Skip to main content

Combined Corneal Cross Linking and Other Procedures: Indications and Application Models

  • Chapter
  • First Online:
Corneal Collagen Cross Linking

Abstract

Corneal cross linking (CXL) has significant supporting evidence suggesting that it stabilizes keratoconus (KC) and increases corneal rigidity. Randomized clinical trials demonstrating this in a statistically significant manner would still be welcomed however.

Stabilizing KC rarely leads to significant improvement in the visual acuity or visual quality however. For this reason, CXL has been combined with other procedures that have a refractive effect or a shape-changing effect on the corneal topography. This chapter examines the different methods of CXL application where visual acuity and quality are also considered. Starting with transepithelial or epithelium-on (Epi-On) CXL techniques that lead to a much faster visual rehabilitation and a safer technique in terms of loss of lines of corrected distance visual acuity (CDVA) than the traditional methods going through all the various refractive options including excimer laser (PTK and topography-guided PRK), intrastromal corneal ring segments (ISCR), and thermal procedures, we have attempted to cover the range of CXL procedures that are more than or different to the original Dresden (epithelium-off; Epi-Off) CXL technique. Additionally, photorefractive intrastromal CXL (PiXL) is discussed, as are intraocular approaches and nonsurgical approaches such as orthokeratology in combination with CXL. Patients have become more demanding, and our medical colleagues have become more innovative in finding solutions that can provide both stability to the cornea and improvement in the visual functioning. We are grateful to an outstanding faculty that has contributed to this chapter.

The indications for CXL are expanding with time, and most of them are addressed in this book. This chapter is devoted to refractive indications of CXL, namely keratoconus (KC), pellucid marginal degeneration (PMD), and post-LASIK ectasia. Corneal infections are one of the medical indications of CXL, and will be dealt with in Chap. 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Randleman JB. Ectasia after LASIK: new treatments, new hope. J Refract Surg. 2011;27:319.

    Article  PubMed  Google Scholar 

  2. Kymionis GD. Corneal collagen cross linking-PLUS. Open Ophthalmol J. 2011;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wagner H, Barr JT, Zadnik K, the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study Group. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study: methods and findings to date. Cont Lens Anterior Eye. 2007;30:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kanellopoulos AJ, Binder PS. Collagen cross-linking (CCL) with sequential topography-guided PRK: a temporizing alternative for keratoconus to penetrating keratoplasty. Cornea. 2007;26:891–5.

    Article  PubMed  Google Scholar 

  5. Kymionis GD, Karavitaki AE, Kounis GA, et al. Management of pellucid marginal corneal degeneration with simultaneous customized photorefractive keratectomy and collagen crosslinking. J Cataract Refract Surg. 2009;35:1298–301.

    Article  PubMed  Google Scholar 

  6. Kymionis GD, Kontadakis GA, Kounis GA, et al. Simultaneous topography-guided PRK followed by corneal collagen cross-linking for keratoconus. J Refract Surg. 2009;25:S807–11.

    Article  PubMed  Google Scholar 

  7. Kanellopoulos AJ. Comparison of sequential vs same-day simultaneous collagen cross-linking and topography-guided PRK for treatment of keratoconus. J Refract Surg. 2009;25:S812–8.

    Article  PubMed  Google Scholar 

  8. Krueger RR, Kanellopoulos AJ. Stability of simultaneous topography-guided photorefractive keratectomy and riboflavin/UVA cross-linking for progressive keratoconus: case reports. J Refract Surg. 2010;26:S827–32.

    Article  PubMed  Google Scholar 

  9. Stojanovic A, Zhang J, Chen X, et al. Topography-guided transepithelial surface ablation followed by corneal collagen cross-linking performed in a single combined procedure for the treatment of keratoconus and pellucid marginal degeneration. J Refract Surg. 2010;26:145–52.

    Article  PubMed  Google Scholar 

  10. Kymionis GD, Portaliou DM, Diakonis VF, et al. Management of post laser in situ keratomileusis ectasia with simultaneous topography guided photorefractive keratectomy and collagen cross-linking. Open Ophthalmol J. 2011;5:11–3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kanellopoulos AJ, Binder PS. Management of corneal ectasia after LASIK with combined, same-day, topography-guided partial transepithelial PRK and collagen cross-linking: the Athens protocol. J Refract Surg. 2011;27:323–31.

    Article  PubMed  Google Scholar 

  12. Kymionis GD, Portaliou DM, Kounis GA, et al. Simultaneous topography-guided photorefractive keratectomy followed by corneal collagen cross-linking for keratoconus. Am J Ophthalmol. 2011;152:748–55.

    Article  PubMed  Google Scholar 

  13. Tuwairqi WS, Sinjab MM. Safety and efficacy of simultaneous corneal collagen cross-linking with topography-guided PRK in managing low-grade keratoconus: 1-year follow-up. J Refract Surg. 2012;28:341–5.

    Article  PubMed  Google Scholar 

  14. Lin DT, Holland S, Tan JC, Moloney G. Clinical results of topography-based customized ablations in highly aberrated eyes andkeratoconus/ectasia with cross-linking. J Refract Surg. 2012;28:S841–8.

    Article  PubMed  Google Scholar 

  15. Alessio G, L’abbate M, Sborgia C, La Tegola MG. Photorefractive keratectomy followed by cross-linking versus cross-linking alone for management of progressive keratoconus: two-year follow-up. Am J Ophthalmol. 2013;155:54–65.

    Article  PubMed  Google Scholar 

  16. Kanellopoulos AJ, Asimellis G. Keratoconus management: long-term stability of topography-guided normalization combined with high-fluence CXL stabilization (the Athens protocol). J Refract Surg. 2014;30:88–93.

    Article  PubMed  Google Scholar 

  17. Kymionis GD, Grentzelos MA, Karavitaki AE, et al. Transepithelial phototherapeutic keratectomy using a 213-nm solid-state laser system followed by corneal collagen cross-linking with riboflavin and UVA irradiation. J Ophthalmol. 2010; Article ID: 146543. http://dx.doi.org/10.1155/2010/146543.

  18. Kymionis GD, Grentzelos MA, Kounis GA, et al. Combined transepithelial phototherapeutic keratectomy and corneal collagen cross-linking for progressive keratoconus. Ophthalmology. 2012;119:1777–84.

    Article  PubMed  Google Scholar 

  19. Kymionis GD, Grentzelos MA, Kankariya VP, Pallikaris IG. Combined transepithelial phototherapeutic keratectomy and corneal collagen crosslinking for ectatic disorders: Cretan protocol. J Cataract Refract Surg. 2013;39:1939.

    Article  PubMed  Google Scholar 

  20. Kapasi M, Baath J, Mintsioulis G, et al. Phototherapeutic keratectomy versus mechanical epithelial removal followed by corneal collagen crosslinking for keratoconus. Can J Ophthalmol. 2012;47:344–7.

    Article  PubMed  Google Scholar 

  21. Coskunseven E, Jankov M, Hafezi F, et al. Effect of treatment sequence in combined intrastromal corneal rings and corneal collagen cross-linking for keratoconus. J Cataract Refract Surg. 2009;35:2084–91.

    Article  PubMed  Google Scholar 

  22. El-Raggal TM. Effect of corneal collagen crosslinking on femtosecond laser channel creation for intrastromal corneal ring segment implantation in keratoconus. J Cataract Refract Surg. 2011;37:701–5.

    Article  PubMed  Google Scholar 

  23. Henriquez MA, Izquierdo Jr L, Bernilla C, McCarthy M. Corneal collagen cross-linking before Ferrara intrastromal corneal ring implantation for the treatment of progressive keratoconus. Cornea. 2012;31:740–5.

    Article  PubMed  Google Scholar 

  24. Renesto Ada C, Melo Jr LA, Sartori Mde F, Campos M. Sequential topical riboflavin with or without ultraviolet a radiation with delayed intracorneal ring segment insertion for keratoconus. Am J Ophthalmol. 2012;153:982–93.

    Article  PubMed  CAS  Google Scholar 

  25. El Awady H, Shawky M, Ghanem AA. Evaluation of collagen crosslinking in keratoconus eyes with Kera intracorneal ring implantation. Eur J Ophthalmol. 2012;22:S62–8.

    Article  PubMed  Google Scholar 

  26. El-Raggal TM. Sequential versus concurrent KERARINGS insertion and corneal collagen cross-linking for keratoconus. Br J Ophthalmol. 2011;95:37–41.

    Article  PubMed  Google Scholar 

  27. Saelens IE, Bartels MC, Bleyen I, Van Rij G. Refractive, topographic, and visual outcomes of same-day corneal cross-linking with Ferrara intracorneal ring segments in patients with progressive keratoconus. Cornea. 2011;30:1406–8.

    Article  PubMed  Google Scholar 

  28. Kilic A, Kamburoglu G, Akinci A. Riboflavin injection into the corneal channel for combined collagen crosslinking and intrastromal corneal ring segment implantation. J Cataract Refract Surg. 2012;38:878–83.

    Article  PubMed  Google Scholar 

  29. Ertan A, Karacal H, Kamburoglu G. Refractive and topographic results of transepithelial cross-linking treatment in eyes with Intacs. Cornea. 2009;28:719–23.

    Article  PubMed  Google Scholar 

  30. Kamburoglu G, Ertan A. Intacs implantation with sequential collagen cross-linking treatment in postoperative LASIK ectasia. J Refract Surg. 2008;24:S726–9.

    PubMed  Google Scholar 

  31. Alió JL, Toffaha BT, Piñero DP, et al. Cross-linking in progressive keratoconus using an epithelial debridement or intrastromal pocket technique after previous corneal ring segment implantation. J Refract Surg. 2011;27:737–43.

    Article  PubMed  Google Scholar 

  32. Lam K, Rootman DB, Lichtinger A, Rootman DS. Post-LASIK ectasia treated with intrastromal corneal ring segments and corneal crosslinking. Dig J Ophthalmol. 2013;19:1–5.

    Google Scholar 

  33. Kymionis GD, Grentzelos MA, Karavitaki AE, et al. Combined corneal collagen cross-linking and posterior chamber toric implantable collamer lens implantation for keratoconus. Ophthalmic Surg Lasers Imaging. 2011;42:e22–5.

    PubMed  Google Scholar 

  34. Kurian M, Nagappa S, Bhagali R, et al. Visual quality after posterior chamber phakic intraocular lens implantation in keratoconus. J Cataract Refract Surg. 2012;38:1050–7.

    Article  PubMed  Google Scholar 

  35. Fadlallah A, Dirani A, El Rami H, et al. Safety and visual outcome of Visian toric ICL implantation after corneal collagen cross-linking in keratoconus. J Refract Surg. 2013;29:84–9.

    Article  PubMed  Google Scholar 

  36. Izquierdo Jr L, Henriquez MA, McCarthy M. Artiflex phakic intraocular lens implantation after corneal collagen cross-linking in keratoconic eyes. J Refract Surg. 2011;27:482–7.

    Article  PubMed  Google Scholar 

  37. Güell JL, Morral M, Malecaze F, et al. Collagen crosslinking and toric iris-claw phakic intraocular lens for myopic astigmatism in progressive mild to moderate keratoconus. J Cataract Refract Surg. 2012;38:475–84.

    Article  PubMed  Google Scholar 

  38. Kymionis GD, Grentzelos MA, Portaliou DM, et al. Photorefractive keratectomy followed by same-day corneal collagen cross-linking after intrastromal corneal ring segment implantation for pellucid marginal degeneration. J Cataract Refract Surg. 2010;36:1783–5.

    Article  PubMed  Google Scholar 

  39. Kanellopoulos AJ, Skouteris VS. Secondary ectasia due to forceps injury at childbirth: management with combined topography-guided partial PRK and collagen cross-linking (Athens Protocol) and subsequent phakic IOL implantation. J Refract Surg. 2011;27:635–6.

    Article  PubMed  Google Scholar 

  40. Iovieno A, Légaré ME, Rootman DB, et al. Intracorneal ring segments implantation followed by same-day photorefractive keratectomy and corneal collagen cross-linking in keratoconus. J Refract Surg. 2011;27:915–8.

    Article  PubMed  Google Scholar 

  41. Kremer I, Aizenman I, Lichter H, et al. Simultaneous wavefront-guided photorefractive keratectomy and corneal collagen crosslinking after intrastromal corneal ring segment implantation for keratoconus. J Cataract Refract Surg. 2012;38:1802–7.

    Article  PubMed  Google Scholar 

  42. Coskunseven E, Jankov II MR, Grentzelos MA, et al. Topography-guided transepithelial PRK after intracorneal ring segments implantation and corneal collagen CXL in a three-step procedure for keratoconus. J Refract Surg. 2013;29:54–8.

    Article  PubMed  Google Scholar 

  43. Coskunseven E, Sharma DP, Jankov II MR, et al. Collagen copolymer toric phakic intraocular lens for residual myopic astigmatism after intrastromal corneal ring segment implantation and corneal collagen crosslinking in a 3-stage procedure for keratoconus. J Cataract Refract Surg. 2013;39:722–9.

    Article  PubMed  Google Scholar 

  44. Al-Twuairqi W, Sinjab MM. Intracorneal ring segments implantation followed by same-day topography-guided PRK and corneal collagen CXL in low to moderate keratoconus. J Refract Surg. 2013;29(1):59–63.

    Article  Google Scholar 

  45. Yeung SN, Low SA, Ku JY, et al. Transepithelial phototherapeutic keratectomy combined with implantation of a single inferior intrastromal corneal ring segment and collagen crosslinking in keratoconus. J Cataract Refract Surg. 2013;39:1152–6.

    Article  PubMed  Google Scholar 

  46. Olivares Jimenez JL, Guerrero Jurado JC, Bermudez Rodriguez FJ, Serrano LD. Keratoconus: age of onset and natural history. Optom Vis Sci. 1997;74(3):147–51.

    Article  CAS  PubMed  Google Scholar 

  47. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42(4):297–319.

    Article  CAS  PubMed  Google Scholar 

  48. Karabatsas CH, Cook SD. Topographic analysis in pellucid marginal corneal degeneration and keratoglobus. Eye. 1996;10:451–5.

    Article  PubMed  Google Scholar 

  49. Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg. 2009;35:1358–62.

    Article  PubMed  Google Scholar 

  50. Hafezi F, Iseli HP. Pregnancy-related exacerbation of iatrogenic keratectasia despite corneal collagen crosslinking. J Cataract Refract Surg. 2008;34(7):1219–21.

    Article  PubMed  Google Scholar 

  51. Padmanabhan P, Radhakrishnan A, Natarajan R. Pregnancy-triggered iatrogenic (post-laser in situ keratomileusis) corneal ectasia—a case report. Cornea. 2010;29(5):569–72.

    Article  PubMed  Google Scholar 

  52. Suzuki T, Kinoshita Y, Tachibana M, et al. Expression of sex steroid hormone receptors in human cornea. Curr Eye Res. 2001;22(1):22–33.

    Article  Google Scholar 

  53. Spoerl E, Zubaty V, Terai N, et al. Influence of high-dose cortisol on the biomechanics of incurbated porcine corneal strips. J Refract Surg. 2009;25(9):S794–8.

    Article  PubMed  Google Scholar 

  54. Gatzioufas Z, Thanos S. Acute keratoconus induced by hypothyroxinemia during pregnancy. J Endocrinol Invest. 2008;31(3):262–6.

    Article  CAS  PubMed  Google Scholar 

  55. Gomes JAP, Tan D, Rapuano CJ, et al. Global consensus on keratoconus and ectatic disease. Cornea. 2015;34(4):359–69.

    Article  PubMed  Google Scholar 

  56. Sugar J, Macsai MS. What causes keratoconus? Cornea. 2012;31(6):716–9.

    Article  PubMed  Google Scholar 

  57. Edwards M, McGhee CNJ, Dean S. The genetics of keratoconus. Clin Exp Ophthalmol. 2001;29(6):345–51.

    Article  CAS  PubMed  Google Scholar 

  58. Patel D, Mcghee C. Understanding keratoconus: what have we learned from the New Zealand perspective? Clin Exp Optom. 2013;96(2):183–7.

    Article  PubMed  Google Scholar 

  59. Davidson AE, Hayes S, Hardcastle AJ, Tuft SJ. The pathogenesis of keratoconus. Eye. 2014;28(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  60. Padmanabhan P, Aiswaryah R, Abinaya PV. Post-LASIK keratectasia triggered by eye rubbing and treated with topography-guided ablation and collagen cross-linking: a case report. Cornea. 2012;31(5):575–80.

    Article  PubMed  Google Scholar 

  61. Bawazeer AM, Hodge WG, Lorimer B. Atopy and keratoconus: a multivariate analysis. Br J Ophthalmol. 2000;84(8):834–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mcmonnies CW, Boneham GC. Keratoconus, allergy, itch, eye-rubbing and hand-dominance. Clin Exp Optom. 2003;86(6):376–84.

    Article  PubMed  Google Scholar 

  63. Khor WB, Wei RH, Lim L, et al. Keratoconus in Asians: demographics, clinical characteristics and visual function in a hospital-based population. Clin Exp Ophthalmol. 2011;39(4):299–307.

    Article  PubMed  Google Scholar 

  64. Rabinowitz YS. The genetics of keratoconus. Ophthalmol Clin North Am. 2003;16(4):607–20.

    Article  PubMed  Google Scholar 

  65. Gordon-Shaag A, Shneor E, Millodot M. The epidemiology and etiology of keratoconus. Int J Keratoconus Ectatic Corneal Dis. 2012;1(1):7–15.

    Article  Google Scholar 

  66. Wei RH, Khor WB, Lim L, Tan DT. Contact lens characteristics and contrast sensitivity of patients with keratoconus. Eye Contact Lens. 2011;37(5):307–11.

    Article  PubMed  Google Scholar 

  67. Nemet AY, Vinker S, Bahar I, Kaiserman I. The association of keratoconus with immune disorder. Cornea. 2010;29(11):1261–4.

    Article  PubMed  Google Scholar 

  68. Shneor E, Millodot M, Blumberg S, et al. Characteristics of 244 patients with keratoconus seen in an optometric contact lens practice. Clin Exp Optom. 2013;96(2):219–24.

    Article  PubMed  Google Scholar 

  69. Crews MJ, Driebe Jr WT, Stern GA. The clinical management of keratoconus: a 6 year retrospective study. Contact Lens Assoc Ophthalmol J. 1994;20(3):194–7.

    CAS  Google Scholar 

  70. Kaya V, Karakaya M, Utine CA, et al. Evaluation of the corneal topographic characteristics of keratoconus with Orbscan II in patients with and without atopy. Cornea. 2007;26(8):945–8.

    Article  PubMed  Google Scholar 

  71. Jordan CA, Zamri A, Wheeldon C, et al. Computerized corneal tomography and associated features in a large New Zealand keratoconic population. J Cataract Refract Surg. 2011;37(8):1493–501.

    Article  PubMed  Google Scholar 

  72. Owens H, Gamble G. A profile of keratoconus in New Zealand. Cornea. 2003;22(2):122–5.

    Article  PubMed  Google Scholar 

  73. Zadnik K, Barr JT, Edrington TB, et al. Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) study. Investig Ophthalmol Vis Sci. 1998;39(13):2537–46.

    CAS  Google Scholar 

  74. Ihalainen A. Clinical and epidemiological features of keratoconus genetic and external factors in the pathogenesis of the disease. Acta Ophthalmol Suppl. 1986;178:1–64.

    CAS  PubMed  Google Scholar 

  75. Weed KH, MacEwen CJ, Giles T, et al. The Dundee University Scottish Keratoconus study: demographics, corneal signs, associated diseases, and eye rubbing. Eye. 2008;22(4):534–41.

    Article  CAS  PubMed  Google Scholar 

  76. Gordon-Shaag A, Millodot M, Essa M, et al. Is consanguinity a risk factor for keratoconus? Optom Vis Sci. 2013;90(5):448–54.

    Article  PubMed  Google Scholar 

  77. Antoun J, Elise S, el Hachem R, et al. Rate of corneal collagen crosslinking redo in private practice: risk factors and safety. J Ophthalmol. 2015. Article ID: 690961. http://dx.doi.org/10.1155/2015/690961.

  78. Hashemi H, Khabazkhoob M, Yazdani N, Ostadimoghaddam H, Norouzirad R, Amanzadeh K, et al. The prevalence of keratoconus in a young population in Mashhad, Iran. Ophthalmic Physiol Opt. 2014;34:519–27.

    Article  PubMed  Google Scholar 

  79. Gorskova EN, Sevost'ianov EN. Epidemiology of keratoconus in the Urals. Vestn Oftalmol. 1998;114(4):38–40.

    CAS  PubMed  Google Scholar 

  80. Assiri A, Yousuf B, Quantock AJ, et al. Incidence and severity of keratoconus in Asir province, Saudi Arabia. Br J Ophthalmol. 2005;89(11):1403–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nielsen K, Hjortdal J, Nohr EA, Ehlers N. Incidence and prevalence of keratoconus in Denmark. Acta Ophthalmol Scand. 2007;85(8):890–2.

    Article  PubMed  Google Scholar 

  82. Ljubic AD. Keratoconus and its prevalence in Macedonia. Maced J Med Sci. 2009;2(1):58–62.

    Article  Google Scholar 

  83. Ziaei H, Jafarinasab MR, Javadi MA, et al. Epidemiology of keratoconus in an Iranian population. Cornea. 2012;31(9):1044–7.

    Article  PubMed  Google Scholar 

  84. Hofstetter HW. A keratoscopic survey of 13,395 eyes. Am J Optom Arch Am Acad Optom. 1959;36(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  85. Santiago PY, Assouline M, Ducoussau F, et al. Epidemiology of keratoconus and corneal topography in normal young male subjects. Invest Ophthalmol Vis Sci. 1995;36:S307.

    Google Scholar 

  86. Millodot M, Shneor E, Albou S, et al. Prevalence and associated factors of keratoconus in jerusalem: a cross-sectional study. Ophthalmic Epidemiol. 2011;18(2):91–7.

    Article  PubMed  Google Scholar 

  87. Jonas JB, Nangia V, Matin A, et al. Prevalence and associations of keratoconus in rural Maharashtra in central India: the Central India Eye and Medical Study. Am J Ophthalmol. 2009;148(5):760–5.

    Article  PubMed  Google Scholar 

  88. Waked N, Fayad AM, Fadlallah A, El Rami H. Keratoconus screening in a Lebanese students' population. J Fr Ophtalmol. 2012;35(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  89. Xu L, Wang XY, Guo Y, et al. Prevalence and associations of steep cornea/keratoconus in greater beijing. The Beijing Eye Study. PLoS One. 2012;7(7): Article ID e39313. doi:10.1371/journal.pone.0039313.

  90. Hashemi H, Beiranvand A, Khabazkhoob M, et al. Prevalence of keratoconus in a population-based study in Shahroud. Cornea. 2013;32(11):1441–5.

    Article  PubMed  Google Scholar 

  91. Pearson AR, Soneji B, Sarvananthan N, Sanford-Smith JH. Does ethnic origin influence the incidence or severity of keratoconus? Eye. 2000;14(4):625–8.

    Article  PubMed  Google Scholar 

  92. Georgiou T, Funnell CL, Cassels-Brown A, O'Conor R. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients. Eye. 2004;18(4):379–83.

    Article  CAS  PubMed  Google Scholar 

  93. Cozma I, Atherley C, James NJ, et al. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asian and white patients. Eye. 2005;19(8):924–6.

    Article  CAS  PubMed  Google Scholar 

  94. Hashemi H, Khabazkhoob M, Fotouhi A. Topographic keratoconus is not rare in an Iranian population: the Tehran eye study. Ophthalmic Epidemiol. 2013;20(6):385–91.

    Article  PubMed  Google Scholar 

  95. Pan CW, Cheng CY, Sabanayagam C, et al. Ethnic variation in central corneal refractive power and steep cornea in Asians. Ophthalmic Epidemiol. 2014;21(2):99–105.

    Article  PubMed  Google Scholar 

  96. Al-Gazali L, Hamamy H. Consanguinity and dysmorphology in Arabs. Hum Hered. 2014;77(1–4):93–107. View at Publisher · View at Google Scholar.

    Article  PubMed  Google Scholar 

  97. Al-Gazali L, Hamamy H, Al-Arrayad S. Genetic disorders in the Arab world. Br Med J. 2006;333(7573):831–4. View at Publisher · View at Google Scholar · View at Scopus.

    Article  Google Scholar 

  98. Bittles AH, Hussain R. An analysis of consanguineous marriage in the Muslim population of India at regional and state levels. Ann Hum Biol. 2000;27(2):163–71.

    Article  CAS  PubMed  Google Scholar 

  99. Zadnik K, Barr JT, Gordon MO, Edrington TB. Biomicroscopic signs and disease severity in keratoconus. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study Group. Cornea. 1996;15(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  100. Goebels S, Seitz B, Langenbucher A. Diagnostik und stadiengerechte Therapie des Keratokonus; Eine Einführung in das Homburger Keratokonuscenter (HKC) [Diagnostics and stage-oriented therapy of keratoconus; introduction to the Homburg keratoconus center (HKC)]. Ophthalmologe. 2013;110:808–9.

    Article  CAS  PubMed  Google Scholar 

  101. Kymionis GD, Diakonis VF, Coskunseven E, et al. Customized pachymetric guided epithelial debridement for corneal collagen cross linking. BMC Ophthalmol. 2009;9:10.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009;35:621–4.

    Article  PubMed  Google Scholar 

  103. Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11:65–74.

    Article  PubMed  Google Scholar 

  104. Ziaei M, Barsam A, Shamie N, et al. Reshaping procedures for the surgical management of corneal ectasia. J Cataract Refract Surg. 2015;41:842–72.

    Article  PubMed  Google Scholar 

  105. Pena-Garcia P, Alio JL, Vega-Estrada A, Barraquer RI. Internal, corneal and refractive astigmatism as prognostic factors for intrastromal corneal ring segment implantation in mild to moderate keratoconus. J Cataract Refract Surg. 2014;40(10):1633–44.

    Article  PubMed  Google Scholar 

  106. Alió JL, Piñero DP, Alesón A, et al. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism and corneal biomechanics. J Cataract Refract Surg. 2011;37:552–68.

    Article  PubMed  Google Scholar 

  107. Vega-Estrada A, Alio JL, Brenner LF, et al. Outcome analysis of intracorneal ring segments for the treatment of keratoconus based on visual, refractive, and aberrometric impairment. Am J Ophthalmol. 2013;155:575–84.

    Article  PubMed  Google Scholar 

  108. Colin J, Cochener B, Savary G, Malet F. Correcting keratoconus with intracorneal rings. J Cataract Refract Surg. 2000;26:1117–22.

    Article  CAS  PubMed  Google Scholar 

  109. Kymionis GD, Siganos CS, Tsiklis NS, et al. Long-term follow-up of Intacs in keratoconus. Am J Ophthalmol. 2007;143:236–44.

    Article  PubMed  Google Scholar 

  110. Kanellopoulos AJ, Pe LH, Perry HD, Donnenfeld ED. Modified intracorneal ring segment implantations (INTACS) for the management of moderate to advanced keratoconus; efficacy and complications. Cornea. 2006;25:29–33.

    Article  PubMed  Google Scholar 

  111. Peña-García P, Vega-Estrada A, Barraquer RI, et al. Intracorneal ring segment in keratoconus: a model to predict visual changes induced by the surgery. Invest Ophthalmol Vis Sci. 2012;53:8447–57.

    Article  PubMed  Google Scholar 

  112. Kwitko S, Severo NS. Ferrara intracorneal ring segments for keratoconus. J Cataract Refract Surg. 2004;30:812–20.

    Article  PubMed  Google Scholar 

  113. Piñero DP, Alio JL, El Kady B, et al. Refractive and aberrometric outcomes of intracorneal ring segments for keratoconus: mechanical versus femtosecond-assisted procedures. Ophthalmology. 2009;116:1675–87.

    Article  PubMed  Google Scholar 

  114. Sutton G, Hodge C, McGhee CNJ. Rapid visual recovery after penetrating keratoplasty for keratoconus. Clin Exp Ophthalmol. 2008;36:725–30.

    Article  PubMed  Google Scholar 

  115. Hassan Z, Szalai E, Módis L, et al. Assessment of corneal topography indices after collagen crosslinking for keratoconus. Eur J Ophthalmol. 2013;23(5):635–40.

    Article  PubMed  Google Scholar 

  116. Jouve L, Borderie V, Temstet C, et al. Corneal collagen crosslinking in keratoconus. J Fr Ophtalmol. 2015;38(5):445–62.

    Article  CAS  PubMed  Google Scholar 

  117. Li G, Fan ZJ, Peng XJ, et al. Corneal collagen cross-linking in the treatment of progressive keratoconus-preliminary results. Zhonghua Yan Ke Za Zhi. 2013;49(10):896–901.

    PubMed  Google Scholar 

  118. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.

    Article  CAS  PubMed  Google Scholar 

  119. Caporossi A, Baiocchi S, Mazzotta C, Traversi C, Caporossi T. Parasurgical therapy for keratoconus by riboflavin-ultraviolet type A rays induced cross-linking of corneal collagen; preliminary refractive results in an Italian study. J Cataract Refract Surg. 2006;32:837–45.

    Article  PubMed  Google Scholar 

  120. Hafezi F, Kanellopoulos J, Wiltfang R, Seiler T. Corneal collagen crosslinking with riboflavin and ultraviolet A to treat induced keratectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2007;33:2035–40.

    Article  PubMed  Google Scholar 

  121. Mazzotta C, Baiocchi S, Denaro R, Tosi GM, Caporossi T. Corneal collagen cross-linking to stop corneal ectasia exacerbated by radial keratotomy. Cornea. 2011;30:225–8.

    Article  PubMed  Google Scholar 

  122. Fuentes-Paez G, Castanera F, Gomez de Salazar-Martinez R, Salas JF, Izquierdo E, Pinalla B. Corneal cross-linking in patients with radial keratotomy: short-term follow-up. Cornea. 2012;31:232–5.

    Article  PubMed  Google Scholar 

  123. Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg. 2008;34(5):796–801.

    Article  PubMed  Google Scholar 

  124. Wittig-Silva C, Whiting M, Lamoureux E, Lindsay RG, Sullivan LJ, Snibson GR. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg. 2008;24:S720–5.

    PubMed  Google Scholar 

  125. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T. Long-term results of riboflavin ultraviolet A corneal collagen cross-linking for keratoconus in Italy: the Siena Eye Cross Study. Am J Ophthalmol. 2010;149:585–93.

    Article  CAS  PubMed  Google Scholar 

  126. Rossi S, Orrico A, Santamaria C, et al. Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking. Clin Ophthalmol. 2015;9:503–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Filippello M, Stagni E, O’Brart D. Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg. 2012;38(2):283–91.

    Article  PubMed  Google Scholar 

  128. Nawaz S, Gupta S, Gogia V, et al. Trans-epithelial versus conventional corneal collagen crosslinking: a randomized trial in keratoconus. Oman J Ophthalmol. 2015;8(1):9–13.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yuksel E, Novruzlu S, Ozmen MC et al. A study comparing standard and transepithelial collagen cross-linking riboflavin solutions: epithelial findings and pain scores. J Ocul Pharmacol Ther. 2015;31(5):296–302.

    Google Scholar 

  130. Pollhammer M, Curseifen C. Bacterial keratitis early after corneal crosslinking with riboflavin and ultraviolet-A. Cataract Refract Surg. 2009;35(3):588–9.

    Article  Google Scholar 

  131. Angunawela RI, Arnalich-Montiel F, Allan BD. Peripheral sterile corneal infiltrates and melting after collagen crosslinking for keratoconus. Cataract Refract Surg. 2009;35(3):606–7.

    Article  Google Scholar 

  132. Kymionis GD, Portaliou DM, Bouzoukis DI, et al. Herpetic keratitis with iritis after corneal crosslinking with riboflavin and ultraviolet A for keratoconus. J Cataract Refract Surg. 2007;33(11):1982–4.

    Article  PubMed  Google Scholar 

  133. Kymionis GD, Portaliou DM, Pallikaris IG. Additional complications of corneal crosslinking. J Cataract Refract Surg. 2010;36(1):185.

    Article  PubMed  Google Scholar 

  134. Kymionis GD, Portaliou DM. Corneal collagen crosslinking and herpetic keratitis. J Cataract Refract Surg. 2013;39(8):1281.

    Article  PubMed  Google Scholar 

  135. Vinciguerra P, Randleman JB, Romano V, et al. Transepithelial iontophoresis corneal collagen cross-linking for progressive keratoconus: initial clinical outcomes. J Refract Surg. 2014;30(11):746–53.

    Article  PubMed  Google Scholar 

  136. Torricelli AA, Ford MR, Singh V, et al. BAC-EDTA transepithelial riboflavin-UVA crosslinking has greater biomechanical stiffening effect than standard epithelium-off in rabbit corneas. Exp Eye Res. 2014;125:114–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Majumdar S, Hippalgaonkar K, Repka MA. Effect of chitosan, benzalkonium chloride and ethylenediaminetetraacetic acid on permeation of acyclovir across isolated rabbit cornea. Int J Pharm. 2008;348(1–2):175–8.

    Article  CAS  PubMed  Google Scholar 

  138. Rathore MS, Majumdar DK. Effect of formulation factors on in vitro transcorneal permeation of gatifloxacin from aqueous drops. AAPS Pharm Sci Tech. 2006;7(3):57.

    Article  Google Scholar 

  139. Fife DJ, Moore WM. The Reduction and Quenching of Photoexcited Flavins by EDTA. Photochemistry and Photobiology. 1979;(29):43–7.

    Google Scholar 

  140. McCall AS, Kraft S, Edelhauser HF, et al. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest Ophthalmol Vis Sci. 2010;51(1):129–38.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mazzotta C, Traversi C, Paradiso AL, et al. Pulsed light accelerated crosslinking versus continuous light accelerated crosslinking: one-year results. J Ophthalmol. 2014;604731.

    Google Scholar 

  142. Caporossi A, Mazzotta C, Paradiso AL. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg. 2013;39(8):1157–63.

    Article  PubMed  Google Scholar 

  143. Soeters N, Wisse RP, Godefrooij DA, Imhof SM, Tahzib NG. Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: a randomized controlled trial. Am J Ophthalmol. 2015;159(5):821–8.

    Article  PubMed  Google Scholar 

  144. De Bernardo M, Capasso L, Tortori A, et al. Trans epithelial corneal collagen crosslinking for progressive keratoconus: 6 months follow up. Cont Lens Anterior Eye. 2014;37(6):438–41.

    Article  PubMed  Google Scholar 

  145. Lombardo M, Serrao S, Rosati M, et al. Biomechanical changes in the human cornea after transepithelial corneal crosslinking using iontophoresis. J Cataract Refract Surg. 2014;40(10):1706–15.

    Article  PubMed  Google Scholar 

  146. Kocak I, Aydin A, Kaya F, et al. Comparison of transepithelial corneal collagen crosslinking with epithelium-off crosslinking in progressive keratoconus. J Fr Ophtalmol. 2014;37(5):371–6.

    Google Scholar 

  147. Baiocchi S, Mazzotta C, Cerretani D, et al. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg. 2009;35(5):893–9.

    Article  PubMed  Google Scholar 

  148. Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009;35(5):540–6.

    Article  PubMed  Google Scholar 

  149. Scarcelli G, Kling S, Quijano E, Pineda R, Marcos S, Yun SH. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci. 2013;54:1418–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Roberts CJ, Dupps Jr WJ. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40(6):991–8.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Seven I, Sinha Roy A, Dupps Jr WJ. Patterned corneal collagen crosslinking for astigmatism: computational modeling study. J Cataract Refract Surg. 2014;40(6):943–53.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Sinha Roy A, Rocha KM, Randleman JB, et al. Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus. Exp Eye Res. 2013;113:92–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kanellopoulos AJ, Asimellis G. Hyperopic correction: clinical validation with epithelium-on and epithelium-off protocols, using variable fluence and topographically customized collagen corneal crosslinking. Clin Ophthalmol. 2014;8:2425–33.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103.

    Article  CAS  PubMed  Google Scholar 

  155. Wollensak G, Spoerl E, Seiler T. Stress–strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29:1780–5.

    Article  PubMed  Google Scholar 

  156. Spoerl E, Seiler T. Techniques for stiffening the cornea. J Refract Surg. 1999;15:711–3.

    CAS  PubMed  Google Scholar 

  157. Spoerl E, Wollensak G, Dittert DD, Seiler T. Thermomechanical behavior of collagen-cross-linked porcine cornea. Ophthalmologica. 2004;218:136–40.

    Article  CAS  PubMed  Google Scholar 

  158. Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29:35–40.

    Article  CAS  PubMed  Google Scholar 

  159. Wollensak G, Spoerl E, Reber F, Seiler T. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye (Lond). 2004;18:718–22.

    Article  CAS  Google Scholar 

  160. Wollensak G, Spoerl E, Wilsch M, Seiler T. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg. 2003;29:1786–90.

    Article  PubMed  Google Scholar 

  161. Wollensak G, Spoerl E, Wilsch M, Seiler T. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea. 2004;23:43–9.

    Article  PubMed  Google Scholar 

  162. Gatzioufas Z, Richoz O, Brugnoli E, Hafezi F. Safety profile of high-fluence corneal collagen cross-linking for progressive keratoconus: preliminary results from a prospective cohort study. J Refract Surg. 2013;29:846–8.

    Article  PubMed  Google Scholar 

  163. Wernli J, Schumacher S, Spoerl E, Mrochen M. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci. 2013;54:1176–80.

    Article  PubMed  Google Scholar 

  164. Schumacher S, Oeftiger L, Mrochen M. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci. 2011;52:9048–52.

    Article  PubMed  Google Scholar 

  165. Hammer A, Richoz O, Arba Mosquera S, Tabibian D, Hoogewoud F, Hafezi F. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci. 2014;55:2881–4.

    Article  PubMed  Google Scholar 

  166. Beshtawi IM, Akhtar R, Hillarby MC, et al. Biomechanical properties of human corneas following low- and high-intensity collagen cross-linking determined with scanning acoustic microscopy. Invest Ophthalmol Vis Sci. 2013;54:5273–80.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Touboul D, Efron N, Smadja D, Praud D, Malet F, Colin J. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. J Refract Surg. 2012;28:769–76.

    Article  PubMed  Google Scholar 

  168. Seiler T, Hafezi F. Corneal cross-linking-induced stromal demarcation line. Cornea. 2006;25:1057–9.

    Article  PubMed  Google Scholar 

  169. Doors M, Tahzib NG, Eggink FA, Berendschot TT, Webers CA, Nuijts RM. Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking. Am J Ophthalmol. 2009;148:844–51, e2.

    Article  PubMed  Google Scholar 

  170. Kymionis GD, Grentzelos MA, Plaka AD, et al. Evaluation of the corneal collagen cross-linking demarcation line profile using anterior segment optical coherence tomography. Cornea. 2013;32:907–10.

    Article  PubMed  Google Scholar 

  171. Kymionis GD, Grentzelos MA, Plaka AD, et al. Correlation of the corneal collagen cross-linking demarcation line using confocal microscopy and anterior segment optical coherence tomography in keratoconic patients. Am J Ophthalmol. 2014;157:110–5, e1.

    Article  PubMed  Google Scholar 

  172. Kymionis GD, Tsoulnaras KI, Grentzelos MA, et al. Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol. Am J Ophthalmol. 2014;158:671–5, e1.

    Article  PubMed  Google Scholar 

  173. Bouheraoua N, Jouve L, El Sanharawi M, et al. Optical coherence tomography and confocal microscopy following three different protocols of corneal collagen-crosslinking in keratoconus. Invest Ophthalmol Vis Sci. 2014;55:7601–9.

    Article  PubMed  Google Scholar 

  174. Vinciguerra P, Rechichi M, Rosetta P, et al. High fluence iontophoretic corneal collagen cross-linking: in vivo OCT imaging of riboflavin penetration. J Refract Surg. 2013;29:376–7.

    Article  PubMed  Google Scholar 

  175. Mita M, Waring GO, Tomita M. High-irradiance accelerated collagen crosslinking for the treatment of keratoconus: six-month results. J Cataract Refract Surg. 2014;40:1032–40.

    Article  PubMed  Google Scholar 

  176. Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40:1013–20.

    Article  PubMed  Google Scholar 

  177. Ozgurhan EB, Celik U, Bozkurt E, Demirok A. Evaluation of subbasal nerve morphology and corneal sensation after accelerated corneal collagen cross-linking treatment on keratoconus. Curr Eye Res. 2014;1–6.

    Google Scholar 

  178. Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Buzzonetti L, Petrocelli G. Transepithelial corneal cross-linking in pediatric patients: early results. J Refract Surg. 2012;28:763–7.

    Article  PubMed  Google Scholar 

  180. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T, Denaro R, Balestrazzi A. Riboflavin-UVA-induced corneal collagen cross-linking in pediatric patients. Cornea. 2012;31:227–31.

    Article  PubMed  Google Scholar 

  181. Mazzotta C, Traversi C, Caragiuli S, Rechichi M. Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT. Eye (Lond). 2014;28:1179–83.

    Article  CAS  Google Scholar 

  182. Ozgurhan EB, Kara N, Cankaya KI, Kurt T, Demirok A. Accelerated corneal cross-linking in pediatric patients with keratoconus: 24-month outcomes. J Refract Surg. 2014;30:843–9.

    Article  PubMed  Google Scholar 

  183. Chan E, Snibson GR. Current status of corneal collagen cross-linking for keratoconus: a review. Clin Exp Optom. 2013;96:155–64.

    Article  PubMed  Google Scholar 

  184. Kanellopoulos AJ. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results. J Refract Surg. 2009;25:1034–7.

    Article  PubMed  Google Scholar 

  185. Dupps Jr WJ. Special section on collagen crosslinking: new hope for more advanced ectatic disease? J Cataract Refract Surg. 2013;39:1131–2.

    Article  PubMed  Google Scholar 

  186. Wollensak G. Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol. 2006;17:356–60.

    Article  PubMed  Google Scholar 

  187. Spadea L. Corneal collagen cross-linking with riboflavin and UVA irradiation in pellucid marginal degeneration. J Refract Surg. 2010;26:375–7.

    Article  PubMed  Google Scholar 

  188. Labiris G, Giarmoukakis A, Sideroudi H, Gkika M, Fanariotis M, Kozobolis V. Impact of keratoconus, cross-linking and cross-linking combined with photorefractive keratectomy on self-reported quality of life. Cornea. 2012;31:734–9.

    Article  PubMed  Google Scholar 

  189. Kanellopoulos AJ. Post-LASIK ectasia. Ophthalmology. 2007;114:1230.

    Article  PubMed  Google Scholar 

  190. Kanellopoulos AJ, Pamel GJ. Review of current indications for combined very high fluence collagen cross-linking and laser in situ keratomileusis surgery. Indian J Ophthalmol. 2013;61:430–2.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Krueger RR, Ramos-Esteban JC, Kanellopoulos AJ. Staged intrastromal delivery of riboflavin with UVA cross-linking in advanced bullous keratopathy: laboratory investigation and first clinical case. J Refract Surg. 2008;24:S730–6.

    PubMed  Google Scholar 

  192. Kanellopoulos AJ, Asimellis G. Anterior-segment optical coherence tomography investigation of corneal deturgescence and epithelial remodeling after DSAEK. Cornea. 2014;33(4):340–8.

    Article  PubMed  Google Scholar 

  193. Kanellopoulos AJ, Asimellis G. Long-term safety and efficacy of high-fluence collagen crosslinking of the vehicle cornea in Boston keratoprosthesis type 1. Cornea. 2014;33(9):914–8.

    Article  PubMed  Google Scholar 

  194. Kanellopoulos AJ. Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol. 2012;6:97–101.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kanellopoulos AJ, Asimellis G. Correlation between central corneal thickness, anterior chamber depth, and corneal keratometry as measured by Oculyzer II and WaveLight OB820 in preoperative cataract surgery patients. J Refract Surg. 2012;28:895–900.

    Article  PubMed  Google Scholar 

  196. Kanellopoulos AJ, Asimellis G. Introduction of quantitative and qualitative cornea optical coherence tomography findings, induced by collagen cross-linking for keratoconus; a novel effect measurement benchmark. Clin Ophthalmol. 2013;7:329–35.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Markakis GA, Roberts CJ, Harris JW, Lembach RG. Comparison of topographic technologies in anterior surface mapping of keratoconus using two display algorithms and six corneal topography devices. Int J Kerat Ectatic Dis. 2012;1:153–7.

    Google Scholar 

  198. Ambrósio Jr R, Caiado AL, Guerra FP, et al. Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. J Refract Surg. 2011;27:753–8.

    Article  PubMed  Google Scholar 

  199. Legare ME, Iovieno A, Yeung SN, et al. Corneal collagen cross-linking using riboflavin and ultraviolet A for the treatment of mild to moderate keratoconus: 2-year follow-up. Can J Ophthalmol. 2013;48:63–8.

    Article  PubMed  Google Scholar 

  200. Vinciguerra P, Albe E, Trazza S, et al. Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology. 2009;116:369–78.

    Article  PubMed  Google Scholar 

  201. Kanellopoulos AJ, Asimellis G. Comparison of Placido disc and Scheimpflug image-derived topography-guided excimer laser surface normalization combined with higher fluence CXL: the Athens Protocol, in progressive keratoconus. Clin Ophthalmol. 2013;7:1385–96.

    Article  PubMed  Google Scholar 

  202. Mencucci R, Paladini I, Virgili G, Giacomelli G, Menchini U. Corneal thickness measurements using time-domain anterior segment OCT, ultrasound, and Scheimpflug tomographer pachymetry before and after corneal cross-linking for keratoconus. J Refract Surg. 2012;28:562–6.

    Article  PubMed  Google Scholar 

  203. O'Brart DP, Kwong TQ, Patel P, McDonald RJ, O'Brart NA. Long-term follow-up of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linking to halt the progression of keratoconus. Br J Ophthalmol. 2013;97:433–7.

    Article  PubMed  Google Scholar 

  204. Greenstein SA, Shah VP, Fry KL, Hersh PS. Corneal thickness changes after corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg. 2011;37:691–700.

    Article  PubMed  Google Scholar 

  205. Kanellopoulos AJ, Kahn J. Topography-guided hyperopic LASIK with and without high irradiance collagen cross-linking: initial comparative clinical findings in a contralateral eye study of 34 consecutive patients. J Refract Surg. 2012;28(11 Suppl):S837–40.

    Article  PubMed  Google Scholar 

  206. Solomon KD, Fernández de Castro LE, Sandoval HP, et al. LASIK world literature review: quality of life and patient satisfaction. Ophthalmology. 2009;116(4):691–701.

    Article  PubMed  Google Scholar 

  207. Shortt AJ, Allan BD, Evans JR. Laser-assisted in-situ keratomileusis (LASIK) versus photorefractive keratectomy (PRK) for myopia. Cochrane Database Syst Rev. 2013;1, CD005135.

    Google Scholar 

  208. Shortt AJ, Bunce C, Allan BD. Evidence for superior efficacy and safety of LASIK over photorefractive keratectomy for correction of myopia. Ophthalmology. 2006;113(11):1897–908.

    Article  PubMed  Google Scholar 

  209. Liu Z, Li Y, Cheng Z, et al. Seven-year follow-up of LASIK for moderate to severe myopia. J Refract Surg. 2008;24(9):935–40.

    PubMed  Google Scholar 

  210. Güell JL, Muller A. Laser in situ keratomileusis (LASIK) for myopia from −7 to −18 diopters. J Refract Surg. 1996;12(2):222–8.

    PubMed  Google Scholar 

  211. Oruçoglu F, Kingham JD, Kendüsim M, et al. Laser in situ keratomileusis application for myopia over minus 14 diopter with long-term follow-up. Int Ophthalmol. 2012;32(5):435–41.

    Article  PubMed  Google Scholar 

  212. Magallanes R, Shah S, Zadok D, et al. Stability after laser in situ keratomileusis in moderately and extremely myopic eyes. J Cataract Refract Surg. 2001;27(7):1007–12.

    Article  CAS  PubMed  Google Scholar 

  213. Chayet AS, Assil KK, Montes M, et al. Regression and its mechanisms after laser in situ keratomileusis in moderate and high myopia. Ophthalmology. 1998;105(7):1194–9.

    Article  CAS  PubMed  Google Scholar 

  214. Alió JL, Muftuoglu O, Ortiz D, et al. Ten-year follow-up of laser in situ keratomileusis for myopia of up to −10 diopters. Am J Ophthalmol. 2008;145(1):46–54.

    Article  PubMed  Google Scholar 

  215. Kanellopoulos AJ, Asimellis G. Refractive and keratometric stability in high myopic LASIK with high-frequency femtosecond and excimer lasers. J Refract Surg. 2013;29(12):832–7.

    Article  PubMed  Google Scholar 

  216. Binder PS. Analysis of ectasia after laser in situ keratomileusis: risk factors. J Cataract Refract Surg. 2007;33(9):1530–8.

    Article  PubMed  Google Scholar 

  217. Randleman JB. Post-laser in-situ keratomileusis ectasia: current understanding and future directions. Curr Opin Ophthalmol. 2006;17(4):406–12.

    Article  PubMed  Google Scholar 

  218. Kanellopoulos AJ. Long-term safety and efficacy follow-up of prophylactic higher fluence collagen cross-linking in high myopic laser-assisted in situ keratomileusis. Clin Ophthalmol. 2012;6:1125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Celik HU, Alagöz N, Yildirim Y, et al. Accelerated corneal crosslinking concurrent with laser in situ keratomileusis. J Cataract Refract Surg. 2012;38(8):1424–31.

    Article  PubMed  Google Scholar 

  220. Kanellopoulos AJ, Asimellis G. Combined laser in situ keratomileusis and prophylactic high-fluence corneal collagen crosslinking for high myopia: Two-year safety and efficacy. J Cataract Refract Surg. 2015;41(7):1426–33.

    Google Scholar 

  221. Mi S, Dooley EP, Albon J, et al. Adhesion of laser in situ keratomileusis-like flaps in the cornea: effects of crosslinking, stromal fibroblasts, and cytokine treatment. J Cataract Refract Surg. 2011;37(1):166–72.

    Article  PubMed  Google Scholar 

  222. A. John Kanellopoulos, George Asimellis, Joseph B. Ciolino, Borja Salvador-Culla, and James Chodosh. High-irradiance CXL combined with myopic LASIK: flap and residual stroma biomechanical properties studied ex-vivo. Br J Ophthalmol. 2015;99(6):870–4.

    Google Scholar 

  223. Hersh PS, Greenstein SA, Fry KL. Corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg. 2011;37(1):149–60.

    Article  PubMed  Google Scholar 

  224. Cennamo G, Intravaja A, Boccuzzi D, Marotta G, Cennamo G. Treatment of keratoconus by topography-guided customized photorefractive keratectomy: two-year follow-up study. J Refract Surg. 2008;24(2):145–9.

    PubMed  Google Scholar 

  225. Lin DT, Holland SR, Rocha KM, Krueger RR. Method for optimizing topography-guided ablation of highly aberrated eyes with the ALLEGRETTO WAVE excimer laser. J Refract Surg. 2008;24(4):S439–45.

    PubMed  Google Scholar 

  226. Kanellopoulos AJ. The management of cornea blindness from severe corneal scarring, with the Athens Protocol (transepithelial topography-guided PRK therapeutic remodeling, combined with same-day, collagen cross-linking). Clin Ophthalmol. 2012;6:87–90.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Sakla H, Altroudi W, Muñoz G, Albarrán-Diego C. Simultaneous topography-guided partial photorefractive keratectomy and corneal collagen crosslinking for keratoconus. J Cataract Refract Surg. 2014;40:1430–8.

    Article  PubMed  Google Scholar 

  228. Vinciguerra P, Albe E, Frueh BE, et al. Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. Am J Ophthalmol. 2012;154(3):520–6.

    Article  PubMed  Google Scholar 

  229. Koller T, Seiler T. Therapeutic cross-linking of the cornea using riboflavin/UVA. Klin Monbl Augenheilkd. 2007;224(9):700–6.

    Article  CAS  PubMed  Google Scholar 

  230. Kymionis GD, Grentzelos MA, Liakopoulos DA, Paraskevopoulos TA, Klados NE, Tsoulnaras KI, Kankariya VP, Pallikaris IG. Long-term follow-up of corneal collagen cross-linking for keratoconus – the Cretan study. Cornea. 2014;33(10):1071–9.

    Article  PubMed  Google Scholar 

  231. Sideroudi H, Labiris G, Soto-Beobide A, Voyiatzis G, Chrissanthopoulos A, Kozobolis V. The effect of collagen cross-linking procedure on the material of intracorneal ring segments. Curr Eye Res. 2015;40(6):592–7.

    Article  CAS  PubMed  Google Scholar 

  232. Seiler TG, Fischinger I, Senfft T, Schmidinger G, Seiler T. Intrastromal application of riboflavin for corneal crosslinking. Invest Ophthalmol Vis Sci. 2014;55(7):4261–5.

    Article  CAS  PubMed  Google Scholar 

  233. Al Fayez MF, Alfayez S, Alfayez Y. Transepithelial versus epithelium-off corneal collagen cross-linking for progressive keratoconus: a prospective randomized controlled trial. Cornea. 2015;34 Suppl 10:S53–6.

    Article  PubMed  Google Scholar 

  234. Sabti S, Tappeiner C, Frueh BE. Corneal cross-linking in a 4-year-old child with keratoconus and down syndrome. Cornea. 2015;34(9):1157–60.

    Article  PubMed  Google Scholar 

  235. Gaster RN, Caiado Canedo AL, Rabinowitz YS. Corneal collagen cross linking for keratoconus and post-LASIK ectasia. Int Ophthalmol Clin. 2013;53(1):79.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg. 1998;24(7):1007–9.

    Article  CAS  PubMed  Google Scholar 

  237. Vinciguerra P, Camesasca FI. Custom phototherapeutic keratectomy with intraoperative topography. J Refract Surg. 2004;20(5):S555–63.

    PubMed  Google Scholar 

  238. Alpins N, Stamatelatos G. Customized photoastigmatic refractive keratectomy using combined topographic and refractive data for myopia and astigmatism in eyes with forme fruste and mild keratoconus. J Cataract Refract Surg. 2007;33(4):591–602.

    Article  PubMed  Google Scholar 

  239. Khakshoor H, Razavi F, Eslampour A, Omdtabrizi A. Photorefractive keratectomy in mild to moderate keratoconus: outcomes in over 40-year-old patients. Indian J Ophthalmol. 2015;63(2):157–61.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Kapasi M, Dhaliwal A, Mintsioulis G, Jackson WB, Baig K. Long-term results of phototherapeutic keratectomy versus mechanical epithelial removal followed by corneal collagen cross-linking for keratoconus. Cornea. 2016;35(2):157–61.

    Article  PubMed  Google Scholar 

  241. Kymionis GD, Grentzelos MA, Kankariya VP, Liakopoulos DA, Karavitaki AE, Portaliou DM, Tsoulnaras KI, Pallikaris IG. Long-term results of combined transepithelial phototherapeutic keratectomy and corneal collagen crosslinking for keratoconus: Cretan protocol. J Cat Refract Surg. 2014;40(9):1439–45.

    Article  Google Scholar 

  242. Yilmaz OF, Marshall J, Hersh P. Initial results with Keraflex ® KXL for treating keratoconus. 5th International congress of corneal cross linking for keratoconus, Leipzig, 5th Dec 2010.

    Google Scholar 

  243. Cummings AB, Corkin RH. Keraflex® and cross-linking for the treatment of keratoconus. Poster at the Irish College of Ophthalmology conference, 14th May 2011.

    Google Scholar 

  244. Vega-Estrada A, Alió JL, Plaza Puche AB, Marshall J. Outcomes of a new microwave procedure followed by accelerated cross-linking for the treatment of keratoconus: a pilot study. J Refract Surg. 2012;28:787–93.

    Article  PubMed  Google Scholar 

  245. Cummings AB, McQuaid R, Mrochen M. Newer protocols and future in collagen cross-linking. Indian J Ophthalmol. 2013;61:425–7.

    Article  PubMed  PubMed Central  Google Scholar 

  246. McQuaid R, Cummings AB, Mrochen M. The theory and art of corneal cross-linking. Indian J Ophthalmol. 2013;61:416–9.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Keraflex® Clinical Trial Starts in the US. National Keratoconus Foundation Website, Available online: http://www.nkcf.org/keraflex-kxl/. Accessed 10 Jan 2016.

  248. Kato N, Toda I, Kawakita T, Sakai C, Tsubota K. Topography-guided conductive keratoplasty: treatment for advanced keratoconus. Am J Ophthalmol. 2010;150(4):481–9.

    Article  PubMed  Google Scholar 

  249. Kymionis GD, Kontadakis GA, Naoumidi TL, Kazakos DC, Giapitzakis I, Pallikaris IG. Conductive keratoplasty followed by collagen cross-linking with riboflavin-UV-A in patients with keratoconus. Cornea. 2010;29(2):239–43.

    Article  PubMed  Google Scholar 

  250. Cummings A. Factors influencing the stability of Keraflex treatments for keratoconus. Poster presented at AAO, Chicago, 2012.

    Google Scholar 

  251. Leccisotti A. Refractive lens exchange in keratoconus. J Cataract Refract Surg. 2006;32(5):742–6.

    Article  PubMed  Google Scholar 

  252. Hill W. Expected effects of surgically induced astigmatism on AcrySof Toric intraocular lens results. J Cataract Refract Surg. 2008;34(3):364–7. Comment in: J Cataract Refract Surg. 2008;34(9):1425–6.

    Article  PubMed  Google Scholar 

  253. Freitas GO, Carvalho MJ, Boteon JE. Refractive lens exchange using SN60T5 Acrysof toric intraocular lens in stage 2 keratoconus. Rev Bras Oftalmol. 2011;70(5):296–9.

    Article  Google Scholar 

  254. Thebpatiphat N, Hammersmith KM, Rapuano CJ, Ayres BD, Cohen EJ. Cataract surgery in keratoconus. Eye Contact Lens. 2007;33(5):244–6.

    Article  PubMed  Google Scholar 

  255. Bauer NJ, de Vries NE, Webers CA, Hendrikse F, Nuijts RM. Astigmatism management in cataract surgery with the AcrySof toric intraocular lens. J Cataract Refract Surg. 2008;34(9):1483–8.

    Article  PubMed  Google Scholar 

  256. Sanders DR, Shneider D, Martin R, et al. Toric implantable collamer lens for moderate to high myopic astigmatism. Ophthalmology. 2007;114:54–61.

    Article  PubMed  Google Scholar 

  257. Alfonso JF, Palacios A, Montés-Micó R. Myopic phakic STAAR collamer posterior chamber intraocular lenses for keratoconus. J Refract Surg. 2008;24:867–74.

    PubMed  Google Scholar 

  258. Kamiya K, Shimizu K, Igarashi A, et al. Comparison of collamertoric [corrected] contact lens implantation and wavefront-guided laser in situ keratomileusis for high myopic astigmatism. J Cataract Refract Surg. 2008;34:1687–93; erratum, 2011.

    Article  PubMed  Google Scholar 

  259. Sanders DR, Sanders ML. Comparison of the toric implantable collamer lens and custom ablation LASIK for myopic astigmatism. J Refract Surg. 2008;24:773–8.

    PubMed  Google Scholar 

  260. Alfonso JF, Fernández-Vega L, Fernandes P, et al. Collagen copolymer toric posterior chamber phakic intraocular lens for myopic astigmatism: one-year follow-up. J Cataract Refract Surg. 2010;36:568–76.

    Article  PubMed  Google Scholar 

  261. Kamiya K, Shimizu K, Ando W, et al. Phakic toric implantable collamer lens implantation for the correction of high myopic astigmatism in eyes with keratoconus. J Refract Surg. 2008;24:840–2.

    PubMed  Google Scholar 

  262. Alfonso JF, Baamonde B, Madrid-Costa D, et al. Toric phakic intraocular collamer posterior chamber lenses to correct high degrees of myopic astigmatism. J Cataract Refract Surg. 2010;36:577–86.

    Article  Google Scholar 

  263. Shaheen MS, El-Kateb M, El-Samadony MA, et al. Evaluation of a toric implantable collamer lens after corneal collagen crosslinking in treatment of early-stage keratoconus: 3-year follow up. Cornea. 2014;33:475–80.

    Article  Google Scholar 

  264. Gonvers M, Bornet C, Othenin-Girard P. Implantable contact lens for moderate to high myopia; relationship of vaulting to cataract formation. J Cataract Refract Surg. 2003;29:918–24.

    Article  PubMed  Google Scholar 

  265. Sanders DR, Vukich JA. Incidence of lens opacities and clinically significant cataracts with the implantable contact lens: comparison of two lens designs; the ICL in treatment of myopia (ITM) study group. J Refract Surg. 2002;18:673–82.

    PubMed  Google Scholar 

  266. Jiménez-Alfaro I, Benítez del Castillo JM, García-Feijoó J, et al. Safety of posterior chamber phakic intraocular lenses for the correction of high myopia; anterior segment changes after posterior chamber phakic intraocular lens implantation. Ophthalmology. 2001;108:90–9; discussion by SM MacRay, 99. Cornea _ Volume 33, Number 5, May 2014 Toric Implantable Collamer Lens.

    Article  PubMed  Google Scholar 

  267. Chung TY, Park SC, Lee MO, et al. Changes in iridocorneal angle structure and trabecular pigmentation with STAAR implantable collamer lens during 2 years. J Refract Surg. 2009;25:251–8.

    PubMed  Google Scholar 

  268. Chun YS, Park IK, Lee HI, et al. Iris and trabecular meshwork pigment changes after posterior chamber phakic intraocular lens implantation. J Cataract Refract Surg. 2006;32:1452–8.

    Article  PubMed  Google Scholar 

  269. Sanders DR. Anterior subcapsular opacities and cataracts 5 years after surgery in the visian implantable collamer lens FDA trial. J Refract Surg. 2008;24:566–70.

    PubMed  Google Scholar 

  270. Lovisolo CF, Reinstein DZ. Phakic intraocular lenses. Surv Ophthalmol. 2005;50:549–87.

    Article  PubMed  Google Scholar 

  271. Alfonso JF, Baamonde B, Fernández-Vega L, et al. Posterior chamber collagen copolymer phakic intraocular lenses to correct myopia: five-year follow up. J Cataract Refract Surg. 2011;37:873–80.

    Article  PubMed  Google Scholar 

  272. Ghanem RC, Santhiago MR, Berti T, Netto MV, Ghanem VC. Topographic, corneal wavefront, and refractive outcomes 2 years after collagen crosslinking for progressive keratoconus. Cornea. 2014;33(1):43–8.

    Article  PubMed  Google Scholar 

  273. Arora R, Jain P, Goyal JL, Gupta D. Comparative analysis of refractive and topographic changes in early and advanced keratoconic eyes undergoing corneal collagen crosslinking. Cornea. 2013;32(10):1359–64.

    Article  PubMed  Google Scholar 

  274. Touboul D, Trichet E, Binder PS, Praud D, Seguy C, Colin J. Comparison of front-surface corneal topography and Bowman membrane specular topography in keratoconus. J Cataract Refract Surg. 2012;38(6):1043–9.

    Article  PubMed  Google Scholar 

  275. Piñero DP, Alio JL, Klonowski P, Toffaha B. Vectorial astigmatic changes after corneal collagen crosslinking in keratoconic corneas previously treated with intracorneal ring segments: a preliminary study. Eur J Ophthalmol. 2012;22 Suppl 7:S69–80.

    Article  PubMed  Google Scholar 

  276. Coskunseven E, Jankov II MR, Hafezi F. Contralateral eye study of corneal collagen cross-linking with riboflavin and UVA irradiation in patients with keratoconus. J Refract Surg. 2009;25:371–6.

    Article  PubMed  Google Scholar 

  277. Roy AS, Dupps Jr WJ. Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking. Invest Ophthalmol Vis Sci. 2011;52:9174–87.

    Article  PubMed  Google Scholar 

  278. Tayapad JB, Viguilla AQ, Reyes JM. Collagen cross-linking and corneal infections. Curr Opin Ophthalmol. 2013;24(4):288–90.

    Article  PubMed  Google Scholar 

  279. Kanellopoulos AJ. Novel myopic refractive correction with transepithelial very high-fluence collagen cross-linking applied in a customized pattern: early clinical results of a feasibility study. Clin Ophthalmol. 2014;8:697–702.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Kanellopoulos AJ, Dupps WJ, Seven I, Asimellis G. Toric topographically customized transepithelial, pulsed, very high-fluence, higher energy and higher riboflavin concentration collagen cross-linking in keratoconus. Case Rep Ophthalmol. 2014;5(2):172–80.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Bottós KM, Schor P, Dreyfuss JL, et al. Effect of corneal epithelium on ultraviolet-A and riboflavin absorption. Arq Bras Oftalmol. 2011;74:348–51.

    Article  PubMed  Google Scholar 

  282. Leccisotti A, Islam T. Transepithelial corneal collagen cross-linking in keratoconus. J Refract Surg. 2010;26:942–8.

    Article  PubMed  Google Scholar 

  283. Stojanovic A, Zhou W, Utheim TP. Corneal collagen cross-linking with and without epithelial removal: a contralateral study with 0.5 % hypotonic riboflavin solution. Biomed Res Int. 2014;2014:619398.

    Google Scholar 

  284. Elsheikh A, Anderson K. Comparative study of corneal strip extensiometry and inflation tests. J R Soc Interface. 2005;2:177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Sánchez P, Moutsouris K, Pandolfi A. Biomechanical and optical behavior of human corneas before and after photorefractive keratectomy. J Cataract Refract Surg. 2014;40:905–17.

    Article  PubMed  Google Scholar 

  286. Kanellopoulos AJ, Kontos MA, Chen S, Asimellis G. Corneal collagen cross-linking (CXL) combined with simulation of femtosecond laser assisted refractive lens extraction: an ex-vivo biomechanical effect evaluation. Cornea. 2015;34(5):550–6.

    Article  PubMed  Google Scholar 

  287. Holden B, Davis S, Jong M, Resnikoff S. The evolution of uncorrected error as a major public health issue. J Proc Roy Soc NSW. 2013;147(147 & 153):101–6.

    Google Scholar 

  288. Mutti DO, Mitchell GL, Moeschberger ML, Jones LA, Zadnik K. Parental myopia, near work, school achievement, and children’s refractive error. Invest Ophthalmol Vis Sci. 2002;45:3633–40.

    Google Scholar 

  289. Saw S-M, Katz J, Schein OD, Chew S-J, Chan T-K. Epidemiology of myopia. Epidemiol Rev. 1996;18:175–87.

    Article  CAS  PubMed  Google Scholar 

  290. Dolgin E. The myopia boom. Nature. 2015;519:276–8.

    Article  CAS  PubMed  Google Scholar 

  291. Mo Y, Wang M-F, Zhou L-L. Risk factor analysis of 167 patients with high myopia. Int J Ophthalmol. 2010;1:80–2 (high myopia).

    Google Scholar 

  292. Brien Holden Vision Institute. The risk of myopia. 2015. www.brienholdenvision.org.

  293. Cooper J, Schulman E, Jarnal N. Current status on the development and treatment of myopia. American Optometric Association (defocus). Optometry. 2012;83(5):179–99.

    Google Scholar 

  294. Chen S-J, Lu P, Zhang W-F, Lu J-H. High myopia as a risk factor in primary open angle glaucoma. Int J Ophthalmol. 2012;5(6):750–3.

    PubMed  PubMed Central  Google Scholar 

  295. Ruiz-Moreno J, Quintas LL. Retinal detachment and high myopia. Cataract and Refractive Surgery Today (Europe). April 2008.

    Google Scholar 

  296. Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci. 2011;52(5):2170–4.

    Article  PubMed  Google Scholar 

  297. Euclid Systems Corporation. Orthokeratology lens approval in U.S., Korea, China, Taiwan, Russia, Japan; CE Mark for Europe, Distribution in Australia.

    Google Scholar 

  298. Sun Y, Xu F, Zhang T, Liu M, Wang D, Chen Y, Liu Q. Orthokeratology to control myopia progression: a meta-analysis. PLoS One. 2015;10(4):e0124535.

    Google Scholar 

  299. Nieto-Bona A, Gonzalez-Mesa A, Nieto-Bona MP, Villa-Collar C, Lorente-Velazquez A. Long-term changes in corneal morphology induced by overnight orthokeratology. Curr Eye Res. 2011;36(10):895–904 (changes in epithelium).

    Article  PubMed  Google Scholar 

  300. Alharbi A, Swarbrick HA. The effects of overnight orthokeratology lens wear on corneal thickness. Invest Ophthalmol Vis Sci. 2003;44(6):2518–23.

    Article  PubMed  Google Scholar 

  301. Swarbrick HA. Orthokeratology review and update. Clin Exp Optom. 2006;89:124–43.

    Article  PubMed  Google Scholar 

  302. Orgel JPRO, Eid A, Antipova O, Bella J, Scott JE. Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding. PLoS One. 2009;4:1–10.

    Article  CAS  Google Scholar 

  303. Scott JE, Dyne KM, Thomlison AM, Ritchie M, Bateman J, Valli M. Human cells unable to express decoron produced disorganised extracellular matrix lacking ‘shape modules’ (interfibrillar proteoglycan bridges). Exp Cell Res. 1998;243:59–66.

    Article  CAS  PubMed  Google Scholar 

  304. Rada JA, Cornuet PK, Hassell JR. Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins. Exp Eye Res. 1993;56:635–48.

    Article  CAS  PubMed  Google Scholar 

  305. Galacorin ® (Catalent Pharma Solutions). https://trademarks.justia.com/858/36/galacorin-85836485.html.

  306. DeVore DP, DeWoolfson B. Decorin corneal stabilization. 2009. ARVO Abstract 1758/A387.

    Google Scholar 

  307. Roberts CJ, Metxler KM, Mahmoud AM, Liu J. 2014. Biomechanical Changes in ex-vivo human and porcine corneas in response to treatment with human decorin core protein. 10th International congress of corneal crosslinking, 5 and 6 Dec 2014.

    Google Scholar 

  308. DeWoolfson B, DeVore DP. US 2011/0086802, April 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur B. Cummings FCS(SA), MMed(Ophth), FRCSEd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cummings, A.B. et al. (2017). Combined Corneal Cross Linking and Other Procedures: Indications and Application Models. In: Sinjab, M., Cummings, A. (eds) Corneal Collagen Cross Linking. Springer, Cham. https://doi.org/10.1007/978-3-319-39775-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39775-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39773-3

  • Online ISBN: 978-3-319-39775-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics