Skip to main content

Corneal Cross-linking in Children

  • Chapter
  • First Online:
Corneal Collagen Cross Linking

Abstract

This chapter brings together all the current evidence in children for a now well-established procedure for keratoconus (KC) in children. With the aid of research from Caporossi and his group, most recent results of which will be presented in this chapter, the authors will present the similarities and differences found in KC in children.

The definitions and assumptions around KC in children will be challenged, while the reasons why KC has a variable presentation age and progression will also be discussed based on current theories and scientific findings. Environmental and hereditary factors will also be discussed and potential avoidable risk factors such as eye rubbing.

Suggestions will be made of why KC may present earlier than expected, with the use of available epidemiological evidence. There is a strong body of evidence linking eye rubbing and vernal disease to development of KC, and so for this reason, it is entirely reasonable to take precautions to practice behavioral avoidance and minimize its effects. The authors will also postulate the idea of KC as a potentially inflammatory disorder, and the crucial period of transition of the cornea during the adolescent phase and how this may be the key to why some children develop a relentless and rapidly progressive ectasia.

The focus on corneal cross-linking (CXL) in recent years has become a topic of interest in terms of long-term effects and whether the methods and materials for this form of treatment used are optimal. While animal models, evidence from use of CXL for other materials, and laboratory-based tests on human tissue have been the basis for tentative and initially very controlled adult use of CXL, its use still lacks the strong evidence-based support it probably deserves. Its effectiveness may not be called to question by some as shown by the large amount of data from studies, but as the Cochrane review on CXL concludes, very little level one evidence and limited level two evidence exists. Furthermore, the paucity of randomized control trials in CXL in children means that a lot of the information is dependent on evidence from the already limited adult data and case series publications. This extrapolation and interpretation of data means that there may not be any gold standard protocol to follow for treatment of KC in children.

With an increasing amount of evidence suggesting that CXL is an effective and minimally invasive method of reducing progression in KC, can the same be said for its use in children? Is epithelium-off (Epi-Off) CXL the current best available option for CXL? It would be difficult for a corneal specialist to ignore the potential avoidance of corneal grafting in the future if there is an opportunity to halt the progression of KC now. With children, this evident positive effect of CXL could really affect quality of life, allowing for visual maturation and social and academic development. But apprehension lies not only in the lack of focused evidence in this young age group, but also because of the unknown long-term effects. But so far, CXL has proved to be a safe procedure in the short term, with the use of adequate precautions. These precautions may involve use of well-calibrated UV light, checking pachymetry prior to application, documenting endothelial health prior, use of miotics and adequate conditions in which to do the procedure, postoperative antibiotic and anti-inflammatory drops, and adequate follow-up. The next step may be to identify those at risk of complications, which include vernal keratoconjunctivitis (VKC). Precautionary protection includes monitoring corneal thickness and the use of limbal protectors in those at risk or already found to have limbal cell stress or deficiency. These and other factors will be discussed in detail in the chapter.

The next question is whether the best method of CXL is being used – could there be a better way of CXL without the need for UV light or epithelial debridement? The general consensus from the current evidence, and supported by the research results from Caporossi et al. who have had their most recent data incorporated into the chapter, is that Epi-Off CXL, as a variation of the Dresden protocol, remains the current gold standard. Its effects seem to be applicable to children with the same criteria for treatment as applied to adults. It is worth adding that children may have a need for further treatment, and therefore may need closer monitoring. The current evidence seems to hold for 3 years, and this level of follow-up seems to be similar in other studies reviewed. Safety seems to be well documented in the studies, with very few reporting frequent or regular complications with standard Epi-Off CXL.

As a conclusion the authors have developed a pathway for KC management in children and a CXL pathway for children. The authors, with the involvement of results from the Siena CXL Pediatrics trial, have concluded that Epi-Off CXL remains the gold standard in CXL for children. While it would be preferable to have a treatment free from need for epithelial debridement and potential discomfort, Epi-Off CXL is the most effective method of reducing the risk of progression of KC. However, the authors would also stress that while this is a safe procedure, it is not free from side effects and complications, but on a far lower level than keratoplasty. The authors would also emphasize the need for close follow-up, as the risk of progression despite CXL still remains and further CXL may be warranted. The response to CXL may not be as predictable as with adults, but there is the potential for topographic and functional improvement, which was seen in 80 % of cases in the Siena CXL Pediatrics trial. These findings seem to correlate with the other longer-term studies (around 3 years) but epithelium-on (Epi-On) CXL studies do not so far seem to have the desired results to match those of Epi-Off.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishida T. Cornea. In: Krachmer JH, Mannis MJ, Holland EJ, editors. Cornea: fundamentals, diagnosis and management. 2nd ed. Philadelphia: Elsevier Mosby; 2005. p. 3–26.

    Google Scholar 

  2. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42(4):297–319.

    Article  CAS  PubMed  Google Scholar 

  3. Galvis V, Sherwin T, Tello A, Merayo J, Barrera R, Acera A. Keratoconus: an inflammatory disorder? Eye (Lond). 2015;29(7):843–59.

    Article  CAS  Google Scholar 

  4. Taneri S, Jarade E, Kanellopoulos JA, Muller D. Current concepts and future developments of corneal cross-linking. J Ophthalmol. 2015;302983:1–2.

    Article  Google Scholar 

  5. Barbara A, editor. Textbook on keratoconus: new insights. New Delhi: Jaypee-Highlights Medical Publishers; 2012.

    Google Scholar 

  6. Zadnik K, Barr JT, Gordon MO, Edrington TB. Biomicroscopic signs and disease severity in keratoconus. Cornea. 1996;15(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  7. Gordon-Shaag A, Millodot M, Shneor E. The epidemiology and etiology of keratoconus. Epidemiology. 2012;70:1.

    Google Scholar 

  8. Gokhale NS. Epidemiology of keratoconus. Indian J Ophthalmol. 2013;61(8):382–3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Downie LE. The necessity for ocular assessment in atopic children: bilateral corneal hydrops in an 8 year old. Pediatrics. 2014;134(2):e596–601.

    Article  PubMed  Google Scholar 

  10. OBrart DP. Corneal collagen cross-linking: a review. J Optom. 2014;7(3):113–24.

    Article  Google Scholar 

  11. Sorkin N, Varssano D. Corneal collagen crosslinking: a systematic review. Ophthalmologica. 2014;232(1):10–27.

    Article  CAS  PubMed  Google Scholar 

  12. Gomes JAP, Tan D, Rapuano CJ, Belin MW, Ambrosio R, Guell JL, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34(4):359–69.

    Article  PubMed  Google Scholar 

  13. Sinjab MM. Keratoconus : when, why and why not. A step by step systematic approach. 1st ed. New Delhi: JP Medical Ltd.; 2012.

    Book  Google Scholar 

  14. Sykakis E, Karim R, Evans JR, Bunce C, Amissah-Arthur KN, Patwary S, et al. Corneal collagen cross-linking for treating keratoconus. Cochrane Database Syst Rev. 2015;3, CD010621.

    Google Scholar 

  15. Millodot M, Shneor E, Albou S, Atlani E, Gordon-Shaag A. Prevalence and associated factors of keratoconus in Jerusalem: a cross-sectional study. Ophthalmic Epidemiol. 2011;18(2):91–7.

    Article  PubMed  Google Scholar 

  16. Knox Cartwright NE, Tyrer JR, Marshall J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci. 2011;52(7):4324–9.

    Article  PubMed  Google Scholar 

  17. Daxer A, Misof K, Grabner B, Ettl A, Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci. 1998;39(3):644–8.

    CAS  PubMed  Google Scholar 

  18. Ortiz D, Piñero D, Shabayek MH, Arnalich-Montiel F, Alió JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007;33(8):1371–5.

    Article  PubMed  Google Scholar 

  19. Kuo IC, Broman A, Pirouzmanesh A, Melia M. Is there an association between diabetes and keratoconus? Ophthalmology. 2006;113(2):184–90.

    Article  PubMed  Google Scholar 

  20. Wollensak G, Spoerl E, Seiler T. Stress–strain measurements of human and porcine corneas after riboflavin-ultraviolet-a-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780–5.

    Article  PubMed  Google Scholar 

  21. Haney WP, Falls HF. The occurrence of congenital keratoconus posticus. Am J Ophthalmol. 1961;52:53–7.

    Article  CAS  PubMed  Google Scholar 

  22. Noyes HD. Traumatic keratitis caused by forceps delivery of an infant. Trans Am Ophthalmol Soc. 1895;7:454.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sabti S, Tappeiner C, Frueh BE. Corneal cross-linking in a 4-year-old child with keratoconus and down syndrome. Cornea. 2015;34(9):1157–60.

    Article  PubMed  Google Scholar 

  24. Gunes A, Tok L, Tok O, Seyrek L. The youngest patient with bilateral keratoconus secondary to chronic persistent eye rubbing. Semin Ophthalmol. 2015;30(5–6):454–6.

    Article  PubMed  Google Scholar 

  25. Ioannidis AS, Speedwell L, Nischal KK. Unilateral keratoconus in a child with chronic and persistent eye rubbing. Am J Ophthalmol. 2005;139(2):356–7.

    Article  PubMed  Google Scholar 

  26. Wagner H, Barr JT, Zadnik K, Group CLEOKS. Collaborative longitudinal evaluation of keratoconus (CLEK) study: methods and findings to date. Cont Lens Anterior Eye. 2007;30(4):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barbara R, Pikkel J, Garzozi H, Barbara A. Collagen cross-linking and keratoconus in pediatric patients. Int J Keratoconus Ectatic Corn Dis. 2012;1(1):57–60.

    Google Scholar 

  28. McMonnies CW. Abnormal rubbing and keratectasia. Eye Contact Lens. 2007;33(6 Pt 1):265–71.

    Article  PubMed  Google Scholar 

  29. Mcmonnies CW. The evidentiary significance of case reports: eye rubbing and keratoconus. Optom Vis Sci. 2008;85(4):262–9.

    Article  PubMed  Google Scholar 

  30. Kankariya VP, Kymionis GD, Diakonis VF, Yoo SH. Management of pediatric keratoconus – evolving role of corneal collagen cross-linking: an update. Indian J Ophthalmol. 2013;61(8):435–40.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zotta PG, Moschou KA, Diakonis VF, Kymionis GD, Almaliotis DD, Karamitsos AP, Karampatakis VE. Corneal collagen cross-linking for progressive keratoconus in pediatric patients: a feasibility study. J Refract Surg. 2012;28(11):793–9.

    Article  PubMed  Google Scholar 

  32. Chatzis N, Hafezi F. Progression of keratoconus and efficacy of pediatric corneal collagen cross-linking in children and adolescents. J Refract Surg. 2012;28(11):753–8.

    Article  PubMed  Google Scholar 

  33. Vinciguerra P, Albé E, Frueh BE, Trazza S, Epstein D. Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. Am J Ophthalmol. 2012;154(3):520–6.

    Article  PubMed  Google Scholar 

  34. Arora R, Gupta D, Goyal JL, Jain P. Results of corneal collagen cross-linking in pediatric patients. J Refract Surg. 2012;28(11):759–62.

    Article  PubMed  Google Scholar 

  35. Bakshi E, Barkana Y, Goldich Y, Avni I, Zadok D. Corneal cross-linking for progressive keratoconus in children: our experience. Int J Keratoconus Ectatic Corn Dis. 2012;1:53–6.

    Article  Google Scholar 

  36. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T, Denaro R, Balestrazzi A. Riboflavin-UVA-induced corneal collagen cross-linking in pediatric patients. Cornea. 2012;31(3):227–31.

    Article  PubMed  Google Scholar 

  37. Samaras KE, Lake DB. Corneal collagen cross linking (CXL): a review. Int Ophthalmol Clin. 2010;50(3):89–100.

    Article  PubMed  Google Scholar 

  38. Léoni-Mesplié S, Mortemousque B, Mesplié N, Touboul D, Praud D, Malet F, Colin J. Epidemiological aspects of keratoconus in children. J Fr Ophtalmol. 2012;35(10):776–85.

    Article  PubMed  Google Scholar 

  39. Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  40. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.

    Article  CAS  PubMed  Google Scholar 

  41. Hettlich HJ, Lucke K, Kreiner CF. Light-induced endocapsular polymerization of injectable lens refilling materials. Ger J Ophthalmol. 1992;1(5):346–9.

    CAS  PubMed  Google Scholar 

  42. Panda A, Gupta AK, Sharma N, Nindrakrishna S, Vajpayee R. Anatomical and functional graft survival, 10 years after epikeratoplasty in keratoconus. Indian J Ophthalmol. 2013;61(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hafezi F, Randleman JB. Corneal collagen cross linking. Thorofare: Slack; 2013.

    Google Scholar 

  44. Soeters N, van der Valk R, Tahzib NG. Corneal cross-linking for treatment of progressive keratoconus in various age groups. J Refract Surg. 2014;30(7):454–60.

    Article  PubMed  Google Scholar 

  45. Hayes S, OBrart DP, Lamdin LS. An investigation into the importance of complete epithelial debridement prior to riboflavin/ultraviolet A (UVA) corneal collagen cross-linkage therapy. J Cataract Refract Surg. 2008;34:557–61.

    Article  Google Scholar 

  46. Buzzonetti L, Petrocelli G. Transepithelial corneal cross-linking in pediatric patients: early results. J Refract Surg. 2012;28(11):763–7.

    Article  PubMed  Google Scholar 

  47. Pinelli R, Leccisotti A. Keratoconus surgery and cross-linking. New Delhi: Jaypee Bros. Medical Publishers; 2009.

    Book  Google Scholar 

  48. Taneri S, Oehler S, Lytle G, Dick HB. Evaluation of epithelial integrity with various transepithelial corneal cross-linking protocols for treatment of keratoconus. J Ophthalmol. 2014;2014:614380.

    PubMed  PubMed Central  Google Scholar 

  49. Magli A, Forte R, Tortori A, Capasso L, Marsico G, Piozzi E. Epithelium-off corneal collagen cross-linking versus transepithelial cross-linking for pediatric keratoconus. Cornea. 2013;32(5):597–601.

    Article  PubMed  Google Scholar 

  50. Rechichi M, Daya S, Scorcia V, Meduri A, Scorcia G. Epithelial-disruption collagen crosslinking for keratoconus: one-year results. J Cataract Refract Surg. 2013;39(8):1171–8.

    Article  PubMed  Google Scholar 

  51. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study. Am J Ophthalmol. 2010;149(4):585–93.

    Article  CAS  PubMed  Google Scholar 

  52. Kymionis GD, Tsoulnaras KI, Grentzelos MA, Plaka AD, Mikropoulos DG, Liakopoulos DA, et al. Corneal stroma demarcation line after standard and high-intensity collagen crosslinking determined with anterior segment optical coherence tomography. J Cataract Refract Surg. 2014;40(5):736–40.

    Article  PubMed  Google Scholar 

  53. Grentzelos MA, Kymionis GD. Corneal stromal demarcation line after high-intensity (accelerated) collagen crosslinking. J Cataract Refract Surg. 2015;41(1):252.

    Article  PubMed  Google Scholar 

  54. Barbara R, Abdelaziz L, Barua A, Garzozi H, Barbara A. Collagen corneal cross-linking and the epithelium. Int J Keratoconus Ectatic Corn Dis. 2012;1:179–84.

    Article  Google Scholar 

  55. Kanellopoulos AJ. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results. J Refract Surg. 2009;25(11):1034–7.

    Article  PubMed  Google Scholar 

  56. Shalchi Z, Wang X, Nanavaty MA. Safety and efficacy of epithelium removal and transepithelial corneal collagen crosslinking for keratoconus. Eye (Lond). 2015;29(1):15–29.

    Article  CAS  Google Scholar 

  57. Fasciani R, Agresta A, Caristia A, Mosca L, Scupola A, Caporossi A. Methicillin-resistant Staphylococcus aureus ocular infection after corneal cross-linking for keratoconus: potential association with atopic dermatitis. Case Rep Ophthalmol Med. 2015;2015:613273.

    PubMed  PubMed Central  Google Scholar 

  58. Lam FC, Georgoudis P, Geourgoudis P, Nanavaty MA, Khan S, Lake D. Sterile keratitis after combined riboflavin-uva corneal collagen cross-linking for keratoconus. Eye (Lond). 2014;28(11):1297–303.

    Article  CAS  Google Scholar 

  59. Pérez-Santonja JJ, Artola A, Javaloy J, Alió JL, Abad JL. Microbial keratitis after corneal collagen crosslinking. J Cataract Refract Surg. 2009;35(6):1138–40.

    Article  PubMed  Google Scholar 

  60. Pollhammer M, Cursiefen C. Bacterial keratitis early after corneal crosslinking with riboflavin and ultraviolet-a. J Cataract Refract Surg. 2009;35(3):588–9.

    Article  PubMed  Google Scholar 

  61. Raiskup F, Theuring A, Pillunat LE, Spoerl E. Corneal collagen crosslinking with riboflavin and ultraviolet-a light in progressive keratoconus: ten-year results. J Cataract Refract Surg. 2015;41(1):41–6.

    PubMed  Google Scholar 

  62. Rana M, Lau A, Aralikatti A, Shah S. Severe microbial keratitis and associated perforation after corneal crosslinking for keratoconus. Cont Lens Anterior Eye. 2015;38(2):134–7.

    Article  CAS  PubMed  Google Scholar 

  63. Shetty R, Kaweri L, Pahuja N, Nagaraja H, Wadia K, Jayadev C, et al. Current review and a simplified “five-point management algorithm” for keratoconus. Indian J Ophthalmol. 2015;63(1):46–53.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sharma N, Maharana P, Singh G, Titiyal JS. Pseudomonas keratitis after collagen crosslinking for keratoconus: case report and review of literature. J Cataract Refract Surg. 2010;36(3):517–20.

    Article  PubMed  Google Scholar 

  65. Zamora KV, Males JJ. Polymicrobial keratitis after a collagen cross-linking procedure with postoperative use of a contact lens: a case report. Cornea. 2009;28(4):474–6.

    Article  PubMed  Google Scholar 

  66. Richoz O, Tabibian D, Hammer A, Majo F, Nicolas M, Hafezi F. The effect of standard and high-fluence corneal cross-linking (CXL) on cornea and limbus. Invest Ophthalmol Vis Sci. 2014;55(9):5783–7.

    Article  PubMed  Google Scholar 

  67. Wollensak G, Mazzotta C, Kalinski T, Sel S. Limbal and conjunctival epithelium after corneal cross-linking using riboflavin and UVA. Cornea. 2011;30(12):1448–54.

    Article  PubMed  Google Scholar 

  68. Randleman JB, Khandelwal SS, Hafezi F. Corneal cross-linking. Surv Ophthalmol. 2015;60(6):509–23.

    Article  PubMed  Google Scholar 

  69. Sangwan VS, Jain V, Vemuganti GK, Murthy SI. Vernal keratoconjunctivitis with limbal stem cell deficiency. Cornea. 2011;30(5):491–6.

    Article  PubMed  Google Scholar 

  70. Malhotra C, Shetty R, Kumar RS, Veluri H, Nagaraj H, Shetty KB. In vivo imaging of riboflavin penetration during collagen cross-linking with hand-held spectral domain optical coherence tomography. J Refract Surg. 2012;28(11):776–80.

    Article  PubMed  Google Scholar 

  71. Pahuja N, Shetty R, Jayadev C, Nuijts R, Hedge B, Arora V. Intraoperative optical coherence tomography using the RESCAN 700: preliminary results in collagen crosslinking. Biomed Res Int. 2015;2015:572698.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kanellopoulos AJ. Comparison of sequential vs same-day simultaneous collagen cross-linking and topography-guided PRK for treatment of keratoconus. J Refract Surg. 2009;25:S812–8.

    Article  PubMed  Google Scholar 

  73. Kymionis GD, Portaliou DM, Kounis GA, Limnopoulou AN, Kontadakis GA, Grentzelos MA. Simultaneous topography-guided photorefractive keratectomy followed by corneal collagen cross-linking for keratoconus. Am J Ophthalmol. 2011;152:748–55.

    Article  PubMed  Google Scholar 

  74. Tuwairqi WS, Sinjab MM. Safety and efficacy of simultaneous corneal collagen cross-linking with topography-guided PRK in managing low-grade keratoconus: 1-year follow-up. J Refract Surg. 2012;28:341–5.

    Article  PubMed  Google Scholar 

  75. Kymionis GD, Kontadakis GA, Kounis GA, Portaliou DM, Karavitaki AE, Magarakis M, Yoo S, Pallikaris IG. Simultaneous topography-guided PRK followed by corneal collagen cross-linking for keratoconus. J Refract Surg. 2009;25:S807–11.

    Article  PubMed  Google Scholar 

  76. Cherfan D, Verter EE, Melki S, Gisel TE, Doyle FJ, Scarcelli G, et al. Collagen cross-linking using rose bengal and green light to increase corneal stiffness. Invest Ophthalmol Vis Sci. 2013;54(5):3426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Paik DC, Wen Q, Braunstein RE, Airiani S, Trokel SL. Initial studies using aliphatic beta-nitro alcohols for therapeutic corneal cross-linking. Invest Ophthalmol Vis Sci. 2009;50(3):1098–105.

    Article  PubMed  Google Scholar 

  78. Rocha KM, Ramos-Esteban JC, Qian Y, Herekar S, Krueger RR. Comparative study of riboflavin-uva cross-linking and “flash-linking” using surface wave elastometry. J Refract Surg. 2008;24(7):S748–51.

    PubMed  Google Scholar 

  79. Spadea L, Mencucci R. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas. Clin Ophthalmol. 2012;6:1785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shetty R, Nagaraja H, Jayadev C, Pahuja NK, Kurian Kummelil M, Nuijts RMMA. Accelerated corneal collagen cross-linking in pediatric patients: two-year follow-up results. Biomed Res Int. 2014;2014:894095.

    PubMed  PubMed Central  Google Scholar 

  81. Ozgurhan EB, Kara N, Cankaya KI, Kurt T, Demirok A. Accelerated corneal cross-linking in pediatric patients with keratoconus: 24-month outcomes. J Refract Surg. 2014;30(12):843–9.

    Article  PubMed  Google Scholar 

  82. Buzzonetti L, Petrocelli G, Valente P, Iarossi G, Ardia R, Petroni S. Iontophoretic transepithelial corneal cross-linking to halt keratoconus in pediatric cases: 15-Month follow-up. Cornea. 2015;34(5):512–5.

    Article  PubMed  Google Scholar 

  83. Temstet C, Sandali O, Bouheraoua N, Hamiche T, Galan A, El Sanharawi M, et al. Corneal epithelial thickness mapping using fourier-domain optical coherence tomography for detection of form fruste keratoconus. J Cataract Refract Surg. 2015;41(4):812–20.

    Article  PubMed  Google Scholar 

  84. Antoun J, Slim E, El Hashem R, Chelala E, Jabbour E, Cherfan G, Jarade E. Rate of corneal collagen crosslinking redo in private practice: risk factors and safety. J Ophthalmol. 2015; 2015:690961.

    Google Scholar 

  85. Kaya V, Utine CA, Yılmaz ÖF. Intraoperative corneal thickness measurements during corneal collagen cross-linking with hypoosmolar riboflavin solution in thin corneas. Cornea. 2012;31:486–90.

    Article  PubMed  Google Scholar 

  86. Wollensak G, Aurich H, Wirbelauer C, Sel S. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg. 2010;36:114–20.

    Article  PubMed  Google Scholar 

  87. Reeves SW, Stinnett S, Adelman RA, et al. Risk factors for progression to penetrating keratoplasty in patients with keratoconus. Am J Ophthalmol. 2005;140:607–11.

    Article  PubMed  Google Scholar 

  88. Wollensak G. Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol. 2006;17:356–60.

    Article  PubMed  Google Scholar 

  89. Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009;35:540–6.

    Article  PubMed  Google Scholar 

  90. Spoerl E, Wollwnsak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29:35–40.

    Article  CAS  PubMed  Google Scholar 

  91. Wollensak G, Wilsch M, Spoerl E, et al. Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea. 2004;23:503–7.

    Article  PubMed  Google Scholar 

  92. Witting- Silva C, Whiting M, Lamoreux E, et al. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg. 2008;24:720–5.

    Google Scholar 

  93. Raiskup-Wolf F, Hoyer A, Spoerl E, et al. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg. 2008;34:796–801.

    Article  PubMed  Google Scholar 

  94. Mazzotta C, Balestrazzi A, Traversi C, et al. Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg retinal tomography II in vivo confocal microscopy in humans. Cornea. 2007;26:390–7.

    Article  PubMed  Google Scholar 

  95. Mazzotta C, Traversi C, Baiocchi S, et al. Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol. 2008;146:527–33.

    Article  CAS  PubMed  Google Scholar 

  96. Wollensak G, Redl B. Gel electrophoretic analysis of corneal collagen after photodynamic cross-linking treatment. Cornea. 2008;27:353–6.

    Article  PubMed  Google Scholar 

  97. Mazzotta C, Caporossi T, Denaro R, et al. Morphological and functional correlations in riboflavin UV A corneal collagen cross-linking for keratoconus. Acta Ophthalmol. 2012;90:259–65.

    Article  PubMed  Google Scholar 

  98. Caporossi A, Mazzotta C, Baiocchi S, et al. Transepithelial corneal collagen crosslinking for keratoconus: qualitative investigation by in vivo HRT II confocal analysis. Eur J Ophthalmol. 2012;22 Suppl 7:S81–8.

    Article  PubMed  Google Scholar 

  99. Caporossi A, Mazzotta C, Baiocchi S, et al. Age-related long-term functional results after riboflavin UV A corneal cross-linking. J Ophthalmol. 2011.

    Google Scholar 

  100. Cannon DJ, Davison PF. Aging and crosslinking in mammalian collagen. Exp Aging Res. 1977;3:87–105.

    Article  CAS  PubMed  Google Scholar 

  101. Cannon DJ, Foster CS. Collagen crosslinking in keratoconus. Invest Ophthalmol Vis Sci. 1978;17:63–5.

    CAS  PubMed  Google Scholar 

  102. Caporossi A, Mazzotta C, Paradiso AL, et al. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg. 2013;39:1157–63.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Cosimo Mazzotta and Dr. Stefano Baiocchi (Department of Ophthalmology, University of Siena, Italy) for their help in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samer Hamada MD,MSc,DO(Hons),FRCSEd,FRCOphth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hamada, S. et al. (2017). Corneal Cross-linking in Children. In: Sinjab, M., Cummings, A. (eds) Corneal Collagen Cross Linking. Springer, Cham. https://doi.org/10.1007/978-3-319-39775-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39775-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39773-3

  • Online ISBN: 978-3-319-39775-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics