Skip to main content

Abstract

The sympathetic and parasympathetic branches of the ANS strongly influence heart rate. Afferent sympathetic activity increases heart rate, while afferent parasympathetic activity decreases heart rate. The speed with which changes in these systems are reflected in changes in heart rate is different. The sympathetic system is slow in its effects (a few seconds), while the parasympathetic system is faster (0.2–0.6 s). Given the different speeds of response, it is possible to use frequency analysis to study sympathetic and parasympathetic contributions to the HRV. A key fact to keep in mind in this analysis is that the RR series is not stationary. In this chapter, we will see how to perform HRV frequency analysis using RHRV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Exaggerated heart rate oscillations during two meditation techniques: http://physionet.org/physiobank/database/meditation/data/. Last accessed: 27-05-2016

  2. Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med Biol Eng Comput 44(12):1031–1051

    Article  Google Scholar 

  3. Akaike H (1998) Information theory and an extension of the maximum likelihood principle. In: Selected papers of Hirotugu Akaike. Springer, pp 199–213

    Google Scholar 

  4. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger A, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504):220–222

    Article  Google Scholar 

  5. Algra A, Tijssen J, Roelandt J, Pool J, Lubsen J (1993) Heart rate variability from 24-hour electrocardiography and the 2-year risk for sudden death. Circulation 88(1):180–185

    Article  Google Scholar 

  6. Appel ML, Berger RD, Saul JP, Smith JM, Cohen RJ (1989) Beat to beat variability in cardiovascular variables: noise or music? J Am Coll Cardiol 14(5):1139–1148

    Article  Google Scholar 

  7. Arai Y, Saul JP, Albrecht P, Hartley LH, Lilly LS, Cohen RJ, Colucci WS (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol 256(1):H132–H141

    Google Scholar 

  8. Babaeizadeh S, Zhou S, Liu X, Hu W, Feild D, Helfenbein E, Gregg R, Lindauer J (2007) A novel heart rate variability index for evaluation of left ventricular function using five-minute electrocardiogram. In: IEEE computers in cardiology, pp 473–476

    Google Scholar 

  9. Bailón R, Mateo J, Olmos S, Serrano P, García J, Del Río A, Ferreira I, Laguna P (2003) Coronary artery disease diagnosis based on exercise electrocardiogram indexes from repolarisation, depolarisation and heart rate variability. Medi Biol Eng Comput 41(5):561–571

    Article  Google Scholar 

  10. Berntson GG, Cacioppo JT (2004) Heart rate variability: Stress and psychiatric conditions. In: Dynamic electrocardiography, pp 57–64

    Google Scholar 

  11. Bickel A, Yahalom M, Roguin N, Frankel R, Breslava J, Ivry S, Eitan A (2002) Power spectral analysis of heart rate variability during positive pressure pneumoperitoneum. Surg Endosc Interv Tech 16(9):1341–1344

    Article  Google Scholar 

  12. Bickel A, Yahalom M, Roguin N, Ivry S, Breslava J, Frankel R, Eitan A (2004) Improving the adverse changes in cardiac autonomic nervous control during laparoscopic surgery, using an intermittent sequential pneumatic compression device. Am J Surg 187(1):124–127

    Article  Google Scholar 

  13. Binkley PF, Haas GJ, Starling RC, Nunziata E, Hatton PA, Leier CV, Cody RJ (1993) Sustained augmentation of parasympathetic tone with angiotensin-converting enzyme inhibition in patients with congestive heart failure. J Am Coll Cardiol 21(3):655–661

    Article  Google Scholar 

  14. Binkley PF, Nunziata E, Haas GJ, Nelson SD, Cody RJ (1991) Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. J Am Coll Cardiol 18(2):464–472

    Article  Google Scholar 

  15. Boardman A, Schlindwein FS, Rocha AP (2002) A study on the optimum order of autoregressive models for heart rate variability. Physiol Meas 23(2):325–336

    Article  Google Scholar 

  16. Carney RM, Blumenthal JA, Freedland KE, Stein PK, Howells WB, Berkman LF, Watkins LL, Czajkowski SM, Hayano J, Domitrovich PP et al (2005) Low heart rate variability and the effect of depression on post-myocardial infarction mortality. Arch Intern Med 165(13):1486–1491

    Article  Google Scholar 

  17. Counihan PJ, Fei L, Bashir Y, Farrell TG, Haywood GA, McKenna WJ (1993) Assessment of heart rate variability in hypertrophic cardiomyopathy. association with clinical and prognostic features. Circulation 88(4):1682–1690

    Article  Google Scholar 

  18. Dougherty CM, Burr RL (1992) Comparison of heart rate variability in survivors and nonsurvivors of sudden cardiac arrest. Am Cardiol 70(4):441–448

    Article  Google Scholar 

  19. Gabor D (1946) Theory of communication. part 1: the analysis of information. J Inst Electr Eng Part III Radio Commun Eng 93(26):429–441

    Google Scholar 

  20. García CA, Otero A, Lado M, Méndez A, Rodríguez-Linares L, Vila X. The RHRV project homepage: http://rhrv.r-forge.r-project.org/. Last accessed: 27-05-2016

  21. García CA, Otero A, Vila X, Márquez DG (2013) A new algorithm for wavelet-based heart rate variability analysis. Biomed Signal Process Control 8(6):542–550

    Article  Google Scholar 

  22. García CA, Otero A, Vila XA, Lado MJ (2012) An open source tool for heart rate variability wavelet-based spectral analysis. In: BIOSIGNALS 2012-proceedings of the international conference on bio-inspired systems and signal processing, vol 2012. Vilamoura, Algarve, Portugal, pp 206–211, 1–4 February 2012

    Google Scholar 

  23. Gordon D, Herrera VL, McAlpine L, Cohen RJ, Akselrod S, Lang P, Norwood WI (1988) Heart-rate spectral analysis: a noninvasive probe of cardiovascular regulation in critically ill children with heart disease. Pediatr Cardiol 9(2):69–77

    Article  Google Scholar 

  24. Guzzetti S, Dassi S, Pecis M, Casat R, Masu AM, Longoni P, Tinelli M, Cerutti S, Pagani M, Malliani A (1991) Altered pattern of circadian neural control of heart period in mild hypertension. J Hypertens 9(9):831–838

    Article  Google Scholar 

  25. Guzzetti S, La Rovere MT, Pinna GD, Maestri R, Borroni E, Porta A, Mortara A, Malliani A (2005) Different spectral components of 24 h heart rate variability are related to different modes of death in chronic heart failure. Eur Heart J 26(4):357–362

    Article  Google Scholar 

  26. Huikuri H, Valkama J, Airaksinen K, Seppänen T, Kessler K, Takkunen J, Myerburg R (1993) Frequency domain measures of heart rate variability before the onset of nonsustained and sustained ventricular tachycardia in patients with coronary artery disease. Circulation 87(4):1220–1228

    Article  Google Scholar 

  27. Kamath MV, Fallen EL (1992) Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng 21(3):245–311

    Google Scholar 

  28. Kesek M, Franklin KA, Sahlin C, Lindberg E (2009) Heart rate variability during sleep and sleep apnoea in a population based study of 387 women. Clin Physiol Funct Imaging 29(4):309–315

    Article  Google Scholar 

  29. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am Cardiol 59(4):256–262

    Article  Google Scholar 

  30. Kocovic DZ, Harada T, Shea JB, Soroff D, Friedman PL (1993) Alterations of heart rate and of heart rate variability after radiofrequency catheter ablation of supraventricular tachycardia. Delineation of parasympathetic pathways in the human heart. Circulation 88(4):1671–1681

    Article  Google Scholar 

  31. Kuwahara M, Yayou K-I, Ishii K, Hashimoto S-I, Tsubone H, Sugano S (1994) Power spectral analysis of heart rate variability as a new method for assessing autonomic activity in the rat. Electrocardiology 27(4):333–337

    Article  Google Scholar 

  32. Laguna P, Moody GB, Mark RG (1998) Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans Biomed Eng 45(6):698–715

    Article  Google Scholar 

  33. Langewitz W, Rüddel H, Schächinger H (1994) Reduced parasympathetic cardiac control in patients with hypertension at rest and under mental stress. Am Heart J 127(1):122–128

    Article  Google Scholar 

  34. Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39(2):447–462

    Article  Google Scholar 

  35. Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2):482–492

    Article  Google Scholar 

  36. Metcalfe AV, Cowpertwait PS (2009) Introductory time series with R. Springer

    Google Scholar 

  37. Nishikino M, Matsunaga T, Yasuda K, Adachi T, Moritani T, Tsujimoto G, Tsuda K, Aoki N (2006) Genetic variation in the renin-angiotensin system and autonomic nervous system function in young healthy japanese subjects. J Clin Endocrinol Metab 91(11):4676–4681

    Article  Google Scholar 

  38. Pagkalos M, Koutlianos N, Kouidi E, Pagkalos E, Mandroukas K, Deligiannis A (2008) Heart rate variability modifications following exercise training in type 2 diabetic patients with definite cardiac autonomic neuropathy. British Sports Med 42(1):47–54

    Article  Google Scholar 

  39. Park D-H, Shin C-J, Hong S-C, Yu J, Ryu S-H, Kim E-J, Shin H-B, Shin B-H (2008) Correlation between the severity of obstructive sleep apnea and heart rate variability indices. Korean Med Sci 23(2):226–231

    Article  Google Scholar 

  40. Peng C-K, Mietus JE, Liu Y, Khalsa G, Douglas PS, Benson H, Goldberger AL (1999) Exaggerated heart rate oscillations during two meditation techniques. Int J Cardiol 70(2):101–107

    Article  Google Scholar 

  41. Percival DB, Walden AT (2006) Wavelet methods for time series analysis. Cambridge University Press

    Google Scholar 

  42. Pereira-Junior PP, Chaves EA, Costa-e Sousa RH, Masuda MO, de Carvalho ACC, Nascimento JH (2006) Cardiac autonomic dysfunction in rats chronically treated with anabolic steroid. Eur J Appl Physiol 96(5):487–494

    Article  Google Scholar 

  43. Proakis JG, Manolakis DG (1988) Introduction to digital signal processing. Prentice Hall Professional Technical Reference

    Google Scholar 

  44. Sands K, Appel ML, Lilly LS, Schoen FJ, Mudge G, Cohen RJ (1989) Power spectrum analysis of heart rate variability in human cardiac transplant recipients. Circulation 79(1):76–82

    Article  Google Scholar 

  45. Scargle JD (1982) Studies in astronomical time series analysis. II-statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853

    Article  Google Scholar 

  46. Stein KM, Borer JS, Hochreiter C, Okin PM, Herrold EM, Devereux RB, Kligfield P (1993) Prognostic value and physiological correlates of heart rate variability in chronic severe mitral regurgitation. Circulation 88(1):127–135

    Article  Google Scholar 

  47. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Eur Heart J 17:354–381

    Google Scholar 

  48. Thomson D (1990) Time series analysis of holocene climate data. Philos Trans R Soc Lond Ser A Math Phys Sci 330(1615): 601–616

    Google Scholar 

  49. Yasuma F, Hayano J-I (2004) Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest J 125(2):683–690

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Otero Quintana .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

García Martínez, C.A. et al. (2017). Frequency Domain Analysis. In: Heart Rate Variability Analysis with the R package RHRV. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-319-65355-6_4

Download citation

Publish with us

Policies and ethics