavefront” na refractometria de pacientes com ceratocone. Rev Bras Oftalmol. 2010;29:294–300.

    Article  Google Scholar 

  20. Ambrosio Jr R, et al. Corneal ectasia after LASIK despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye. J Refract Surg. 2010;26:906–11.

    Article  PubMed  Google Scholar 

  21. Klyce SD. Computer-assisted corneal topography. High-resolution graphic presentation and analysis of keratoscopy. Investig Ophthalmol Vis Sci. 1984;25:1426–35.

    CAS  Google Scholar 

  22. Maeda N, Klyce SD, Smolek MK. Comparison of methods for detecting keratoconus using videokeratography. Arch Ophthalmol. 1995;113:870–4.

    Article  CAS  PubMed  Google Scholar 

  23. Wilson SE, Klyce SD. Advances in the analysis of corneal topography. Surv Ophthalmol. 1991;35:269–77.

    Article  CAS  PubMed  Google Scholar 

  24. Klyce SD. Chasing the suspect: keratoconus. Br J Ophthalmol. 2009;93:845–7.

    Article  PubMed  Google Scholar 

  25. Rabinowitz YS, Rasheed K. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J Cataract Refract Surg. 1999;25:1327–35.

    Article  CAS  PubMed  Google Scholar 

  26. Gilani F, et al. Comprehensive anterior segment normal values generated by rotating Scheimpflug tomography. J Cataract Refract Surg. 2013;39:1707–12.

    Article  PubMed  Google Scholar 

  27. Ambrosio Jr R, Alonso RS, Luz A, Coca Velarde LG. Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. J Cataract Refract Surg. 2006;32:1851–9.

    Article  PubMed  Google Scholar 

  28. Ambrosio Jr R, et al. Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. J Refract Surg. 2011;27:753–8.

    Article  PubMed  Google Scholar 

  29. Ambrosio R Jr, Ramos I, Faria-Correia F, Belin MW. Tomographic screening for ectasia susceptibility – analysis must go beyond corneal curvature and central thickness. Cataract and Refractive Surgery Today Europe. April 20–25, 2012.

    Google Scholar 

  30. Ambrosio Jr R, Valbon BF, Faria-Correia F, Ramos I, Luz A. Scheimpflug imaging for laser refractive surgery. Curr Opin Ophthalmol. 2013;24:310–20.

    Article  PubMed  Google Scholar 

  31. Faria-Correia F, et al. Topometric and tomographic indices for the diagnosis of keratoconus. Int J Kerat Ect Cor Dis. 2012;1:92–9.

    Google Scholar 

  32. Amsler M. The “forme fruste” of keratoconus. Wien Klin Wochenschr. 1961;73:842–3.

    CAS  PubMed  Google Scholar 

  33. Jafri B, Li X, Yang H, Rabinowitz YS. Higher order wavefront aberrations and topography in early and suspected keratoconus. J Refract Surg. 2007;23:774–81.

    PubMed  Google Scholar 

  34. Buhren J, Kook D, Yoon G, Kohnen T. Detection of subclinical keratoconus by using corneal anterior and posterior surface aberrations and thickness spatial profiles. Invest Ophthalmol Vis Sci. 2010;51:3424–32.

    Article  PubMed  Google Scholar 

  35. Gobbe M, Guillon M. Corneal wavefront aberration measurements to detect keratoconus patients. Cont Lens Anterior Eye. 2005;28:57–66.

    Article  PubMed  Google Scholar 

  36. Alio JL, Shabayek MH. Corneal higher order aberrations: a method to grade keratoconus. J Refract Surg. 2006;22:539–45.

    PubMed  Google Scholar 

  37. Maeda N, et al. Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. Ophthalmology. 2002;109:1996–2003.

    Article  PubMed  Google Scholar 

  38. Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg. 2009;25:604–10.

    PubMed  Google Scholar 

  39. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008;24:571–81.

    PubMed  PubMed Central  Google Scholar 

  40. Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology. 2012;119:2425–33.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reinstein DZ, Gobbe M, Archer TJ, Silverman RH, Coleman DJ. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound. J Refract Surg. 2010;26:259–71.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Girard MJ, et al. Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res. 2014;40:1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31:156–62.

    Article  PubMed  Google Scholar 

  44. Ambrosio R Jr, et al. Dynamic ultra-high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol. 2013;72(2).

    Google Scholar 

  45. Fontes BM, Ambrosio Junior R, Jardim D, Velarde GC, Nose W. Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas. Arq Bras Oftalmol. 2010;73:333–7.

    Article  PubMed  Google Scholar 

  46. Fontes BM, Ambrosio Jr R, Jardim D, Velarde GC, Nose W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology. 2010;117:673–9.

    Article  PubMed  Google Scholar 

  47. Correia FF, et al. Impact of chamber pressure and material properties on the deformation response of corneal models measured by dynamic ultra-high-speed Scheimpflug imaging. Arq Bras Oftalmol. 2013;76:278–81.

    Article  PubMed  Google Scholar 

  48. Scarcelli G, Besner S, Pineda R, Yun SH. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci. 2014;55:4490–5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Efron N, Hollingsworth JG. New perspectives on keratoconus as revealed by corneal confocal microscopy. Clin Exp Optom. 2008;91:34–55.

    Article  PubMed  Google Scholar 

  50. Erie JC, et al. Keratocyte density in keratoconus. A confocal microscopy study(a). Am J Ophthalmol. 2002;134:689–95.

    Article  PubMed  Google Scholar 

  51. Hollingsworth JG, Efron N, Tullo AB. In vivo corneal confocal microscopy in keratoconus. Ophthalmic Physiol Opt. 2005;25:254–60.

    Article  PubMed  Google Scholar 

  52. Ozgurhan EB, et al. Evaluation of corneal microstructure in keratoconus: a confocal microscopy study. Am J Ophthalmol. 2013;156:885–893.e882.

    Article  PubMed  Google Scholar 

  53. Kim WJ, Rabinowitz YS, Meisler DM, Wilson SE. Keratocyte apoptosis associated with keratoconus. Exp Eye Res. 1999;69:475–81.

    Article  CAS  PubMed  Google Scholar 

  54. Rodrigues MM, Krachmer JH, Hackett J, Gaskins R, Halkias A. Fuchs’ corneal dystrophy. A clinicopathologic study of the variation in corneal edema. Ophthalmology. 1986;93:789–96.

    Article  CAS  PubMed  Google Scholar 

  55. Waring 3rd GO, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology. 1982;89:531–90.

    Article  PubMed  Google Scholar 

  56. Sibug ME, Datiles 3rd MB, Kashima K, McCain L, Kracher G. Specular microscopy studies on the corneal endothelium after cessation of contact lens wear. Cornea. 1991;10:395–401.

    Article  CAS  PubMed  Google Scholar 

  57. Ramos I, et al. Keratoconus associated with corneal guttata. Int J Kerat Ect Cor Dis. 2012;1:173–8.

    Google Scholar 

  58. Randleman JB, Woodward M, Lynn MJ, Stulting RD. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology. 2008;115:37–50.

    Article  PubMed  Google Scholar 

  59. Randleman JB, Trattler WB, Stulting RD. Validation of the Ectasia Risk Score System for preoperative laser in situ keratomileusis screening. Am J Ophthalmol. 2008;145:813–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ramos IC, et al. Variability of subjective classifications of corneal topography maps from LASIK candidates. J Refract Surg. 2013;29:770–5.

    Article  PubMed  Google Scholar 

  61. Klyce SD, Smolek MK, Maeda N. Keratoconus detection with the KISA% method-another view. J Cataract Refract Surg. 2000;26:472–4.

    Article  CAS  PubMed  Google Scholar 

  62. Maeda N, Klyce SD, Smolek MK, Thompson HW. Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci. 1994;35:2749–57.

    CAS  PubMed  Google Scholar 

  63. Klyce SD, Karon MD, Smolek MK. Screening patients with the corneal navigator. J Refract Surg. 2005;21:S617–622.

    PubMed  Google Scholar 

  64. Vinciguerra P, et al. Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology. 2009;116:369–78.

    Article  PubMed  Google Scholar 

  65. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study. Am J Ophthalmol. 2010;149:585–93.

    Article  CAS  PubMed  Google Scholar 

  66. Luz A, Lopes B, Hallahan KM, Valbon B, Ramos I, et al. Enhanced Combined Tomography and Biomechanics Data for Distinguishing Forme Fruste Keratoconus. J Refract Surg. 2016;32(7):479–94. doi: 10.3928/1081597X-20160502-02. PubMed PMID: 27400080.

  67. Lopes BT, Ramos IdC, Salomão MQ, Canedo ALC, Ambrósio Jr. R. Perfil paquimétrico horizontal para a detecção do ceratocone. Revista Brasileira de Oftalmologia. 2015;74:382–5.

    Google Scholar 

  68. Vinciguerra R, Ambrósio Jr R, Elsheikh A, et al. Detection of keratoconus with a new corvis ST biomechanical index. J Refract Surg. in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Ambrósio Junior MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guerra, G., Correia, F.F., Dawson, D.G., Patrão, L.F., Ferreira, I.D., Ambrósio Junior, R. (2017). Diagnostic Tools for Ectatic Corneal Diseases. In: Sinjab, M., Cummings, A. (eds) Corneal Collagen Cross Linking. Springer, Cham. https://doi.org/10.1007/978-3-319-39775-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39775-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39773-3

  • Online ISBN: 978-3-319-39775-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics