Skip to main content

The Future of Corneal Cross-linking

  • Chapter
  • First Online:
Corneal Collagen Cross Linking

Abstract

As corneal cross-linking (CXL) gains momentum worldwide, new advances and uses of CXL continue to emerge. In general, many of these developments are directed toward making the procedure more efficient, safe, and comfortable for the patient. A number of groups are evaluating the safety and efficacy of accelerated CXL treatments, which are accomplished by higher UV fluences or the use of deuterated water, for instance. A variety of transepithelial delivery systems, which enable the diffusion of riboflavin past an intact epithelium, have been described that could potentially avoid the morbidities associated with epithelial debridement. These systems include the use of penetration enhancers, microneedles, intrastromal channels, ultrasound, iontophoresis, and vacuum. Contact lens-assisted CXL has been developed to aid in the safe treatment of thinner corneas. At the same time, some groups have sought to demonstrate how disease states other than keratoconus (KC) and corneal ectasia may benefit from the technology. These diseases include the treatment of infectious keratitis (Photo-activated Chromophore for Keratitis – Corneal Cross-linking (PACK-CXL)) and corneal edema. Finally, significant investment has been made toward the correction of refractive error using CXL, as either an adjunct to laser-assisted in situ keratomileusis (LASIK) or photorefractive keratectomy (PRK) (e.g., LASIK extra or LASIK-CXL), or as a means to directly alter the curvature of the cornea (Photorefractive Intrastromal Cross-linking (PiXL)) without the need for incisions or laser-based ablation of the stroma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schumacher S, Oeftiger L, Mrochen M. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci. 2011;52(12):9048–52.

    Article  PubMed  Google Scholar 

  2. John A. Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol. 2012;6:97–101.

    Google Scholar 

  3. Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wernli J, Schumacher S, Spoerl E, Mrochen M. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci. 2013;54(2):1176–80.

    Article  PubMed  Google Scholar 

  5. Mrochen M. Current status of accelerated corneal cross-linking. Indian J Ophthalmol. 2013;61(8):428–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. McCall AS, Kraft S, Edelhauser HF, Kidder GW, Lundquist RR, Bradshaw HE, et al. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest Ophthalmol Vis Sci. 2010;51(1):129–38.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wollensak G, Aurich H, Wirbelauer C, Sel S. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg. 2010;36(1):114–20.

    Article  PubMed  Google Scholar 

  8. Jacob S, Kumar DA, Agarwal A, Basu S, Sinha P, Agarwal A. Contact lens-assisted collagen cross-linking (CACXL): a new technique for cross-linking thin corneas. J Refract Surg. 2014;30(6):366–72.

    Article  PubMed  Google Scholar 

  9. Lamy R, Chan E, Zhang H, Salgaonkar VA, Good SD, Porco TC, et al. Ultrasound-enhanced penetration of topical riboflavin into the corneal stroma. Invest Ophthalmol Vis Sci. 2013;54(8):5908–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg. 2009;35(5):893–9.

    Article  PubMed  Google Scholar 

  11. Zhang Y, Sukthankar P, Tomich JM, Conrad GW. Effect of the synthetic NC-1059 peptide on diffusion of riboflavin across an intact corneal epithelium. Invest Ophthalmol Vis Sci. 2012;53(6):2620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stojanovic A, Chen X, Jin N, Zhang T, Stojanovic F, Raeder S, et al. Safety and efficacy of epithelium-on corneal collagen cross-linking using a multifactorial approach to achieve proper stromal riboflavin saturation. J Ophthalmol. 2012;2012.

    Google Scholar 

  13. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T, Paradiso AL. Transepithelial corneal collagen crosslinking for keratoconus: qualitative investigation by in vivo HRT II confocal analysis. Eur J Ophthalmol. 2012;22 Suppl 7:S81–8.

    Article  PubMed  Google Scholar 

  14. Gore D, Shortt A, Allan B. New clinical pathways for keratoconus. Eye. 2012;27(3):329–39.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Seiler TG, Fischinger I, Senfft T, Schmidinger G, Seiler T. Intrastromal application of riboflavin for corneal crosslinking. Invest Ophthalmol Vis Sci. 2014;55(7):4261–5.

    Article  CAS  PubMed  Google Scholar 

  16. Kanellopoulos AJ. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results. J Refract Surg. 2009;25(11):1034–7.

    Article  PubMed  Google Scholar 

  17. Cassagne M, Laurent C, Rodrigues M, Galinier A, Spoerl E, Galiacy SD, et al. Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci. 2016;57(2):594–603.

    Article  CAS  PubMed  Google Scholar 

  18. Bikbova G, Bikbov M. Transepithelial corneal collagen cross‐linking by iontophoresis of riboflavin. Acta Ophthalmol. 2014;92(1):e30–4.

    Article  CAS  PubMed  Google Scholar 

  19. Mastropasqua L, Nubile M, Calienno R, Mattei PA, Pedrotti E, Salgari N, et al. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol. 2014;157(3):623–30. e1.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, et al. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007;48(9):4038–43.

    Article  PubMed  Google Scholar 

  21. Patel SR, Edelhauser HF, Prausnitz MR. Targeted drug delivery to the eye enabled by microneedles. In: Drug product development for the back of the eye. Springer; 2011. p. 331–60.

    Google Scholar 

  22. Kim Y, Park J, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hafezi F. Significant visual increase following infectious keratitis after collagen cross-linking. J Refract Surg. 2012;28(8):587–8.

    Article  PubMed  Google Scholar 

  24. Pot SA, Gallhöfer NS, Matheis FL, Voelter‐Ratson K, Hafezi F, Spiess BM. Corneal collagen cross‐linking as treatment for infectious and noninfectious corneal melting in cats and dogs: results of a prospective, nonrandomized, controlled trial. Vet Ophthalmol. 2013:1–11.

    Google Scholar 

  25. Said DG, Elalfy MS, Gatzioufas Z, El-Zakzouk ES, Hassan MA, Saif MY, et al. Collagen cross-linking with photoactivated riboflavin (PACK-CXL) for the treatment of advanced infectious keratitis with corneal melting. Ophthalmology. 2014.

    Google Scholar 

  26. Spiess BM, Pot SA, Florin M, Hafezi F. Corneal collagen cross‐linking (CXL) for the treatment of melting keratitis in cats and dogs: a pilot study. Vet Ophthalmol. 2014;17(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  27. Makdoumi K, Mortensen J, Crafoord S. Infectious keratitis treated with corneal crosslinking. Cornea. 2010;29(12):1353–8.

    Article  PubMed  Google Scholar 

  28. Ehlers N, Hjortdal J, Nielsen K, Sondergaard A. Riboflavin-UVA treatment in the management of edema and nonhealing ulcers of the cornea. J Refract Surg. 2009;25(9):S803–6.

    Article  PubMed  Google Scholar 

  29. Wollensak G, Aurich H, Wirbelauer C, Pham DT. Potential use of riboflavin/UVA cross-linking in bullous keratopathy. Ophthalmic Res. 2009;41(2):114–7.

    Article  CAS  PubMed  Google Scholar 

  30. Hafezi F, Kanellopoulos J, Wiltfang R, Seiler T. Corneal collagen crosslinking with riboflavin and ultraviolet A to treat induced keratectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2007;33(12):2035–40.

    Article  PubMed  Google Scholar 

  31. Kanellopoulos AJ, Kahn J. Topography-guided hyperopic LASIK with and without high irradiance collagen cross-linking: initial comparative clinical findings in a contralateral eye study of 34 consecutive patients. J Refract Surg. 2012;28 Suppl 11:S837–40.

    Article  PubMed  Google Scholar 

  32. Kanellopoulos AJ. Laboratory evaluation of selective in situ refractive cornea collagen shrinkage with continuous wave infrared laser combined with transepithelial collagen cross-linking: a novel refractive procedure. Clin Ophthalmol. 2012;6:645–52.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nguyen MK, Chuck RS. Corneal collagen cross-linking in the stabilization of PRK, LASIK, thermal keratoplasty, and orthokeratology. Curr Opin Ophthalmol. 2013;24(4):291–5.

    Article  PubMed  Google Scholar 

  34. Kanellopoulos AJ, Pamel GJ. Review of current indications for combined very high fluence collagen cross-linking and laser in situ keratomileusis surgery. Indian J Ophthalmol. 2013;61(8):430–2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Richoz O, Mavrakanas N, Pajic B, Hafezi F. Corneal collagen cross-linking for ectasia after LASIK and photorefractive keratectomy: long-term results. Ophthalmology. 2013;120(7):1354–9.

    Article  PubMed  Google Scholar 

  36. Vega-Estrada A, Alio JL, Plaza Puche AB, Marshall J. Outcomes of a new microwave procedure followed by accelerated cross-linking for the treatment of keratoconus: a pilot study. J Refract Surg. 2012;28(11):787–93.

    Article  PubMed  Google Scholar 

  37. Cummings AB, McQuaid R, Mrochen M. Newer protocols and future in collagen cross-linking. Indian J Ophthalmol. 2013;61(8):425–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wollensak G, Spoerl E, Wilsch M, Seiler T. Endothelial cell damage after riboflavin–ultraviolet-A treatment in the rabbit. J Cataract Refract Surg. 2003;29(9):1786–90.

    Article  PubMed  Google Scholar 

  39. Wollensak G, Spoerl E, Wilsch M, Seiler T. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea. 2004;23(1):43–9.

    Article  PubMed  Google Scholar 

  40. Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009;35(4):621–4.

    Article  PubMed  Google Scholar 

  41. Cherfan D, Verter EE, Melki S, Gisel TE, Doyle Jr FJ, Scarcelli G, et al. Collagen cross-linking using rose bengal and green light to increase corneal stiffness. Invest Ophthalmol Vis Sci. 2013;54(5):3426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu C, Ni T, Verter EE, Redmond RW, Kochevar IE, Yao M. Photochemical tissue bonding: a potential strategy for treating limbal stem cell deficiency. Lasers Surg Med. 2011;43(5):433–42.

    Article  PubMed  Google Scholar 

  43. Tsao S, Yao M, Tsao H, Henry F, Zhao Y, Kochevar J, et al. Light‐activated tissue bonding for excisional wound closure: a split‐lesion clinical trial. Br J Dermatol. 2012;166(3):555–63.

    Article  CAS  PubMed  Google Scholar 

  44. Verter EE, Gisel TE, Yang P, Johnson AJ, Redmond RW, Kochevar IE. Light-initiated bonding of amniotic membrane to cornea. Invest Ophthalmol Vis Sci. 2011;52(13):9470–7.

    Article  CAS  PubMed  Google Scholar 

  45. O’Neill AC, Winograd JM, Zeballos JL, Johnson TS, Randolph MA, Bujold KE, et al. Microvascular anastomosis using a photochemical tissue bonding technique. Lasers Surg Med. 2007;39(9):716–22.

    Article  PubMed  Google Scholar 

  46. Bolton JR, Cotton CA. The ultraviolet disinfection handbook. Denver: American Water Works Association; 2011.

    Google Scholar 

  47. Roelandts R. A new light on Niels Finsen, a century after his Nobel Prize. Photodermatol Photoimmunol Photomed. 2005;21(3):115–7.

    Article  PubMed  Google Scholar 

  48. Qureshi Z, Yassin MH. Role of ultraviolet (UV) disinfection in infection control and environmental cleaning. Infect Disord Drug Targets. 2013;13(3):191–5.

    Article  CAS  PubMed  Google Scholar 

  49. Riley RL, Nardell EA. Clearing the air. The theory and application of ultraviolet air disinfection. Am Rev Respir Dis. 1989;139(5):1286–94.

    Article  CAS  PubMed  Google Scholar 

  50. Goodrich RP. The use of riboflavin for the inactivation of pathogens in blood products. Vox Sang. 2000;78 Suppl 2:211–5.

    CAS  PubMed  Google Scholar 

  51. American Academy of Pediatrics Subcommittee on H. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114(1):297–316.

    Article  Google Scholar 

  52. Larrea L, Calabuig M, Roldan V, et al. The influence of riboflavin photochemistry on plasma coagulation factors. Transfus Apher Sci. 2009;41(3):199–204.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Reddy HL, Dayan AD, Cavagnaro J, Gad S, Li J, Goodrich RP. Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation. Transfus Med Rev. 2008;22(2):133–53.

    Article  PubMed  Google Scholar 

  54. Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA-riboflavin cross-linking of the cornea. Cornea. 2007;26(4):385–9.

    Article  PubMed  Google Scholar 

  55. Hafezi F, Randleman JB. PACK-CXL: defining CXL for infectious keratitis. J Refract Surg. 2014;30(7):438–9.

    Article  PubMed  Google Scholar 

  56. Neu HC. The crisis in antibiotic resistance. Science. 1992;257(5073):1064–73.

    Article  CAS  PubMed  Google Scholar 

  57. Richoz O, Tabibian D, Hammer A, Majo F, Nicolas M, Hafezi F. The effect of standard and high-fluence corneal cross-linking (CXL) on cornea and limbus. Invest Ophthalmol Vis Sci. 2014;55(9):5783–7.

    Article  PubMed  Google Scholar 

  58. Vimalin J, Gupta N, Jambulingam M, Padmanabhan P, Madhavan HN. The effect of riboflavin-UV-A treatment on corneal limbal epithelial cells – a study on human cadaver eyes. Cornea. 2012;31(9):1052–9.

    Article  PubMed  Google Scholar 

  59. Richoz O, Gatzioufas Z, Francois P, Schrenzel J, Hafezi F. Impact of fluorescein on the antimicrobial efficacy of photoactivated riboflavin in corneal collagen cross-linking. J Refract Surg. 2013;29(12):842–5.

    Article  PubMed  Google Scholar 

  60. Kowalski W. Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection. Heidelberg/New York: Springer; 2010.

    Google Scholar 

  61. Schrier A, Greebel G, Attia H, Trokel S, Smith EF. In vitro antimicrobial efficacy of riboflavin and ultraviolet light on Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa. J Refract Surg. 2009;25(9):S799–802.

    Article  PubMed  Google Scholar 

  62. Goodrich RP, Edrich RA, Li J, Seghatchian J. The Mirasol PRT system for pathogen reduction of platelets and plasma: an overview of current status and future trends. Transfus Apher Sci. 2006;35(1):5–17.

    Article  PubMed  Google Scholar 

  63. Kumar V, Lockerbie O, Keil SD, et al. Riboflavin and UV-light based pathogen reduction: extent and consequence of DNA damage at the molecular level. Photochem Photobiol. 2004;80:15–21.

    Article  CAS  PubMed  Google Scholar 

  64. Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11(2):65–74 (1542–0124 (Print)).

    Article  PubMed  Google Scholar 

  65. Wollensak G, Spoerl E, Reber F, Seiler T. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye. 2004;18(7):718–22.

    Article  CAS  PubMed  Google Scholar 

  66. Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  67. Shetty R, Nagaraja H, Jayadev C, Shivanna Y, Kugar T. Collagen crosslinking in the management of advanced non-resolving microbial keratitis. Br J Ophthalmol. 2014;98(8):1033–5.

    Article  PubMed  Google Scholar 

  68. Hurley JC. Antibiotic-induced release of endotoxin. A therapeutic paradox. Drug Saf. 1995;12(3):183–95.

    Article  CAS  PubMed  Google Scholar 

  69. Mazzotta C, Traversi C, Baiocchi S, et al. Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol. 2008;146(4):527–33.

    Article  CAS  PubMed  Google Scholar 

  70. Schnitzler E, Sporl E, Seiler T. Irradiation of cornea with ultraviolet light and riboflavin administration as a new treatment for erosive corneal processes, preliminary results in four patients. Klin Monbl Augenheilkd. 2000;217(3):190–3.

    Article  CAS  PubMed  Google Scholar 

  71. Iseli HP, Thiel MA, Hafezi F, Kampmeier J, Seiler T. Ultraviolet A/riboflavin corneal cross-linking for infectious keratitis associated with corneal melts. Cornea. 2008;27(5):590–4.

    Article  PubMed  Google Scholar 

  72. Ammermann C, Cursiefen C, Hermann M. Corneal cross-linking in microbial keratitis to prevent a chaud keratoplasty: a retrospective case series. Klin Monbl Augenheilkd. 2014;231(6):619–25.

    Article  CAS  PubMed  Google Scholar 

  73. Muller L, Thiel MA, Kipfer-Kauer AI, Kaufmann C. Corneal cross-linking as supplementary treatment option in melting keratitis: a case series. Klin Monbl Augenheilkd. 2012;229(4):411–5.

    Article  CAS  PubMed  Google Scholar 

  74. Panda A, Krishna SN, Kumar S. Photo-activated riboflavin therapy of refractory corneal ulcers. Cornea. 2012;31(10):1210–3.

    Article  PubMed  Google Scholar 

  75. Price MO, Tenkman LR, Schrier A, Fairchild KM, Trokel SL, Price Jr FW. Photoactivated riboflavin treatment of infectious keratitis using collagen cross-linking technology. J Refract Surg. 2012;28(10):706–13.

    Article  PubMed  Google Scholar 

  76. Makdoumi K, Mortensen J, Sorkhabi O, Malmvall BE, Crafoord S. UVA-riboflavin photochemical therapy of bacterial keratitis: a pilot study. Graefes Arch Clin Exp Ophthalmol. 2011.

    Google Scholar 

  77. Abbouda A, Estrada AV, Rodriguez AE, Alio JL. Anterior segment optical coherence tomography in evaluation of severe fungal keratitis infections treated by corneal crosslinking. Eur J Ophthalmol. 2014;24(3):320–4.

    Article  PubMed  Google Scholar 

  78. Vajpayee RB, Shafi SN, Maharana PK, Sharma N, Jhanji V. Evaluation of corneal collagen cross-linking as an additional therapy in mycotic keratitis. Clin Experiment Ophthalmol. 2015;43(2):103–7.

    Article  PubMed  Google Scholar 

  79. Li Z, Jhanji V, Tao X, Yu H, Chen W, Mu G. Riboflavin/ultravoilet light-mediated crosslinking for fungal keratitis. Br J Ophthalmol. 2013;97(5):669–71.

    Article  PubMed  Google Scholar 

  80. Saglk A, Ucakhan OO, Kanpolat A. Ultraviolet A and riboflavin therapy as an adjunct in corneal ulcer refractory to medical treatment. Eye Contact Lens. 2013;39(6):413–5.

    Article  PubMed  Google Scholar 

  81. Sorkhabi R, Sedgipoor M, Mahdavifard A. Collagen cross-linking for resistant corneal ulcer. Int Ophthalmol. 2013;33(1):61–6.

    Article  PubMed  Google Scholar 

  82. Arboleda A, Miller D, Cabot F, et al. Assessment of rose bengal versus riboflavin photodynamic therapy for inhibition of fungal keratitis isolates. Am J Ophthalmol. 2014;158(1):64–70.e62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Galperin G, Berra M, Tau J, Boscaro G, Zarate J, Berra A. Treatment of fungal keratitis from Fusarium infection by corneal cross-linking. Cornea. 2012;31(2):176–80.

    Article  PubMed  Google Scholar 

  84. Hellander-Edman A, Makdoumi K, Mortensen J, Ekesten B. Corneal cross-linking in 9 horses with ulcerative keratitis. BMC Vet Res. 2013;9:128.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Famose F. Evaluation of accelerated collagen cross-linking for the treatment of melting keratitis in ten cats. Vet Ophthalmol. 2013.

    Google Scholar 

  86. Famose F. Evaluation of accelerated collagen cross-linking for the treatment of melting keratitis in eight dogs. Vet Ophthalmol. 2014;17(5):358–67.

    Article  PubMed  Google Scholar 

  87. Kymionis GD, Portaliou DM, Bouzoukis DI, et al. Herpetic keratitis with iritis after corneal crosslinking with riboflavin and ultraviolet A for keratoconus. J Cataract Refract Surg. 2007;33(11):1982–4.

    Article  PubMed  Google Scholar 

  88. Richoz O, Kling S, Hoogewoud F, et al. Antibacterial efficacy of accelerated photoactivated chromophore for keratitis-corneal cross-linking (PACK-CXL). J Refract Surg. 2014;30(12):850–4.

    Article  PubMed  Google Scholar 

  89. Bertino Jr JS. Impact of antibiotic resistance in the management of ocular infections: the role of current and future antibiotics. Clin Ophthalmol. 2009;3:507–21.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Goldstein MH, Kowalski RP, Gordon YJ. Emerging fluoroquinolone resistance in bacterial keratitis: a 5-year review. Ophthalmology. 1999;106(7):1313–8.

    Article  CAS  PubMed  Google Scholar 

  91. Hofling-Lima AL, de Freitas D, Sampaio JL, Leao SC, Contarini P. In vitro activity of fluoroquinolones against Mycobacterium abscessus and Mycobacterium chelonae causing infectious keratitis after LASIK in Brazil. Cornea. 2005;24(6):730–4.

    Article  PubMed  Google Scholar 

  92. Jhanji V, Sharma N, Satpathy G, Titiyal J. Fourth-generation fluoroquinolone-resistant bacterial keratitis. J Cataract Refract Surg. 2007;33(8):1488–9.

    Article  PubMed  Google Scholar 

  93. Moshirfar M, Mirzaian G, Feiz V, Kang PC. Fourth-generation fluoroquinolone-resistant bacterial keratitis after refractive surgery. J Cataract Refract Surg. 2006;32(3):515–8.

    Article  PubMed  Google Scholar 

  94. Ophthalmologist T. PACK-CXL for all. 2014. https://theophthalmologist.com/issues/sinister-eclipse/pack-cxl-for-all/. Accessed 11 Feb 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward E. Manche MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Myung, D., Manche, E.E., Tabibian, D., Hafezi, F. (2017). The Future of Corneal Cross-linking. In: Sinjab, M., Cummings, A. (eds) Corneal Collagen Cross Linking. Springer, Cham. https://doi.org/10.1007/978-3-319-39775-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39775-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39773-3

  • Online ISBN: 978-3-319-39775-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics