Skip to main content

Fundamentals of Corneal Cross Linking

  • Chapter
  • First Online:
Corneal Collagen Cross Linking

Abstract

Efficient corneal cross linking (CXL) comprises three key ingredients: energy dose of the applied ultraviolet (UV) light, concentration or composition of riboflavin (vitamin B2), and oxygen. CXL obtains its relevance from the combination of UV light and riboflavin which triggers the polymerization (cross linking) process but requires available oxygen to be effective. In addition, side factors such as the hydration of the cornea, other molecules (e.g., Vitamin C), or the temperature during CXL can influence the reaction mechanism. Ultimately, the aim is to optimize control of the CXL process to improve the predictability of the CXL effect and to provide the best clinical outcome for patients. This chapter focuses on the infrastructure of CXL, starting with the history of CXL, going through the CXL procedure, and highlighting the role of scientists in creating an optimum treatment to stop the progression of keratoconus (KC). The biomechanics of the cornea are a keystone in this infrastructure; they are discussed in terms of future in vitro and in vivo applications to observe corneal shape changes in KC diagnostically versus computationally. Finally, the future of CXL is considered as a potential alternative to refractive correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Edmund C. Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol (Copenh). 1988;66:134–40.

    Article  CAS  Google Scholar 

  2. Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res. 1980;31:435–41.

    Article  CAS  PubMed  Google Scholar 

  3. Nash IS, Greene PR, Foster CS. Comparison of mechanical properties of keratoconus and normal corneas. Exp Eye Res. 1982;35:413–24.

    Article  CAS  PubMed  Google Scholar 

  4. Wollensak J, Buddecke E. Biochemical studies on human corneal proteoglycans – a comparison of normal and keratoconic eyes. Graefes Arch Clin Exp Ophthalmol. 1990;228:517–23.

    Article  CAS  PubMed  Google Scholar 

  5. Nimni ME. The cross-linking and structure modification of the collagen matrix in the design of cardiovascular prosthesis. J Card Surg. 1988;3:523–33.

    Article  CAS  PubMed  Google Scholar 

  6. Spoerl E, Seiler T. Techniques for stiffening the cornea. J Refract Surg. 1999;15:711–3.

    CAS  PubMed  Google Scholar 

  7. Seiler T, Huhle S, Spoerl E, Kunath H. Manifest diabetes and keratoconus: a retrospective case–control study. Graefes Arch Clin Exp Ophthalmol. 2000;238:822–5.

    Article  CAS  PubMed  Google Scholar 

  8. Kuo IC, Broman A, Pirouzmanesh A, Melia M. Is there an association between diabetes and keratoconus? Ophthalmology. 2006;113:184–90.

    Article  PubMed  Google Scholar 

  9. Milne PJ, Zika RG. Crosslinking of collagen gels: photochemical measurements. SPIE. 1644;1992:115–24.

    Google Scholar 

  10. Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA-riboflavin cross-linking of the cornea. Cornea. 2007;26:385–9.

    Article  PubMed  Google Scholar 

  11. Sporl E, Huhle M, Kasper M, Seiler T. Increased rigidity of the cornea caused by intrastromal cross-linking. Ophthalmologe. 1997;94:902–6.

    Article  CAS  PubMed  Google Scholar 

  12. Sporl E, Schreiber J, Hellmund K, Seiler T, Knuschke P. Studies on the stabilization of the cornea in rabbits. Ophthalmologe. 2000;97:203–6.

    Article  CAS  PubMed  Google Scholar 

  13. Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29:35–40.

    Article  CAS  PubMed  Google Scholar 

  14. Wollensak G, Aurich H, Pham DT, Wirbelauer C. Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A. J Cataract Refract Surg. 2007;33:516–21.

    Article  PubMed  Google Scholar 

  15. Spoerl E, Wollensak G, Dittert DD, Seiler T. Thermomechanical behavior of collagen-cross-linked porcine cornea. Ophthalmologica. 2004;218:136–40.

    Article  CAS  PubMed  Google Scholar 

  16. Wollensak G, Wilsch M, Spoerl E, Seiler T. Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea. 2004;23:503–7.

    Article  PubMed  Google Scholar 

  17. Wollensak G, Spoerl E, Reber F, Seiler T. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye (Lond). 2004;18:718–22.

    Article  CAS  Google Scholar 

  18. Wollensak G, Spoerl E, Wilsch M, Seiler T. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg. 2003;29:1786–90.

    Article  PubMed  Google Scholar 

  19. Wollensak G, Sporl E, Reber F, Pillunat L, Funk R. Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro. Ophthalmic Res. 2003;35:324–8.

    Article  CAS  PubMed  Google Scholar 

  20. Wollensak G. Histological changes in human cornea after cross-linking with riboflavin and ultraviolet A. Acta Ophthalmol. 2010;88:e17–8.

    Article  PubMed  Google Scholar 

  21. Wollensak G, Sporl E, Seiler T. Treatment of keratoconus by collagen cross linking. Ophthalmologe. 2003;100:44–9.

    Article  CAS  PubMed  Google Scholar 

  22. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.

    Article  CAS  PubMed  Google Scholar 

  23. Schnitzler E, Sporl E, Seiler T. Irradiation of cornea with ultraviolet light and riboflavin administration as a new treatment for erosive corneal processes, preliminary results in four patients. Klin Monbl Augenheilkd. 2000;217:190–3.

    Article  CAS  PubMed  Google Scholar 

  24. Spoerl E, Wollensak G, Reber F, Pillunat L. Cross-linking of human amniotic membrane by glutaraldehyde. Ophthalmic Res. 2004;36:71–7.

    Article  CAS  PubMed  Google Scholar 

  25. Wollensak G, Spoerl E. Collagen crosslinking of human and porcine sclera. J Cataract Refract Surg. 2004;30:689–95.

    Article  PubMed  Google Scholar 

  26. Wollensak G, Sporl E, Pham DT. Biomechanical changes in the anterior lens capsule after trypan blue staining. J Cataract Refract Surg. 2004;30:1526–30.

    Article  PubMed  Google Scholar 

  27. Wollensak G, Spoerl E. Influence of indocyanine green staining on the biomechanical properties of porcine anterior lens capsule. Curr Eye Res. 2004;29:413–7.

    Article  CAS  PubMed  Google Scholar 

  28. Ulbrich S, Friedrichs J, Valtink M, et al. Retinal pigment epithelium cell alignment on nanostructured collagen matrices. Cells Tissues Organs. 2011;194:443–56.

    Article  CAS  PubMed  Google Scholar 

  29. Gruschwitz R, Friedrichs J, Valtink M, et al. Alignment and cell-matrix interactions of human corneal endothelial cells on nanostructured collagen type I matrices. Invest Ophthalmol Vis Sci. 2010;51:6303–10.

    Article  PubMed  Google Scholar 

  30. Caporossi A, Baiocchi S, Mazzotta C, Traversi C, Caporossi T. Parasurgical therapy for keratoconus by riboflavin-ultraviolet type A rays induced cross-linking of corneal collagen: preliminary refractive results in an Italian study. J Cataract Refract Surg. 2006;32:837–45.

    Article  PubMed  Google Scholar 

  31. Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009;35:621–4.

    Article  PubMed  Google Scholar 

  32. Seiler T, Hafezi F. Corneal cross-linking-induced stromal demarcation line. Cornea. 2006;25:1057–9.

    Article  PubMed  Google Scholar 

  33. Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cherfan D, Verter EE, Melki S, et al. Collagen cross-linking using rose bengal and green light to increase corneal stiffness. Invest Ophthalmol Vis Sci. 2013;54:3426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paik DC, Solomon MR, Wen Q, Turro NJ, Trokel SL. Aliphatic beta-nitroalcohols for therapeutic corneoscleral cross-linking: chemical mechanisms and higher order nitroalcohols. Invest Ophthalmol Vis Sci. 2010;51:836–43.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hafezi F, Randleman JB. PACK-CXL: defining CXL for infectious keratitis. J Refract Surg. 2014;30:438–9.

    Article  PubMed  Google Scholar 

  37. Semchishen A, Mrochen M, Semchishen V. Model for optimization of the UV-A/riboflavin strengthening (cross-linking) of the cornea: percolation threshold. Photochem Photobiol. 2015;91:1403–11.

    Article  CAS  PubMed  Google Scholar 

  38. Changyuan L, Zhenhui H, Guanshu L, Xichen C, Yuling C, Side Y. Photophysical and photochemical processes of riboflavin (vitamin B 2) by means of the transient absorption spectra in aqueous solution. Sci China B. 2001;44(1):39–48.

    Article  Google Scholar 

  39. Wollensak G, Aurich H, Wirbelauer C, et al. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg. 2010;36:114–20.

    Article  PubMed  Google Scholar 

  40. Schumacher S, Mrochen M, Wernli J, Bueeler M, Seiler T. Optimization model for UV-riboflavin corneal cross-linking. Cornea. 2012;53:762–9.

    CAS  Google Scholar 

  41. Caporossi A, Mazzotta C, Paradiso AL, Baiocchi S, Marigliani D, Caporossi T. Transepithelial corneal collagen cross-linking for progressive keratoconus: 24-months clinical results. J Cataract Refract Surg. 2013;8:1157–63.

    Article  Google Scholar 

  42. Cassagne M, Laurent C, Rodrigues M, Galinier A, Spörl E, Galiacy SD, Malecaze F. Iontaphoresis transcorneal delivery technique for transepithial corneal collagen cross-linking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci. 2014;13–12595.

    Google Scholar 

  43. Mencucci R, Ambrosini S, Paladini I, et al. Early effects of corneal collagen cross-linking by iontophoresis in ex vivo human corneas. Graefes Arch Clin Exp Ophthalmol. 2015;253:277–86.

    Article  CAS  PubMed  Google Scholar 

  44. Seiler TG, Fischinger I, Senfft T, Schmidinger G, Seiler T. Intrastromal application of riboflavin for corneal crosslinking. Invest Ophthalmol Vis Sci. 2014;55:4261–5.

    Article  CAS  PubMed  Google Scholar 

  45. McQuaid R, Li J, Cummings A, Mrochen M, Vohnsen B. Second-harmonic reflection imaging of normal and accelerated corneal cross-linking using porcine corneas and the role of intraocular pressure. Cornea. 2014;33:125–30.

    Article  PubMed  Google Scholar 

  46. Kissner A, Spoerl E, Jung R, Spekl K, Pillunat L, Raiskup F. Pharmacological modification of the epithelial permeability by benzalkonium chloride in UVA/riboflavin corneal collagen cross-linking. Curr Eye Res. 2010;35:715–21.

    Article  CAS  PubMed  Google Scholar 

  47. Raiskup F, Pinelli R, Spoerl E. Riboflavin osmolar modification for transepithelial corneal cross-linking. Curr Eye Res. 2012;37:234–8.

    Article  CAS  PubMed  Google Scholar 

  48. Spadea L, Mencucci R. Transepithelial corneal collagen crosslinking in ultrathin keratoconic corneas. Clin Ophthalmol. 2012;6:1785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McQuaid R, Mrochen M, Vohnsen B. Rate of riboflavin diffusion from intra-stromal channels prior to corneal cross-linking (CXL). J Cataract Refract Surg. 2016;42(3):462–468.

    Google Scholar 

  50. Wernli J, Schumacher S, Spoerl E, Mrochen M. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci. 2013;54(2):1176–80. doi:10.1167/iovs.12-11409.

    Article  PubMed  Google Scholar 

  51. Krueger RR, Spoerl E, Herekar S. Rapid vs standard collagen CXL with equivalent energy dosing. In: Proceedings of the third international congress of corneal collagen cross-linking; Dec 8–10, 2007; Zurich. Available at: www.slideshare.net/Iogen/krueger-herekar-rapid-cross-linking. Accessed 10 Aug 2011.

  52. Kamaev P, Friedman MD, Sherr E, Muller D. Photochemical kinetics of corneal cross-linking with riboflavin. Investig Ophthalmol Vis Sci. 2012;53. doi:10.1167/iovs.11-9385.

  53. Wollensak G, Spoerl E, Seiler T. Stress–strain measurements of human and porcine corneas after riboflavin – ultraviolet-A-induced cross-linking. 2003;3350(03). doi:10.1016/S0886-3350(03)00407-3.

  54. Elsheikh A, Anderson K. Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface. 2005;2(3):177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Reihsner R, Balogh B, Menzel EJ. Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration. Med Eng Phys. 1995;17(4):304–13.

    Article  CAS  PubMed  Google Scholar 

  56. Boyce BL, Grazier JM, Jones RE, Nguyen TD. Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials. 2008;29(28):3896–904.

    Article  CAS  PubMed  Google Scholar 

  57. Kling S, Ginis H, Marcos S. Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking. Invest Ophthalmol Vis Sci. 2012;53:5010–5.

    Article  CAS  PubMed  Google Scholar 

  58. Kling S, Remon L, Pérez-Escudero A, Merayo-Lloves J, Marcos S. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Invest Ophthalmol Vis Sci. 2010;51(8):3961–8.

    Article  PubMed  Google Scholar 

  59. Pallikaris IG, Kymionis GD, Ginis HS, Kounis GA, Tsilimbaris MK. Ocular rigidity in living human eyes. Invest Ophthalmol Vis Sci. 2005;46(2):409–14.

    Article  PubMed  Google Scholar 

  60. Scarcelli G, Kling S, Quijano E, Pineda R, Marcos S, Yun SH. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci. 2013;54(2):1418–25. doi:10.1167/iovs.12-11387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scarcelli G, Besner S, Pineda R, Yun SH. Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy. Invest Ophthalmol Vis Sci. 2014;55(7):4490–5. doi:10.1167/iovs.14-14450.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–62.

    Article  PubMed  Google Scholar 

  63. Hon Y, Lam AK. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optometry Vis Sci. 2013;90(1):e1–8.

    Article  Google Scholar 

  64. Kling S, Bekesi N, Dorronsoro C, Pascual D, Marcos S. Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation. 2014.

    Google Scholar 

  65. Kling S, Marcos S. Contributing factors to corneal deformation in air puff measurements. Invest Ophthalmol Vis Sci. 2013. doi:10.1167/iovs.13-12509.

  66. Kling S, Marcos S. Finite-element modeling of intrastromal ring segment implantation into a hyperelastic cornea. Invest Ophthalmol Vis Sci. 2013;54(1):881–9. doi:10.1167/iovs.12-10852.

    Article  PubMed  Google Scholar 

  67. Roy AS, Dupps WJ. Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking. Invest Ophthalmol Vis Sci. 2011;52(12):9174–87. doi:10.1167/iovs.11-7395.

    Article  PubMed  Google Scholar 

  68. Roy AS, Rocha KM, Randleman JB, Stulting RD, Dupps WJ. Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus. Exp Eye Res. 2013;113C:92–104. doi:10.1016/j.exer.2013.04.010.

  69. Seven I, Sinha Roy A, Dupps WJ. Patterned corneal collagen crosslinking for astigmatism: computational modeling study. J Cataract Refract Surg. 2014;40(6):943–53. doi:10.1016/j.jcrs.2014.03.019.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Probst LE, Machat JJ. Mathematics of laser in situ keratomilleusis for high myopia. J Cataract Refract Surg. 1998;24(2):190–5.

    Article  CAS  PubMed  Google Scholar 

  71. Dawson DG, Grossniklaus HE. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg. 2008;24(1):S85.

    PubMed  Google Scholar 

  72. Richoz O, Mosquera SA, Kling S, Hammer A, Magnago T, Bosch MM, Hafezi F. Determination of the excimer laser ablation rate in previously cross-linked corneas. J Refract Surg. 2014;30(9):628–32.

    Article  PubMed  Google Scholar 

  73. Jacob S, Kumar DA, Agarwal A, Basu S, Sinha P, Agarwal A. Contact lens-assisted collagen cross-linking (CACXL): a new technique for cross-linking thin corneas. J Refract Surg. 2014;30(6):366–72.

    Article  PubMed  Google Scholar 

  74. Vinciguerra P, Albè E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, Epstein D. Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology. 2009;116(3):369–78.

    Article  PubMed  Google Scholar 

  75. Usher D, Pertaub R, Friedman M, Scharf R, Muller D. Topographically guided corneal cross-linking. Invest Ophthalmol Vis Sci. 2013;54(15):529.

    Google Scholar 

  76. Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103.

    Article  CAS  PubMed  Google Scholar 

  77. Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pullunat LE. Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg. 2006;32:279–83.

    Article  PubMed  Google Scholar 

  78. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study. Am J Ophthalmol. 2010;149:585–93.

    Article  CAS  PubMed  Google Scholar 

  79. Chan E, Snibson GR. Current status of corneal collagen cross-linking for keratoconus: a review. Clin Exp Optom. 2013;96:155–64.

    Article  PubMed  Google Scholar 

  80. Hashemi H, Seyedian MA, Miraftab M, Fotouhi A, Asgari S. Corneal collagen cross-linking with riboflavin and ultraviolent A irradiation for keratoconus: long-term results. Ophthalmology. 2013;120:1515–20.

    Article  PubMed  Google Scholar 

  81. Dupps Jr WJ, Netto MV, Herekar S, Krueger RR. Surface wave elastometry of the cornea in porcine and human donor eyes. J Refract Surg. 2007;23:66–75.

    PubMed  PubMed Central  Google Scholar 

  82. Touboul D, Gennisson JL, Nguyen TM, Robinet A, Roberts CJ, Tanter M, Grenier N. Supersonic shear wave elastography for the in vivo evaluation of transepithelial corneal collagen cross-linking. Invest Ophthalmol Vis Sci. 2014;55:1976–84.

    Article  PubMed  Google Scholar 

  83. He X, Spoerl E, Tang J, Liu J. Measurement of corneal changes after collagen crosslinking using a noninvasive ultrasound system. J Cataract Refract Surg. 2010;36:1207–12.

    Article  PubMed  Google Scholar 

  84. Palko JR. Spatially heterogeneous corneal mechanical responses before and after riboflavin-ultraviolet-A crosslinking. J Cataract Refract Surg. 2014;40:1021.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Glass DH, Roberts CJ, Litsky AS, Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci. 2008;49(9):3919–26.

    Article  PubMed  Google Scholar 

  86. Sedaghat M, Naderi M, Zarei-Ghanavati M. Biomechanical parameters of the cornea after collagen crosslinking measured by waveform analysis. J Cataract Refract Surg. 2010;36:1728–31.

    Article  PubMed  Google Scholar 

  87. Terai N, Raiskup F, Haustein M, Pillunat LE, Spoerl E. Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res. 2012;37:553–62.

    Article  PubMed  Google Scholar 

  88. Vinciguerra P, Albe E, Mahmoud AM, Trazza S, Hafezi F, Roberts CJ. Intra- and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal crosslinking. J Refract Surg. 2010;26:669–76.

    Article  PubMed  Google Scholar 

  89. Goldich Y, Barkana Y, Morad Y, Hartstein M, Avni I, Zadok D. Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus? – a pilot study. Cornea. 2009;28:498–502.

    Article  PubMed  Google Scholar 

  90. Spoerl E, Terai N, Scholz F, Raiskup F, Pillunat LE. Detection of biomechanical changes after corneal cross-linking using Ocular Response Analyzer software. J Refract Surg. 2011;27:452–7.

    Article  PubMed  Google Scholar 

  91. Ambrósio Jr R, Ramos I, Luz A, Faria FC, Steinmueller A, Krug M, Belin MW, Roberts CJ. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol. 2013;72(2):99–102.

    Article  Google Scholar 

  92. Hong J, Xu J, Wei A, Deng SX, Cui X, Yu X, Sun X. A new tonometer – the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci. 2013;54:659–65.

    Article  PubMed  Google Scholar 

  93. Roberts CJ, Mahmoud AM, Ramos I, Siqueira R, Ambrósio R. Factors influencing corneal deformation and estimation of intraocular pressure. Invest Ophthalmol Vis Sci. 2011;52: ARVO E-Abstract 4384.

    Google Scholar 

  94. Scarcelli G, Besner S, Pineda R, Kalout P, Yun SH. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol. 2015;133(4):480–2.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Labiris G, Gatzioufas Z, Sideroudi H, Giarmoukakis A, Kozobolis V, Seitz B. Biomechanical diagnosis of keratoconus: evaluation of the keratoconus match index and the keratoconus match probability. Acta Ophthalmol. 2013;91:e258–62.

    Article  PubMed  Google Scholar 

  96. Labiris G, Giarmoukakis A, Gatzioufas Z, Sideroudi H, Kozobolis V, Seitz B. Diagnostic capacity of the keratoconus match index and keratoconus match probability in subclinical keratoconus. J Cataract Refract Surg. 2014;40:999–1005.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca McQuaid MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McQuaid, R., Mrochen, M., Vohnsen, B., Spoerl, E., Kling, S., Roberts, C.J. (2017). Fundamentals of Corneal Cross Linking. In: Sinjab, M., Cummings, A. (eds) Corneal Collagen Cross Linking. Springer, Cham. https://doi.org/10.1007/978-3-319-39775-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39775-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39773-3

  • Online ISBN: 978-3-319-39775-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics