Skip to main content

Small-Molecule Inhibitors of LRRK2

  • Chapter
  • First Online:
Leucine-Rich Repeat Kinase 2 (LRRK2)

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 14))

Abstract

Mutations in the leucine-rich repeat kinase 2 (LRRK2) protein have been genetically and functionally linked to Parkinson’s disease (PD). The kinase activity of LRRK2 is increased by pathogenic mutations; therefore, modulation of LRRK2 kinase activity by a selective small-molecule inhibitor has been proposed as a potentially viable treatment for Parkinson’s disease. This chapter presents a historical overview of the development and bioactivity of several small-molecule LRRK2 inhibitors that have been used to inhibit LRRK2 kinase activity in vitro or in vivo. These compounds are important tools for understanding the cellular biology of LRRK2 and for evaluating the potential of LRRK2 inhibitors as disease-modifying PD therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gandhi PN, Chen SG, Wilson-Delfosse AL (2009) Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson’s disease. J Neurosci Res 87(6):1283–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386

    Article  CAS  PubMed  Google Scholar 

  3. Daniëls V, Baekelandt V, Taymans JM (2011) On the road to Leucine-Rich repeat Kinase 2 signalling: evidence from cellular and in vivo studies. Neurosignals 19(1):1–15

    Article  PubMed  Google Scholar 

  4. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AHV, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case–control study. Lancet Neurol 7(7):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dachsel JC, Farrer MJ (2010) LRRK2 and Parkinson disease. Arch Neurol 67(5):542–547

    Article  PubMed  Google Scholar 

  6. Greggio E, Cookson MR (2009) Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions. ASN Neuro 1(1), e00002

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kumar A, Cookson MR (2011) Role of LRRK2 kinase dysfunction in Parkinson disease. Expert Rev Mol Med 13:e20. doi: 10.1017/S146239941100192X

  8. Chen CY, Weng YH, Chien KY, Lin KJ, Yeh TH, Cheng YP, Lu CS, Wang HL (2012) (G2019S) LRRK2 activates MKK4-JNK pathway and causes degeneration of SN dopaminergic neurons in a transgenic mouse model of PD. Cell Death Differ 19(10):1623–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista M, Fiske B, Fell M, Morrow J, Reith A, Alessi D, Mann M (2016) Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. Elife 10:12813

    Google Scholar 

  10. Nichols RJ, Dzamko N, Hutti JE, Cantley LC, Deak M, Moran J, Bamborough P, Reith AD, Alessi DR (2009) Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson’s disease. Biochem J 424:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dzamko N, Deak M, Hentati F, Reith AD, Prescott AR, Alessi DR, Nichols RJ (2010) Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J 430:405–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kramer T, Lo Monte F, Goring S, Amombo GMO, Schmidt B (2012) Small molecule kinase inhibitors for LRRK2 and their application to Parkinson’s disease models. ACS Chem Nerosci 3(3):151–160

    Article  CAS  Google Scholar 

  13. Deng XM, Dzamko N, Prescott A, Davies P, Liu QS, Yang QK, Lee JD, Patricelli MP, Nomanbhoy TK, Alessi DR, Gray NS (2011) Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat Chem Biol 7(4):203–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramsden N, Perrin J, Ren Z, Lee BD, Zinn N, Dawson VL, Tam D, Bova M, Lang M, Drewes G, Bantscheff M, Bard F, Dawson TM, Hopf C (2011) Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson’s disease-related toxicity in human neurons. ACS Chem Biol 6(10):1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng XM, Elkins JM, Zhang JW, Yang QK, Erazo T, Gomez N, Choi HG, Wang JH, Dzamko N, Lee JD, Sim T, Kim N, Alessi DR, Lizcano JM, Knapp S, Gray NS (2013) Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo e pyrimido-5,4-b diazepine-6(11H)-ones. Eur J Med Chem 70:758–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weygant N, Qu DF, Berry WL, May R, Chandrakesan P, Owen DB, Sureban SM, Ali N, Janknecht R, Houchen CW (2014) Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1. Mol Cancer 13:14

    Article  Google Scholar 

  17. Fu LL, Tian M, Li X, Li JJ, Huang J, Ouyang L, Zhang YH, Liu B (2015) Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Oncotarget 6(8):5501–5516

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang JW, Deng XM, Choi HG, Alessi DR, Gray NS (2012) Characterization of TAE684 as a potent LRRK2 kinase inhibitor. Bioorg Med Chem Lett 22(5):1864–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Galkin AV, Melnick JS, Kim S, Hood TL, Li NX, Li LT, Xia G, Steensma R, Chopiuk G, Jiang JQ, Wan YQ, Ding P, Liu Y, Sun FX, Schultz PG, Gray NS, Warmuth M (2007) Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci U S A 104(1):270–275

    Article  CAS  PubMed  Google Scholar 

  20. Choi HG, Zhang JW, Deng XM, Hatcher JM, Patricelli MP, Zhao Z, Alessi DR, Gray NS (2012) Brain penetrant LRRK2 inhibitor. ACS Med Chem Lett 3(8):658–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen HF, Chan BK, Drummond J, Estrada AA, Gunzner-Toste J, Liu XR, Liu YC, Moffat J, Shore D, Sweeney ZK, Tran T, Wang SM, Zhao GL, Zhu HT, Burdick DJ (2012) Discovery of selective LRRK2 inhibitors guided by computational analysis and molecular modeling. J Med Chem 55(11):5536–5545

    Article  CAS  PubMed  Google Scholar 

  22. Estrada AA, Liu XR, Baker-Glenn C, Beresford A, Burdick DJ, Chambers M, Chan BK, Chen HF, Ding X, Di Pasquale AG, Dominguez SL, Dotson J, Drummond J, Flagella M, Flynn S, Fuji R, Gill A, Gunzner-Toste J, Harris SF, Heffron TP, Kleinheinz T, Lee DW, Le Pichon CE, Lyssikatos JP, Medhurst AD, Moffat JG, Mukund S, Nash K, Scearce-Levie K, Sheng ZJ, Shore DG, Tran T, Trivedi N, Wang SM, Zhang S, Zhang XL, Zhao GL, Zhu HT, Sweeney ZK (2012) Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem 55(22):9416–9433

    Article  CAS  PubMed  Google Scholar 

  23. Sheng ZJ, Zhang SO, Bustos D, Kleinheinz T, Le Pichon CE, Dominguez SL, Solanoy HO, Drummond J, Zhang XL, Ding X, Cai F, Song QH, Li XT, Yue ZY, van der Brug MP, Burdick DJ, Gunzner-Toste J, Chen HF, Liu XR, Estrada AA, Sweeney ZK, Scearce-Levie K, Moffat JG, Kirkpatrick DS, Zhu HT (2012) Ser(1292) autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med 4(164):12

    Article  Google Scholar 

  24. Estrada AA, Chan BK, Baker-Glenn C, Beresford A, Burdick DJ, Chambers M, Chen HF, Dominguez SL, Dotson J, Drummond J, Flagella M, Fuji R, Gill A, Halladay J, Harris SF, Heffron TP, Kleinheinz T, Lee DW, Le Pichon CE, Liu XR, Lyssikatos JP, Medhurst AD, Moffat JG, Nash K, Scearce-Levie K, Sheng ZJ, Shore DG, Wong S, Zhang S, Zhang XL, Zhu HT, Sweeney ZK (2014) Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem 57(3):921–936

    Article  CAS  PubMed  Google Scholar 

  25. (a) Liu XR, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, Doran SD, Gibbs JP, Hosea N, Liu JH, Nelson FR, Szewc MA, Van Deusen J (2006) Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration. Drug Metab Dispos 34(9):1443–1447; (b) Lin JH (2008) CSF as a surrogate for assessing CNS exposure: an industrial perspective. Curr Drug Metab 9(1):46–59

    Google Scholar 

  26. Herzig MC, Kolly C, Persohn E, Theil D, Schweizer T, Hafner T, Stemmelen C, Troxler TJ, Schmid P, Danner S, Schnell CR, Mueller M, Kinzel B, Grevot A, Bolognani F, Stirn M, Kuhn RR, Kaupmann K, van der Putten PH, Rovelli G, Shimshek DR (2011) LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet 20(21):4209–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reith AD, Bamborough P, Jandu K, Andreotti D, Mensah L, Dossang P, Choi HG, Deng XM, Zhang JW, Alessi DR, Gray NS (2012) GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorg Med Chem Lett 22(17):5625–5629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cirnaru MD, Marte A, Belluzzi E, Russo I, Gabrielli M, Longo F, Arcuri L, Murru L, Bubacco L, Matteoli M, Fedele E, Sala C, Passafaro M, Morari M, Greggio E, Onofri F, Piccoli G (2014) LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex. Front Mol Neurosci 7:12

    Article  Google Scholar 

  29. Nichols PL, Eatherton AJ, Bamborough P, Jandu KS, Philps OJ, Andreotti D (2011) Novel compounds. Google Patents WO 2011038572 A1, 27 Sept 2010

    Google Scholar 

  30. Afsari F, Christensen KV, Smith GP, Hentzer M, Nippe OM, Elliott CJH, Wade AR (2014) Abnormal visual gain control in a Parkinson’s disease model. Hum Mol Genet 23(17):4465–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garofalo AW, Adler M, Aubele DL, Bowers S, Franzini M, Goldbach E, Lorentzen C, Neitz RJ, Probst GD, Quinn KP, Santiago P, Sham HL, Tam D, Truong AP, Ye XCM, Ren Z (2013) Novel cinnoline-based inhibitors of LRRK2 kinase activity. Bioorg Med Chem Lett 23(1):71–74

    Article  CAS  PubMed  Google Scholar 

  32. Garofalo AW, Adler M, Aubele DL, Brigham EF, Chian D, Franzini M, Goldbach E, Kwong GT, Motter R, Probst GD, Quinn KP, Ruslim L, Sham HL, Tam D, Tanaka P, Truong AP, Ye XCM, Ren Z (2013) Discovery of 4-alkylamino-7-aryl-3-cyanoquinoline LRRK2 kinase inhibitors. Bioorg Med Chem Lett 23(7):1974–1977

    Article  CAS  PubMed  Google Scholar 

  33. Franzini M, Ye XCM, Adler M, Aubele DL, Garofalo AW, Gauby S, Goldbach E, Probst GD, Quinn KP, Santiago P, Sham HL, Tam D, Truong A, Ren Z (2013) Triazolopyridazine LRRK2 kinase inhibitors. Bioorg Med Chem Lett 23(7):1967–1973

    Article  CAS  PubMed  Google Scholar 

  34. Galatsis P, Henderson JL, Kormos BL, Han S, Kurumbail RG, Wager TT, Verhoest PR, Noell GS, Chen Y, Needle E, Berger Z, Steyn SJ, Houle C, Hirst WD (2014) Kinase domain inhibition of leucine rich repeat kinase 2 (LRRK2) using a 1,2,4 triazolo 4,3-b pyridazine scaffold. Bioorg Med Chem Lett 24(17):4132–4140

    Article  CAS  PubMed  Google Scholar 

  35. Rankovic Z (2015) CNS drug design: balancing physicochemical properties for optimal brain exposure. J Med Chem 58(6):2584–2608

    Article  CAS  PubMed  Google Scholar 

  36. Troxler T, Greenidge P, Zimmermann K, Desrayaud S, Druckes P, Schweizer T, Stauffer D, Rovelli G, Shimshek DR (2013) Discovery of novel indolinone-based, potent, selective and brain penetrant inhibitors of LRRK2. Bioorg Med Chem Lett 23(14):4085–4090

    Article  CAS  PubMed  Google Scholar 

  37. Longo F, Russo I, Shimshek DR, Greggio E, Morari M (2014) Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging. Neurobiol Dis 71:62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hatcher JM, Zhang JW, Choi HG, Ito G, Alessi DR, Gray NS (2015) Discovery of a pyrrolopyrimidine (JH-II-127), a highly potent, selective, and brain penetrant LRRK2 inhibitor. ACS Med Chem Lett 6(5):584–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henderson JL, Kormos BL, Hayward MM, Coffman KJ, Jasti J, Kurumbail RG, Wager TT, Verhoest PR, Noell GS, Chen Y, Needle E, Berger Z, Steyn SJ, Houle C, Hirst WD, Galatsis P (2015) Discovery and preclinical profiling of 3–4-(Morpholin-4-yl)-7H-pyrrolo 2,3-d pyrimidin-5-yl benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. J Med Chem 58(1):419–432

    Article  CAS  PubMed  Google Scholar 

  40. Li TX, Yang DJ, Zhong SJ, Thomas JM, Xue FT, Liu JN, Kong LB, Voulalas P, Hassan HE, Park JS, MacKerell AD, Smith WW (2014) Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson’s disease cell and mouse models. Hum Mol Genet 23(23):6212–6222

    Article  CAS  PubMed  Google Scholar 

  41. Deng JP, Lewis PA, Greggio E, Sluch E, Beilina A, Cookson MR (2008) Structure of the ROC domain from the Parkinson’s disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc Natl Acad Sci U S A 105(5):1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moehle MS, Webber PJ, Tse T, Sukar N, Standaert DG, DeSilva TM, Cowell RM, West AB (2012) LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32(5):1602–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gardet A, Benita Y, Li C, Sands BE, Ballester I, Stevens C, Korzenik JR, Rioux JD, Daly MJ, Xavier RJ, Podolsky DK (2010) LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol 185(9):5577–5585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fell MJ, Mirescu C, Basu K, Cheewatrakoolpong B, DeMong DE, Ellis JM, Hyde LA, Lin YH, Markgraf CG, Mei H, Miller M, Poulet FM, Scott JD, Smith MD, Yin ZZ, Zhou XP, Parker EM, Kennedy ME, Morrow JA (2015) MLi-2, a potent, selective, and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibitions. J Pharmacol Exp Ther 355(3):397–409

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathanael S. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hatcher, J.M., Choi, H.G., Alessi, D.R., Gray, N.S. (2017). Small-Molecule Inhibitors of LRRK2. In: Rideout, H. (eds) Leucine-Rich Repeat Kinase 2 (LRRK2). Advances in Neurobiology, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-49969-7_13

Download citation

Publish with us

Policies and ethics