Skip to main content

Pathology, Genetics, and Molecular Biology of Soft Tissue Tumors

  • Chapter
  • First Online:
Imaging of Soft Tissue Tumors

Abstract

Pathology provides tissue diagnosis aiming in better treatment choices and eventually quality life for the patient. Though, to achieve a correct diagnosis requires a multidisciplinary approach. Nowadays, molecular analysis opens a new way in diagnosing and classifying soft tissue tumors. The impact of molecular characterization of soft tissue tumors is still growing and is now an integrated part in the diagnosis of these neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7

    Article  PubMed  Google Scholar 

  2. Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (2013) WHO classification tumours of soft tissue and bone. IARC Press, Lyon

    Google Scholar 

  3. Coindre JM (2006) Grading of soft tissue sarcomas: review and update. Arch Pathol Lab Med 30(10):1448–1453

    Google Scholar 

  4. Coindre JM, Terrier P, Guillou L, Le Doussal V, Collin F, Ranchère D, Sastre X, Vilain MO, Bonichon F, N’Guyen Bui B (2001) Predictive value of grade for metastasis development in the main histologic types of adult soft tissue sarcomas: a study of 1240 patients from the French Federation of Cancer Centers Sarcoma Group. Cancer 91(10):1914–1926

    Article  CAS  PubMed  Google Scholar 

  5. Gaynor JJ, Tan CC, Casper ES, Collin CF, Friedrich C, Shiu M, Hajdu SI, Brennan MF (1992) Refinement of clinicopathologic staging for localized soft tissue sarcoma of the extremity: a study of 423 adults. J Clin Oncol 10(8):1317–1329

    Article  CAS  PubMed  Google Scholar 

  6. Heise HW, Myers MH, Russell WO, Suit HD, Enzinger FM, Edmonson JH, Cohen J, Martin RG, Miller WT, Hajdu SI (1986) Recurrence-free survival time for surgically treated soft tissue sarcoma patients: multivariate analysis of five prognostic factors. Cancer 57(1):172–177

    Article  CAS  PubMed  Google Scholar 

  7. Markhede G, Angervall L, Stener B (1982) A multivariate analysis of the prognosis after surgical treatment of malignant soft-tissue tumors. Cancer 49(8):1721–1733

    Article  CAS  PubMed  Google Scholar 

  8. Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF (1996) Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol 14(5):1679–1689

    Article  CAS  PubMed  Google Scholar 

  9. Saddegh MK, Lindholm J, Lundberg A, Nilsonne U, Kreicbergs A (1992) Staging of soft-tissue sarcomas: prognostic analysis of clinical and pathological features. J Bone Joint Surg Br 74(4):495–500

    CAS  PubMed  Google Scholar 

  10. Zagars GK, Ballo MT, Pisters PW, Pollock RE, Patel SR, Benjamin RS, Evans HL (2003) Prognostic factors for patients with localized soft-tissue sarcoma treated with conservation surgery and radiation therapy: an analysis of 1225 patients. Cancer 97(10):2530–2543

    Article  PubMed  Google Scholar 

  11. Aboulafia AJ (2008) Biopsy. In: Schwartz HS (ed) Orthopaedic knowledge update: musculoskeletal tumors 2. AAOS, Rosemont, pp 3–11

    Google Scholar 

  12. Kasraeian S, Allison DC, Ahlmann ER, Fedenko AN, Menendez LR (2010) A comparison of fine-needle aspiration, core biopsy, and surgical biopsy in the diagnosis of extremity soft tissue masses. Clin Orthop Relat Res 468(11):2992–3002

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rougraff BT, Aboulafia A, Biermann JS, Healey J (2009) Biopsy of soft tissue masses: evidence-based medicine for the Musculoskeletal Tumor Society. Clin Orthop Relat Res 467:2783–2791

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bell WC, Young ES, Billings PE, Grizzle WE (2008) The efficient operation of the surgical pathology gross room. Biotech Histochem 83(2):71–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Start RD, Layton CM, Cross SS, Smith JH (1992) Reassessment of the rate of fixative diffusion. J Clin Pathol 45(12):1120–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Werner M, Chott A, Fabiano A, Battifora H (2000) Effect of formalin tissue fixation and processing on immunohistochemistry. Am J Surg Pathol 24(7):1016–1019

    Article  CAS  PubMed  Google Scholar 

  17. Pelstring RJ, Allred DC, Esther RJ, Lampkin SR, Banks PM (1991) Differential antigen preservation during tissue autolysis. Hum Pathol 22:237–241

    Article  CAS  PubMed  Google Scholar 

  18. Cross SS, Start RD, Smith JHF (1990) Does delay in fixation affect the number of mitotic figures in processed tissue? J Clin Pathol 43:597–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Start RD, Flynn MS, Cross SS, Rogers K, Smith JHF (1991) Is the grading of breast carcinoma affected by delay in fixation? Virchows Arch (Pathol Anat) 419:475–477

    Article  CAS  Google Scholar 

  20. Nakazawa J, Rosen P, Lowe N, Lattes R (1968) Frozen section diagnosis experience in 3000 cases. Am J Clin Pathol 49:41–51

    Article  CAS  PubMed  Google Scholar 

  21. Bell WC, Sexton KC, Grizzle WE (2009) How to efficiently obtain human tissues to support specific biomedical research projects. Cancer Epidemiol Biomarkers Prev 18(6):1676–1679

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang J, Qi R, Quackenbush J, Dauway E, Lazaridis E, Yeatman T (2001) Effects of ischemia on gene expression. J Surg Res 99:222–227

    Article  CAS  PubMed  Google Scholar 

  23. Jewell SD, Srinivasan M, McCart LM, Williams N, Grizzle WH, LiVolsi V, MacLennan G, Sedmak DD (2002) Analysis of the molecular quality of human tissues: an experience from the Cooperative Human Tissue Network. Am J Clin Pathol 118:733–741

    Article  CAS  PubMed  Google Scholar 

  24. Spruessel A, Steimann G, Jung M, Lee SA, Carr T, Fentz AK, Spangenberg J, Zornig C, Juhl HH, David KA (2004) Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. Biotechniques 36:1030–1037

    CAS  PubMed  Google Scholar 

  25. Bauminger E, Cohen S, Nowik I, Ofer S, Yariv J (1983) Dynamics of heme iron in crystals of metmyoglobin and deoxymyoglobin. Proc Natl Acad Sci 80:736–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doster W, Cusack S, Petry W (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337:754–756

    Article  CAS  PubMed  Google Scholar 

  27. Hartmann H, Parak F, Steigemann W, Petsko G, Ponzi DR, Frauenfelder H (1982) Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc Natl Acad Sci 79:4967–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loncharich RJ, Brooks BR (1990) Temperature dependence of dynamics of hydrated myoglobin: comparison of force field calculations with neutron scattering data. J Mol Biol 215:439–455

    Article  CAS  PubMed  Google Scholar 

  29. More N, Daniel RM, Petach HH (1995) The effect of low temperatures on enzyme activity. Biochem J 305:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Crystalline ribonuclease a loses function below the dynamical transition at 220 K. Nature 357:423–424

    Article  CAS  PubMed  Google Scholar 

  31. Tilton RF Jr, Dewan JC, Petsko GA (1992) Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 31:2469–2481

    Article  CAS  PubMed  Google Scholar 

  32. Hubel A, Spindler R, Skubitz AP (2014) Storage of human biospecimens: selection of the optimal storage temperature. Biopreserv Biobank 12(3):165–175

    Article  PubMed  Google Scholar 

  33. Binh MB, Sastre-Garau X, Guillou L, de Pinieux G, Terrier P, Lagacé R, Aurias A, Hostein I, Coindre JM (2005) MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol 29(10):1340–1347

    Article  PubMed  Google Scholar 

  34. Bode-Lesniewska B, Zhao J, Speel EJ, Biraima AM, Turina M, Komminoth P, Heitz PU (2001) Gains of 12q13-14 and overexpression of mdm2 are frequent findings in intimal sarcomas of the pulmonary artery. Virchows Arch 438(1):57–65

    Article  CAS  PubMed  Google Scholar 

  35. Schaefer IM, Fletcher CD, Hornick JL (2016) Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod Pathol 29:4–13

    Article  CAS  PubMed  Google Scholar 

  36. Hornick JL (2014) Novel uses of immunohistochemistry in the diagnosis and classification of soft tissue tumors. Mod Pathol 27:47–63

    Article  Google Scholar 

  37. Bridge JA (2014) The role of cytogenetics and molecular diagnostics in the diagnosis of soft-tissue tumors. Mod Pathol 27(Suppl 1):S80–S97

    Article  PubMed  Google Scholar 

  38. Turc-Carel C, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C, Thiery JP, Olschwang S, Philip I, Berger MP et al (1988) Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet 32(2):229–238

    Article  CAS  PubMed  Google Scholar 

  39. Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT (1994) A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 6(2):146–151

    Article  CAS  PubMed  Google Scholar 

  40. Sankar S, Lessnick SL (2011) Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet 204(7):351–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Panagopoulos I, Höglund M, Mertens F, Mandahl N, Mitelman F, Aman P (1996) Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene 12(3):489–494

    CAS  PubMed  Google Scholar 

  42. Coindre JM, Pédeutour F, Aurias A (2010) Well-differentiated and dedifferentiated liposarcomas. Virchows Arch 456(2):167–179

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Macdonald WD, Erickson-Johnson M, Wang X, Jenkins RB, Oliveira AM (2007) Cytogenetic and molecular cytogenetic findings of intimal sarcoma. Cancer Genet Cytogenet 179(2):146–149

    Article  CAS  PubMed  Google Scholar 

  44. Rubin BP, Heinrich MC (2015) Genotyping and immunohistochemistry of gastrointestinal stromal tumors: an update. Semin Diagn Pathol 32(5):392–399

    Article  PubMed  Google Scholar 

  45. Antonescu CR (2006) The role of genetic testing in soft tissue sarcoma. Histopathology 48:13–21

    Article  CAS  PubMed  Google Scholar 

  46. Helman LJ, Meltzer P (2003) Mechanisms of sarcoma development. Nat Rev Cancer 3(9):685–694

    Article  CAS  PubMed  Google Scholar 

  47. Norberg SM, Movva S (2015) Role of genetic and molecular profiling in sarcomas. Curr Treat Options Oncol 16(5):24

    Article  PubMed  Google Scholar 

  48. Quesada J, Amato R (2012) The molecular biology of soft-tissue sarcomas and current trends in therapy. Sarcoma 2012:849456

    Article  PubMed  PubMed Central  Google Scholar 

  49. Davis RJ, D’Cruz CM, Lovell MA, Biegel JA, Barr FG (1994) Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 54:2869–2872

    CAS  PubMed  Google Scholar 

  50. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, Bridge JA, Crist WM, Triche TJ, Barr FG (2002) PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 20:2672–2679

    Article  CAS  PubMed  Google Scholar 

  51. Parham DM, Ellison DA (2006) Rhabdomyosarcomas in adults and children: an update. Arch Pathol Lab Med 130:1454–1465

    PubMed  Google Scholar 

  52. Raney RB, Anderson JR, Barr FG, Donaldson SS, Pappo AS, Qualman SJ, Wiener ES, Maurer HM, Crist WM (2001) Rhabdomyosarcoma and undifferentiated sarcoma in the first two decades of life: a selective review of intergroup rhabdomyosarcoma study group experience and rationale for Intergroup Rhabdomyosarcoma Study V. J Pediatr Hematol Oncol 23:215–220

    Article  CAS  PubMed  Google Scholar 

  53. de Alava E, Kawai A, Healey JH, Fligman I, Meyers PA, Huvos AG, Gerald WL, Jhanwar SC, Argani P, Antonescu CR, Pardo-Mindan FJ, Ginsberg J, Womer R, Lawlor ER, Wunder J, Andrulis I, Sorensen PH, Barr FG, Ladanyi M (1998) EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol 16(4):1248–1255

    Article  PubMed  Google Scholar 

  54. Rutkowski P, Wozniak A, Switaj T (2011) Advances in molecular characterization and targeted therapy in dermatofibrosarcoma protuberans. Sarcoma 2011:959132

    Article  PubMed  PubMed Central  Google Scholar 

  55. Costa J, Wesley RA, Glatstein E, Rosenberg SA (1984) The grading of soft tissue sarcomas: results of a clinicopathological correlation in a series of 163 cases. Cancer 53:530–541

    Article  CAS  PubMed  Google Scholar 

  56. Trojani M, Contesso G, Coindre JM, Rouesse J, Bui NB, de Mascarel A, Goussot JF, David M, Bonichon F, Lagarde C (1984) Soft tissue sarcomas of adults: study of pathological prognostic variables and definition of histopathological grading system. Int J Cancer 33:37–42

    Article  CAS  PubMed  Google Scholar 

  57. Guillou L, Coindre JM, Bonichon F, Nguyen BB, Terrier P, Collin F, Vilain MO, Mandard AM, Le Doussal V, Leroux A, Jacquemier J, Duplay H, Sastre-Garau X, Costa J (1997) Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J Clin Oncol 15(1):350–362

    Article  CAS  PubMed  Google Scholar 

  58. Deyrup AT, Weiss SW (2006) Grading of soft tissue sarcomas: the challenge of providing precise information in an imprecise world. Histopathology 48(1):42–50

    Article  CAS  PubMed  Google Scholar 

  59. Hoeber I, Spillane AJ, Fisher C, Thomas JM (2001) Accuracy of biopsy techniques for limb and limb girdle soft tissue tumors. Ann Surg Oncol 8(1):80–87

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliki Siozopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Siozopoulou, V., Pauwels, P. (2017). Pathology, Genetics, and Molecular Biology of Soft Tissue Tumors. In: Vanhoenacker, F., Parizel, P., Gielen, J. (eds) Imaging of Soft Tissue Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-46679-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46679-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46677-4

  • Online ISBN: 978-3-319-46679-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics