Skip to main content

Nonlinear and Fractal Analysis

  • Chapter
  • First Online:
Heart Rate Variability Analysis with the R package RHRV

Abstract

There are many complex systems in nature that can be explained by nonlinear interactions of its main components. The heart rate regulation is one of the most complex systems in the human body. Heart rhythm is innervated by both the parasympathetic and sympathetic branches of the ANS. At the same time, the autonomic nervous system is influenced by humoral effects, hemodynamic variables, respiratory rhythm, and stroke volume, among others. Furthermore, there exist feedback loops among these mechanisms influencing each other in a nonlinear way. A consequence of these nonlinear interactions is that heart rate modulation cannot be fully understood by studying its components in isolation. However, the study of the heart rhythm modulation as a whole is a formidable task. A more common approach in the literature, more modest than the full comprehension of the heart rate regulation system, is trying to quantify the complexity of heart rate using nonlinear statistics derived from the chaos theory or from fractal processes. In this chapter, we summarize the most widely used statistics based on nonlinear and fractal dynamics, and we show how to compute them with RHRV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kantz H, Schreiber T (2004) Nonlinear time series analysis, vol 7. Cambridge University Press

    Google Scholar 

  2. Schreiber T, Schmitz A (2000) Surrogate time series. Physica D: Nonlinear Phenom 142(3):346–382

    Article  MathSciNet  MATH  Google Scholar 

  3. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenom 58(1):77–94

    Article  MATH  Google Scholar 

  4. Mañé R (1981) On the dimension of the compact invariant sets of certain non-linear maps. In: Dynamical systems and turbulence, Warwick 1980. Springer, pp 230–242

    Google Scholar 

  5. Takens F (1981) Detecting strange attractors in turbulence, vol 898. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  6. Abarbanel HDI, Institute for nonlinear science (San Diego, C. (1996) Analysis of observed chaotic data. Springer, Institute for nonlinear science

    Google Scholar 

  7. Cao L (1997) Practical method for determining the minimum embedding dimension of a scalar time series. Phys D: Nonlinear Phenom 110(1):43–50

    Article  MATH  Google Scholar 

  8. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33(2):1134–1140

    Article  MathSciNet  MATH  Google Scholar 

  9. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349

    Article  MathSciNet  MATH  Google Scholar 

  10. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88(6):2297–2301

    Article  MathSciNet  MATH  Google Scholar 

  11. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol-Heart Circul Physiol 278(6):H2039–H2049

    Google Scholar 

  12. Zbilut JP, Webber CL (1992) Embeddings and delays as derived from quantification of recurrence plots. Phys Lett A 171(3):199–203

    Article  Google Scholar 

  13. Webber CL, Zbilut JP (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol 76(2):965–973

    Google Scholar 

  14. Webber Jr CL, Zbilut JP (2005) Recurrence quantification analysis of nonlinear dynamical systems. In: Tutorials in contemporary nonlinear methods for the behavioral sciences, pp 26–94

    Google Scholar 

  15. Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48(11):1342–1347

    Article  Google Scholar 

  16. Mandelbrot BB (1967) How long is the coast of britain. Science 156(3775):636–638

    Article  Google Scholar 

  17. Eke A, Herman P, Bassingthwaighte J, Raymond G, Percival D, Cannon M, Balla I, Ikrényi C (2000) Physiological time series: distinguishing fractal noises from motions. Pflügers Archiv 439(4):403–415

    Article  Google Scholar 

  18. Baillie RT, Cecen AA, Erkal C (2009) Normal heartbeat series are nonchaotic, nonlinear, and multifractal: New evidence from semiparametric and parametric tests. Chaos: an interdisciplinary. J Nonlinear Sci 19(2):028503

    Google Scholar 

  19. Sassi R, Signorini MG, Cerutti S (2009) Multifractality and heart rate variability. Chaos: an interdisciplinary. J Nonlinear Sci 19(2):028507

    Google Scholar 

  20. Mandelbrot BB (1985) Self-affine fractals and fractal dimension. Physica Scripta 32(4):257–260

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49(2):1685–1689

    Article  Google Scholar 

  22. Fougere PF (1985) On the accuracy of spectrum analysis of red noise processes using maximum entropy and periodogram methods: simulation studies and application to geophysical data. J Geophys Res: Space Phys (1978–2012) 90(A5):4355–4366

    Google Scholar 

  23. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ (2008) Sleep apnea and cardiovascular disease: an american heart association/american college of cardiology foundation scientific statement from the american heart association council for high blood pressure research professional education committee, council on clinical cardiology, stroke council, and council on cardiovascular nursing in collaboration with the national heart, lung, and blood institute national center on sleep disorders research (national institutes of health). J Am College Cardiol 52(8):686–717

    Article  Google Scholar 

  24. Penzel T, Moody G, Mark R, Goldberger A, Peter J (2000) The Apnea-ECG database. In: Computers in Cardiology 2000. IEEE, pp 255–258

    Google Scholar 

  25. The Apnea-ECG database: http://www.physionet.org/physiobank/database/apnea-ecg/. Accessed 27 May 2016

  26. Guilleminault C, Winkle R, Connolly S, Melvin K, Tilkian A (1984) Cyclical variation of the heart rate in sleep apnoea syndrome: mechanisms, and usefulness of 24 h electrocardiography as a screening technique. The Lancet 323(8369):126–131

    Article  Google Scholar 

  27. Kobayashi M, Musha T (1982) 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng:456–457

    Google Scholar 

  28. Eur Heart J (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 17:354–381

    Google Scholar 

  29. Möller M, Lange W, Mitschke F, Abraham N, Hübner U (1989) Errors from digitizing and noise in estimating attractor dimensions. Phys Lett A 138(4):176–182

    Article  Google Scholar 

  30. Peng C-K, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: an interdisciplinary. J Nonlinear Sci 5(1):82–87

    Google Scholar 

  31. Voss A, Schulz S, Schroeder R, Baumert M, Caminal P (2009) Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans R Soc A: Math Phys Eng Sci 367(1887):277–296

    Article  MATH  Google Scholar 

  32. Mäkikallio TH, Huikuri HV, Hintze U, Videbæk J, Mitrani RD, Castellanos A, Myerburg RJ, Møller M (2001) Fractal analysis and time-and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure. Am J Cardiol 87(2):178–182

    Article  Google Scholar 

  33. Guzzetti S, Mezzetti S, Magatelli R, Porta A, De Angelis G, Rovelli G, Malliani A (2000) Linear and non-linear 24 h heart rate variability in chronic heart failure. Auton Neurosci 86(1):114–119

    Article  Google Scholar 

  34. Bigger JT, Steinman RC, Rolnitzky LM, Fleiss JL, Albrecht P, Cohen RJ (1996) Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. Circulation 93(12):2142–2151

    Article  Google Scholar 

  35. Stein PK, Domitrovich PP, Huikuri HV, Kleiger RE (2005) Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. J Cardiovasc Electrophysiol 16(1):13–20

    Article  Google Scholar 

  36. Carvajal R, Wessel N, Vallverdú M, Caminal P, Voss A (2005) Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy. Comput Methods Progr Biomed 78(2):133–140

    Article  Google Scholar 

  37. Skinner JE, Pratt CM, Vybiral T (1993) A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am Heart J 125(3):731–743

    Article  Google Scholar 

  38. Tuzcu V, Nas S, Börklü T, Ugur A (2006) Decrease in the heart rate complexity prior to the onset of atrial fibrillation. Europace 8(6):398–402

    Article  Google Scholar 

  39. Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variability. Am J Physiol-Regul Integr Comparat Physiol 283(3):R789–R797

    Article  Google Scholar 

  40. Aletti F, Ferrario M, Almas de Jesus T, Stirbulov R, Borghi Silva A, Cerutti S, Malosa Sampaio L (2012) Heart rate variability in children with cyanotic and acyanotic congenital heart disease: analysis by spectral and non linear indices. In: Annual international conference of the IEEE, Engineering in Medicine And Biology Society (EMBC). IEEE, pp 4189–4192

    Google Scholar 

  41. Bolea J, Pueyo E, Laguna P, Bailón R (2014) Non-linear HRV indices under autonomic nervous system blockade. In: 36th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 3252–3255

    Google Scholar 

  42. Glass L (2009) Introduction to controversial topics in nonlinear science: Is the normal heart rate chaotic? Chaos: an interdisciplinary. J Nonlinear Sci 19(2):028501

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Otero Quintana .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

García Martínez, C.A. et al. (2017). Nonlinear and Fractal Analysis. In: Heart Rate Variability Analysis with the R package RHRV. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-319-65355-6_5

Download citation

Publish with us

Policies and ethics