Skip to main content

Porphyrin and Phthalocyanine Radiolabeling

  • Chapter
  • First Online:
Radionanomedicine

Abstract

There have been substantial improvements in radiopharmaceutical chemistry with respect to designing new diagnostic and therapeutic agents for combatting diseases. Porphyrin and phthalocyanine derivatives have been explored in this field because they possess unique photophysical properties, can accumulate in human and animal tumors, and their metal complexes are both thermodynamically and kinetically stable. A wide variety of radiolabeled metalloporphyrins and metallo phthalocyanines can be prepared that are stable in biological media. Radiolabeled compounds have been employed in preclinical applications for nuclear imaging, biodistribution studies, and photodynamic therapy. This chapter provides an overview of radiopharmaceutical applications of porphyins and phthalocyanines including small molecule and nanoparticle-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Biesaga, K. Pyrzyńska, M. Trojanowicz, Porphyrins in analytical chemistry. A review. Talanta 51(2), 209–224 (2000)

    Article  Google Scholar 

  2. H. Huang, W. Song, J. Rieffel, J.F. Lovell, Emerging applications of porphyrins in photomedicine. Front Phys. 3, 23 (2015)

    Article  Google Scholar 

  3. Y. Zhang, J.F. Lovell, Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2(9), 905–915 (2012)

    Article  Google Scholar 

  4. D. Kessel, Hematoporphyrin and HPD: photophysics, photochemistry and phototherapy. Photochem. Photobiol. 39(s1), 851–859 (1984)

    Article  Google Scholar 

  5. K.M. Smith, K.M. Kadish, R. Guilard, Handbook of Porphyrin Science: With Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine, vol 3, (World Scientific, 2012)

    Google Scholar 

  6. T.J. Dougherty, A brief history of clinical photodynamic therapy development at Roswell Park Cancer Institute. J. Clin. Laser Med. Surg. 14(5), 219–221 (1996)

    MathSciNet  Google Scholar 

  7. R. Ackroyd, C. Kelty, N. Brown, M. Reed, The history of photodetection and photodynamic therapy. Photochem. Photobiol. 74(5), 656–669 (2001)

    Article  Google Scholar 

  8. C.M. Allen, W.M. Sharman, J.E. Van Lier, Current status of phthalocyanines in the photodynamic therapy of cancer. J. Porphyr. Phthalocyannines 5(2), 161–169 (2001)

    Article  Google Scholar 

  9. D.R. Tackley, G. Dent, W.E. Smith, Phthalocyanines: structure and vibrations. Phys. Chem. Chem. Phys. 3(8), 1419–1426 (2001)

    Article  Google Scholar 

  10. V. Ščasnár, Lier J.E. Van, Biological activities of phthalocyanines—XV. Radiolabeling of the differently sulfonated 67Ga-phthalocyanines for photodynamic therapy and tumor imaging. Nucl. Med. Biol. 20(3), 257–262 (1993)

    Article  Google Scholar 

  11. N. Sekkat, H. van den Bergh, T. Nyokong, N. Lange, Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules 17(1), 98 (2012)

    Article  Google Scholar 

  12. Y. Zhang, J.F. Lovell, Recent applications of phthalocyanines and naphthalocyanines for imaging and therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9(1), e1420 (2017)

    Google Scholar 

  13. H. Ali, J.E. van Lier, Metal Complexes as photo- and radiosensitizers. Chem. Rev. 99(9), 2379–2450 (1999)

    Article  Google Scholar 

  14. F.R. Wrenn, M.L. Good, P. Handler, The use of positron-emitting radioisotopes for the localization of brain tumors. Science 113(2940), 525–527 (1951)

    Article  ADS  Google Scholar 

  15. T.W. Liu, T.D. MacDonald, J. Shi, B.C. Wilson, G. Zheng, Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew. Chem. Int. Ed. Engl. 51(52), 13128–13131 (2012)

    Article  Google Scholar 

  16. P.A. Waghorn, Radiolabelled porphyrins in nuclear medicine. J. Label. Comp. Radiopharm. 57(4), 304–309 (2014)

    Article  Google Scholar 

  17. A. Soucy-Faulkner, J.A. Rousseau, R. Langlois, V. Berard, R. Lecomte, F. Bénard et al., Copper-64 labeled sulfophthalocyanines for positron emission tomography (PET) imaging in tumor-bearing rats. J. Porphyr. Phthalocyanines 12(01), 49–53 (2008)

    Article  Google Scholar 

  18. F.H. Figge, G.S. Weiland, L.O. Manganiello, Cancer detection and therapy. Affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins. Proc. Soc. Exp. Biol. Med. 68(3), 640–641 (1948)

    Article  Google Scholar 

  19. K.M. Smith, Porphyrins and Metalloporphyrins (Elsevier, Amsterdam, 1975)

    Google Scholar 

  20. W.R. Scheidt, Trends in metalloporphyrin stereochemistry. Acc. Chem. Res. 10(9), 339–345 (1977)

    Article  Google Scholar 

  21. D. Dolphin, The Porphyrins, vol. 1 (Academic Press, New York, 1979)

    Google Scholar 

  22. K. Kasuga, M. Tsutsuo, Some new developments in the chemistry of metallophthalocyanines. Coord. Chem. Rev. 32(1), 67–95 (1980)

    Article  Google Scholar 

  23. P. Hambright, J. Smart, J. McRae, M. Nohr, Y. Yano, P. Chu et al., Tumor imaging with 57cobalt (III)-sandwich complexes and 57cobalt (III)-porphyrins. Inorg. Nucl. Chem. Lett. 12(2), 217–222 (1976)

    Article  Google Scholar 

  24. L. Anghileri, M. Heidbreder, R. Mathes, 57Co-hematoporphyrin accumulation by experimental tumors. Nuklearmedizin 15(4), 183 (1976)

    Article  Google Scholar 

  25. M. Michael, C. Redvanly, Handbook of Radiopharmaceuticals (Wiley, England, 2003)

    Google Scholar 

  26. R. Bases, S.S. Brodie, S. Rubenfeld, Attempts at tumor localization using Cu64-labeled copper porphyrins. Cancer 11(2), 259–263 (1958)

    Article  Google Scholar 

  27. P. Hambright, R. Fawwaz, P. Valk, J. McRae, A. Bearden, The distribution of various water soluble radioactive metalloporphyrins in tumor bearing mice. Bioinorg. Chem. 5(1), 87–92 (1975)

    Article  Google Scholar 

  28. D. Cole, J. Mercer-Smith, S. Schreyer, J. Norman, D. Lavallee, The biological characteristics of a water soluble porphyrin in rat lymph nodes. Int. J. Rad. Appl. Instrum. B. 17(5), 457–464 (1990)

    Article  Google Scholar 

  29. M.K. Bhalgat, J.C. Roberts, J.A. Mercer-Smith, B.D. Knotts, R.L. Vessella, D.K. Lavallee, Preparation and biodistribution of copper-67-labeled porphyrins and porphyrin-A6H immunoconjugates. Nucl. Med. Biol. 24(2), 179–185 (1997)

    Article  Google Scholar 

  30. J.C. Roberts, S.L. Newmyer, J.A. Mercer-Smith, S.A. Schreyer, D.K. Lavallee, Labeling antibodies with copper radionuclides using N-4-nitrobenzyl-5-(4-carboxyphenyl)-10, 15, 20-tris (4-sulfophenyl) porphine. Int. J. Rad. Appl. Instrum. A. 40(9), 775–781 (1989)

    Article  Google Scholar 

  31. Y. Fazaeli, A.R. Jalilian, M.M. Amini, M. Aboudzadeh, S. Feizi, A. Rahiminezhad et al., Preparation, nano purification, quality control and labeling optimization of (64Cu)-5, 10, 15, 20-tetrakis (penta fluoro phenyl) porphyrin complex as a possible imaging agent. J. Radioanal. Nucl. Chem. 295(1), 255–263 (2013)

    Article  Google Scholar 

  32. J. Shi, T. Liu, J. Chen, D. Green, D. Jaffray, B.C. Wilson et al., Transforming a targeted porphyrin theranostic agent into a PET imaging probe for cancer. Theranostics 1, 363–370 (2011)

    Article  Google Scholar 

  33. H. Huang, J.F. Lovell, Advanced functional nanomaterials for theranostics. Adv. Funct. Mater. 27(2), 1603524 (2017)

    Article  Google Scholar 

  34. D. Luo, K.A. Carter, J.F. Lovell, Nanomedical engineering: shaping future nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(2), 169–188 (2015)

    Article  Google Scholar 

  35. S.M. Janib, A.S. Moses, J.A. MacKay, Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62(11), 1052–1063 (2010)

    Article  Google Scholar 

  36. X. Ma, Y. Zhao, X.-J. Liang, Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res. 44(10), 1114–1122 (2011)

    Article  Google Scholar 

  37. T.W. Liu, T.D. MacDonald, J. Shi, B.C. Wilson, G. Zheng, Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew. Chem. Intl. Ed. Engl. 51(52), 13128–13131 (2012)

    Article  Google Scholar 

  38. T.W. Liu, T.D. MacDonald, C.S. Jin, J.M. Gold, R.G. Bristow, B.C. Wilson et al., Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano 7(5), 4221–4232 (2013)

    Article  Google Scholar 

  39. J. Rieffel, U. Chitgupi, J.F. Lovell, Recent advances in higher-order, multimodal, biomedical imaging agents. Small 11(35), 4445–4461 (2015)

    Article  Google Scholar 

  40. H. Huang, R. Hernandez, J. Geng, H. Sun, W. Song, F. Chen et al., A porphyrin-PEG polymer with rapid renal clearance. Biomaterials 76, 25–32 (2016)

    Article  Google Scholar 

  41. Y. Zhang, D. Wang, S. Goel, B. Sun, U. Chitgupi, J. Geng et al., Surfactant-stripped frozen pheophytin micelles for multimodal gut imaging. Adv. Mater. 28(38), 8524–8530 (2016)

    Article  Google Scholar 

  42. J. Rieffel, F. Chen, J. Kim, G. Chen, W. Shao, S. Shao et al., Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv. Mater. 27(10), 1785–1790 (2015)

    Article  Google Scholar 

  43. Y. Li, Lin T-y, Y. Luo, Q. Liu, W. Xiao, W. Guo et al., A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 5, 4712 (2014)

    Article  Google Scholar 

  44. L. Feng, L. Cheng, Z. Dong, D. Tao, T.E. Barnhart, W. Cai et al., Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post photodynamic therapy. ACS Nano. (2016)

    Article  Google Scholar 

  45. Y. Fazaeli, A.R. Jalilian, M.M. Amini, A. Rahiminejad-kisomi, S. Rajabifar, F. Bolourinovin et al., Preparation and preliminary evaluation of (67Ga)-tetra phenyl porphyrin complexes as possible imaging agents. J. Radioanal. Nucl. Chem. 288(1), 17–24 (2011)

    Article  Google Scholar 

  46. K. Sasaki, N. Yumita, R. Nishigaki, I. Sakata, S. Nakajima, Umemura Si. Pharmacokinetic study of a gallium-porphyrin photo- and sono-sensitizer, ATX-70, in tumor-bearing mice. Cancer Sci. 92(9), 989–995 (2001)

    Google Scholar 

  47. Y. Fazaeli, A.R. Jalilian, M.M. Amini, K. Ardaneh, A. Rahiminejad, F. Bolourinovin et al., Development of a 68Ga-fluorinated porphyrin complex as a possible PET imaging agent. Nucl. Med. Mol. Imaging 46(1), 20–26 (2012)

    Article  Google Scholar 

  48. F. Zoller, P.J. Riss, F.-P. Montforts, D.K. Kelleher, E. Eppard, F. Rösch, Radiolabelling and preliminary evaluation of 68 Ga-tetrapyrrole derivatives as potential tracers for PET. Nucl. Med. Biol. 40(2), 280–288 (2013)

    Article  Google Scholar 

  49. S. Jurisson, D. Berning, W. Jia, D. Ma, Coordination compounds in nuclear medicine. Chem. Rev. (U. S.) 93(3), 11371156 (1993)

    Google Scholar 

  50. S.S. Jurisson, J.D. Lydon, Potential technetium small molecule radiopharmaceuticals. Chem. Rev. (U. S.) 99(9), 2205–2218 (1999)

    Article  Google Scholar 

  51. D.W. Wong, A. Mandal, I.C. Reese, J. Brown, R. Siegler, In vivo assessment of 99mTc-labeled hematoporphyrin derivative in tumor-bearing animals. Int. J. Nucle. Med. Biol. 10(4), 211–218 (1983)

    Article  Google Scholar 

  52. A.-Y. Wang, J.-L. Lin, W.-C. Lin, Studies on the porphine labeled with 99 mTc–pertechnetate. J. Radioanal. Nucl. Chem. 284(1), 21–28 (2010)

    Article  Google Scholar 

  53. S. Shetty, S. Murugesan, S. Chatterjee, S. Banerjee, T. Srivastava, O.P. Noronha et al., A new 99mTc labeled porphyrin for specific imaging of Sarcoma 120: Synthesis and biological study in a Swiss mouse model. J. Label. Comp. Radiopharm. 38(5), 411–418 (1996)

    Article  Google Scholar 

  54. S.R. Chatterjee, S. Murugesan, J. Kamat, S. Shetty, T. Srivastava, O. Noronha et al., Photodynamic effects induced by meso-tetrakis (4-(carboxymethyleneoxy) phenyl) porphyrin using rat hepatic microsomes as model membranes. Arch. Biochem. Biophys. 339(1), 242–249 (1997)

    Article  Google Scholar 

  55. D.W. Wong, A. Mandal, I.C. Reese, J. Brown, R. Siegler, In vivo assessment of 99mTc-labeled hematoporphyrin derivative in tumor-bearing animals. Int. J. Nucl. Med. Biol. 10(4), 211–218 (1983)

    Article  Google Scholar 

  56. J.-H. Lee, S. Shao, K.T. Cheng, J.F. Lovell, C.H. Paik, 99mTc-labeled porphyrin–lipid nanovesicles. J. Liposome Res. 25(2), 101–106 (2015)

    Article  Google Scholar 

  57. S. Murugesan, S. Shetty, T. Srivastava, O. Noronha, A. Samuel, A technetium-99m-labelled cyclam acid porphyrin (CAP) for tumour imaging. Appl. Radiat. Isot. 55(5), 641–646 (2001)

    Article  Google Scholar 

  58. M. Subbarayan, S.J. Shetty, T.S. Srivastava, O.P. Noronha, A.M. Samuel, H. Mukhtar, Water-soluble 99mTc-labeled dendritic novel porphyrins tumor imaging and diagnosis. Biochem. Biophys. Res. Commun. 281(1), 32–36 (2001)

    Article  Google Scholar 

  59. M. Subbarayan, S. Shetty, T. Srivastava, O. Noronha, A. Samuel, Evaluation studies of technetium-99m-porphyrin (T3, 4BCPP) for tumor imaging. J. Porphyr. Phthalocyanines. 5(12), 824–828 (2001)

    Article  Google Scholar 

  60. Y. Liu, B. Shen, F. Liu, B. Zhang, T. Chu, J. Bai et al., Synthesis, radiolabeling, biodistribution and fluorescent imaging of histidine-coupled hematoporphyrin. Nucl. Med. Biol. 39(4), 579–585 (2012)

    Article  Google Scholar 

  61. R.A. Fawwaz, W. Hemphill, H. Winchell, Potential use of 109Pd-porphyrin complexes for selective lymphatic ablation. J. Nucl. Med. 12(5), 231–236 (1971)

    Google Scholar 

  62. R. Fawwaz, F. Frye, W. Loughman, W. Hemphill, Survival of skin homografts in dogs injected with 109Pd-protoporphyrin. J. Nucl. Med. 15(11), 997–1002 (1974)

    Google Scholar 

  63. S. Chakraborty, T. Das, S. Banerjee, H. Sarma, M. Venkatesh, Preparation and preliminary biological evaluation of a novel 109Pd labeled porphyrin derivative for possible use in targeted tumor therapy. Q. J. Nucl. Med. Mol. Imaging 51(1), 16 (2007)

    Google Scholar 

  64. T. Das, S. Chakraborty, H. Sarma, S. Banerjee, A novel (109Pd) palladium labeled porphyrin for possible use in targeted radiotherapy. Radiochim. Acta 96(7), 427–433 (2008)

    Article  Google Scholar 

  65. D.W. Wong, A. Mandal, J. Brown, I.C. Reese, R. Siegler, S. Hyman, In vivo assessment of 111In-labeled hematoporphyrin derivative in breast tumor-bearing animals. Int. J. Rad. Appl. Instrum. B. 16(3), 269–281 (1989)

    Article  Google Scholar 

  66. G. Robinson Jr., A. Alavi, R. Vaum, M. Staum, Imaging of lymph node uptake after intravenous administration. J. Nucl. Med. 27, 239 (1986)

    Google Scholar 

  67. C. Ljungquist, Delineation of a transplanted malignant melanoma with indium-111-labeled porphyrin. J. Nucl. Med. 26, 756–760 (1985)

    Google Scholar 

  68. S. Nakajima, H. Yamauchi, I. Sakata, H. Hayashi, K. Yamazaki, T. Maeda et al., 111In-labeled Mn-metalloporphyrin for tumor imaging. Nucl. Med. Biol. 20(2), 231–237 (1993)

    Article  Google Scholar 

  69. C.H. Bedel-Cloutour, L. Mauclaire, A. Saux, M. Pereyre, Syntheses of functionalized indium porphyrins for monoclonal antibody labeling. Bioconjug. Chem. 7(6), 617–627 (1996)

    Article  Google Scholar 

  70. R. Firestone, V. Shirley, C. Baglin, S. Chu, J. Zipkin, Table of Isotopes (A Wiley-Interscience Publication. Wiley, New York, 1996)

    Google Scholar 

  71. M. Aboudzadeh, Y. Fazaeli, H. Khodaverdi, H. Afarideh, Production, nano-purification, radiolabeling and biodistribution study of (140Nd) 5, 10, 15, 20-tetraphenylporphyrin complex as a possible imaging agent. J. Radioanal. Nucl. Chem. 295(1), 105–113 (2013)

    Article  Google Scholar 

  72. N. Vahidfar, A.R. Jalilian, Y. Fazaeli, A. Bahrami-Samani, D. Beiki, A. Khalaj, Development and evaluation of a 166holmium labelled porphyrin complex as a possible therapeutic agent. J. Radioanal. Nucl. Chem. 295(2), 979–986 (2013)

    Article  Google Scholar 

  73. H.D. Sarma, T. Das, S. Banerjee, M. Venkatesh, P.B. Vidyasagar, K.P. Mishra, Studies on efficacy of a novel 177Lu-labeled porphyrin derivative in regression of tumors in mouse model. Curr. Radiopharm. 4(2), 150–160 (2011)

    Article  Google Scholar 

  74. J. Crudo, M. Edreira, E. Obenaus, S. de Castiglia, Labeling of the anti-melanoma 14f7 monoclonal antibody with rhenium-188-MAG3 chelate: conjugation optimization, in vitro stability and animal studies. J. Radioanal. Nucl. Chem. 261(2), 337–342 (2004)

    Article  Google Scholar 

  75. K.M. Kadish, K.M. Smith, R. Guilard, Handbook of Porphyrin Science (World Scientific, Singapore, 2010), pp. 1–35 2014

    Google Scholar 

  76. S. Banerjee, T. Das, G. Samuel, H. Sarma, M. Venkatesh, M. Pillai, A novel (186/188Re)-labelled porphyrin for targeted radiotherapy. Nucl. Med. Commun. 22(10), 1101–1107 (2001)

    Article  Google Scholar 

  77. H.D. Sarma, T. Das, S. Banerjee, M. Venkatesh, P.B. Vidyasagar, K.P. Mishra, Biologic evaluation of a novel 188Re-labeled porphyrin in mice tumor model. Cancer Biother. Radiopharm. 25(1), 47–54 (2010)

    Article  Google Scholar 

  78. Z. Jia, H. Deng, M. Pu, Synthesis and preliminary biological studies of the novel conjugate 188Re-labeled meso-tetrakis (4-sulfophenyl) porphyrin in mice. Nucl. Med. Biol. 34(6), 643–649 (2007)

    Article  Google Scholar 

  79. Jia Z-y, Pu Deng H-f, Luo S-z M-f, Rhenium-188 labelled meso-tetrakis (3, 4-bis (carboxymethyleneoxy) phenyl) porphyrin for targeted radiotherapy: preliminary biological evaluation in mice. Eur. J. Nucl. Med. Mol. Imaging 35(4), 734–742 (2008)

    Article  Google Scholar 

  80. E.R. Ranyuk, N. Cauchon, H. Ali, R. Lecomte, B. Guérin, J.E. van Lier, PET imaging using 64Cu-labeled sulfophthalocyanines: synthesis and biodistribution. Bioorg. Med. Chem. Lett. 21(24), 7470–7473 (2011)

    Article  Google Scholar 

  81. Y. Zhang, M. Jeon, L.J. Rich, H. Hong, J. Geng, Y. Zhang et al., Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat. Nanotechnol. 9(8), 631–638 (2014)

    Article  ADS  Google Scholar 

  82. M. Obochi, R. Boyle, Lier J. Van, Biological activities of phthalocyanines. XIII. The effects of human serum components on the in vitro uptake and photodynamic activity of zinc phthalocyanine. Photochem. Photobiol. 57(4), 634–640 (1993)

    Article  Google Scholar 

  83. J. Rousseau, R. Boyle, A. MacLennan, T. Truscott, J. Van Lier, Biodistribution and tumor uptake of (67Ga) chlorogallium-tetraoctadecyloxy phthalocyanine and its sulfonation products in tumor bearing C3H mice. Int. J. Rad. Appl. Instrum. B. 18(7), 777–782 (1991)

    Article  Google Scholar 

  84. J. Rousseau, D. Autenrieth, J.E. Van Lier, Synthesis, tissue distribution and tumor uptake of (99Tc) tetrasulfophthalocyanine. Int. J. Appl. Radiat. Isot. 34(3), 571–579 (1983)

    Article  Google Scholar 

  85. C.P. Gros, A. Eggenspiller, A. Nonat, J.-M. Barbe, F. Denat, New potential bimodal imaging contrast agents based on DOTA-like and porphyrin macrocycles. Med. Chem. Commun. 2(2), 119–125 (2011)

    Article  Google Scholar 

  86. B. Laster, S. Kahl, J. Kalef-Ezra, E. Popenoe, R.G. Fairchild, Biological Efficacy of a Boronated Porphyrin as Measured in Cell Culture (Brookhaven National Lab, Upton, NY (USA), 1987)

    Google Scholar 

  87. F. Benard, S. Kudrevich, J. Rousseau, J. van Lier, Radiolabeled phthalocyanines as tumor imaging agents. Clin. Nucl. Med. 21(6), 512 (1996)

    Article  Google Scholar 

  88. D.K. Lavallee, R. Fawwaz, The synthesis and characterization of 111 in hematoporphyrin derivative. Int. J. Rad. Appl. Instrum. B 13(6), 639–641 (1986)

    Article  Google Scholar 

  89. D.W. Wong, A simple and efficient method of labeling hematoporphyrin derivative with 111In. Appl. Radiat. Isot. 35(7), 691–692 (1984)

    Article  Google Scholar 

  90. N. Maric, S.M. Chan, P.B. Hoffer, P. Duray, Radiolabeled porphyrin vs gallium-67 citrate for the detection of human melanoma in athymic mice. Int. J. Rad. Appl. Instrum. B. 15(5), 543–551 (1988)

    Article  Google Scholar 

  91. R.R. Kavali, B. Chul Lee, B. Seok Moon, S. Dae Yang, K. Soo Chun, C. Woon Choi et al., Efficient methods for the synthesis of 5-(4-(18F) fluorophenyl)-10, 15, 20-tris (3-methoxyphenyl) porphyrin as a potential imaging agent for tumor. J. Label. Comp Radiopharm. 48(10), 749–758 (2005)

    Article  Google Scholar 

  92. G.M. Entract, F. Bryden, J. Domarkas, H. Savoie, L. Allott, S.J. Archibald et al., Development of PDT/PET theranostics: Synthesis and biological evaluation of an 18F-radiolabeled water-soluble porphyrin. Mol. Pharm. 12(12), 4414–4423 (2015)

    Article  Google Scholar 

  93. T. Das, S. Chakraborty, H.D. Sarma, S. Banerjee, M. Venakatesh, A novel 177 Lu-labeled porphyrin for possible use in targeted tumor therapy. Nucl. Med. Biol. 37(5), 655–663 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Lovell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajendiran, V., Ghosh, S., Lovell, J.F. (2018). Porphyrin and Phthalocyanine Radiolabeling. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_3

Download citation

Publish with us

Policies and ethics