Skip to main content

Genetic Rodent Models of Huntington Disease

  • Chapter
  • First Online:
Polyglutamine Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1049))

Abstract

The monogenic nature of Huntington disease (HD) has led to the development of a spectrum of useful genetically modified models. In particular, rodents have pioneered as the first HD model being generated and have since been the most widely used animal model for HD in both basic research and preclinical therapeutic studies. Based on the generation strategies, these rodent models can be classified into 3 major groups, the transgenic fragment models, the transgenic full-length models and the knock-in models. These models display a range of HD-like characteristics which resemble the clinical symptoms of HD patients. Their applications in research are thus regarded as an invaluable approach to speeding up the unraveling of the underlying pathological mechanisms of HD and for finding a disease-modifying treatment for this devastating disease. In this chapter, the similarities and differences of the most commonly used rodent HD models and their relevance to human HD will be compared and discussed. This also serves to guide the selection of an appropriate rodent HD model according to the nature of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  2. Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14:708–721

    Article  CAS  PubMed  Google Scholar 

  3. Chang R, Liu X, Li S, Li XJ (2015) Transgenic animal models for study of the pathogenesis of Huntington’s disease and therapy. Drug Des Devel Ther 9:2179–2188

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Crook ZR, Housman D (2011) Huntington’s disease: can mice lead the way to treatment? Neuron 69:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li JY, Popovic N, Brundin P (2005) The use of the R6 transgenic mouse models of Huntington’s disease in attempts to develop novel therapeutic strategies. NeuroRx 2:447–464

    Article  PubMed  PubMed Central  Google Scholar 

  6. Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M (2012) Mouse models of polyglutamine diseases in therapeutic approaches: review and data table Part II. Mol Neurobiol 46:430–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heng MY, Duong DK, Albin RL, Tallaksen-Greene SJ, Hunter JM, Lesort MJ, Osmand A, Paulson HL, Detloff PJ (2010) Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet 19:3702–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jucker M (2010) The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 16:1210–1214

    Article  CAS  PubMed  Google Scholar 

  9. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  CAS  PubMed  Google Scholar 

  10. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    Article  CAS  PubMed  Google Scholar 

  11. Mangiarini L, Sathasivam K, Mahal A, Mott R, Seller M, Bates GP (1997) Instability of highly expanded CAG repeats in mice transgenic for the Huntington’s disease mutation. Nat Genet 15:197–200

    Article  CAS  PubMed  Google Scholar 

  12. Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, Borchelt DR (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8:397–407

    Article  CAS  PubMed  Google Scholar 

  13. Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby SC, Doty CN, Roy S, Wellington CL, Leavitt BR, Raymond LA, Nicholson DW, Hayden MR (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125:1179–1191

    Article  CAS  PubMed  Google Scholar 

  14. Tebbenkamp AT, Green C, Xu G, Denovan-Wright EM, Rising AC, Fromholt SE, Brown HH, Swing D, Mandel RJ, Tessarollo L, Borchelt DR (2011) Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative. Hum Mol Genet 20:2770–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248–3257

    Article  CAS  PubMed  Google Scholar 

  16. Stack EC, Kubilus JK, Smith K, Cormier K, Del Signore SJ, Guelin E, Ryu H, Hersch SM, Ferrante RJ (2005) Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington’s disease transgenic mice. J Comp Neurol 490:354–370

    Article  PubMed  Google Scholar 

  17. Sathasivam K, Hobbs C, Mangiarini L, Mahal A, Turmaine M, Doherty P, Davies SW, Bates GP (1999) Transgenic models of Huntington’s disease. Philos Trans R Soc Lond B Biol Sci 354:963–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Young D, Mayer F, Vidotto N, Schweizer T, Berth R, Abramowski D, Shimshek DR, van der Putten PH, Schmid P (2013) Mutant huntingtin gene-dose impacts on aggregate deposition, DARPP32 expression and neuroinflammation in HdhQ150 mice. PLoS ONE 8:e75108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schilling G, Savonenko AV, Klevytska A, Morton JL, Tucker SM, Poirier M, Gale A, Chan N, Gonzales V, Slunt HH, Coonfield ML, Jenkins NA, Copeland NG, Ross CA, Borchelt DR (2004) Nuclear-targeting of mutant huntingtin fragments produces Huntington’s disease-like phenotypes in transgenic mice. Hum Mol Genet 13:1599–1610

    Article  CAS  PubMed  Google Scholar 

  20. Waldron-Roby E, Ratovitski T, Wang X, Jiang M, Watkin E, Arbez N, Graham RK, Hayden MR, Hou Z, Mori S, Swing D, Pletnikov M, Duan W, Tessarollo L, Ross CA (2012) Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J Neurosci 32:183–193

    Article  CAS  PubMed  Google Scholar 

  21. Hickey MA, Gallant K, Gross GG, Levine MS, Chesselet MF (2005) Early behavioral deficits in R6/2 mice suitable for use in preclinical drug testing. Neurobiol Dis 20:1–11

    Article  CAS  PubMed  Google Scholar 

  22. Paulsen JS (2011) Cognitive impairment in Huntington disease: diagnosis and treatment. Curr Neurol Neurosci Rep 11:474–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Snowden JS, Craufurd D, Thompson J, Neary D (2002) Psychomotor, executive, and memory function in preclinical Huntington’s disease. J Clin Exp Neuropsychol 24:133–145

    Article  CAS  PubMed  Google Scholar 

  24. Lione LA, Carter RJ, Hunt MJ, Bates GP, Morton AJ, Dunnett SB (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19:10428–10437

    Article  CAS  PubMed  Google Scholar 

  25. Bolivar VJ, Manley K, Messer A (2003) Exploratory activity and fear conditioning abnormalities develop early in R6/2 Huntington’s disease transgenic mice. Behav Neurosci 117:1233–1242

    Article  PubMed  Google Scholar 

  26. Morton AJ, Skillings E, Bussey TJ, Saksida LM (2006) Measuring cognitive deficits in disabled mice using an automated interactive touchscreen system. Nat Methods 3:767

    Article  CAS  PubMed  Google Scholar 

  27. Ramaswamy S, McBride JL, Kordower JH (2007) Animal models of Huntington’s disease. ILAR J 48:356–373

    Article  CAS  PubMed  Google Scholar 

  28. Chiu CT, Liu G, Leeds P, Chuang DM (2011) Combined treatment with the mood stabilizers lithium and valproate produces multiple beneficial effects in transgenic mouse models of Huntington’s disease. Neuropsychopharmacology 36:2406–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Epping EA, Paulsen JS (2011) Depression in the early stages of Huntington disease. Neurodegener Dis Manag 1:407–414

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pla P, Orvoen S, Saudou F, David DJ, Humbert S (2014) Mood disorders in Huntington’s disease: from behavior to cellular and molecular mechanisms. Front Behav Neurosci 8:135

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lunkes A, Lindenberg KS, Ben-Haiem L, Weber C, Devys D, Landwehrmeyer GB, Mandel JL, Trottier Y (2002) Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell 10:259–269

    Article  CAS  PubMed  Google Scholar 

  32. Schilling G, Klevytska A, Tebbenkamp AT, Juenemann K, Cooper J, Gonzales V, Slunt H, Poirer M, Ross CA, Borchelt DR (2007) Characterization of huntingtin pathologic fragments in human Huntington disease, transgenic mice, and cell models. J Neuropathol Exp Neurol 66:313–320

    Article  CAS  PubMed  Google Scholar 

  33. Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    Article  CAS  PubMed  Google Scholar 

  34. Schilling G, Jinnah HA, Gonzales V, Coonfield ML, Kim Y, Wood JD, Price DL, Li XJ, Jenkins N, Copeland N, Moran T, Ross CA, Borchelt DR (2001) Distinct behavioral and neuropathological abnormalities in transgenic mouse models of HD and DRPLA. Neurobiol Dis 8:405–418

    Article  CAS  PubMed  Google Scholar 

  35. Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ, Li XJ, Simpson EM, Gutekunst CA, Leavitt BR, Hayden MR (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12:1555–1567

    Article  CAS  PubMed  Google Scholar 

  36. Gray M, Shirasaki DI, Cepeda C, Andre VM, Wilburn B, Lu XH, Tao J, Yamazaki I, Li SH, Sun YE, Li XJ, Levine MS, Yang XW (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28:6182–6195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li XJ, Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch SM, Hayden MR (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181–192

    Article  CAS  PubMed  Google Scholar 

  38. Wegrzynowicz M, Bichell TJ, Soares BD, Loth MK, McGlothan JS, Mori S, Alikhan FS, Hua K, Coughlin JM, Holt HK, Jetter CS, Pomper MG, Osmand AP, Guilarte TR, Bowman AB (2015) Novel BAC mouse model of Huntington’s disease with 225 CAG repeats exhibits an early widespread and stable degenerative phenotype. J Huntingtons Dis 4:17–36

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Raamsdonk JM, Pearson J, Rogers DA, Bissada N, Vogl AW, Hayden MR, Leavitt BR (2005) Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Hum Mol Genet 14:1379–1392

    Article  PubMed  CAS  Google Scholar 

  40. Aziz NA, Van Der Burg JM, Landwehrmeyer GB, Brundin P, Stijnen T, Group ES, Roos RAC (2008) Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 71(19):1506–1513

    Article  CAS  PubMed  Google Scholar 

  41. Pouladi MA, Stanek LM, Xie Y, Franciosi S, Southwell AL, Deng Y, Butland S, Zhang W, Cheng SH, Shihabuddin LS, Hayden MR (2012) Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice. Hum Mol Genet 21:2219–2232

    Article  CAS  PubMed  Google Scholar 

  42. Baldo B, Cheong RY, Petersen A (2014) Effects of deletion of mutant huntingtin in steroidogenic factor 1 neurons on the psychiatric and metabolic phenotype in the BACHD mouse model of Huntington disease. PLoS ONE 9:e107691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Van Raamsdonk JM, Gibson WT, Pearson J, Murphy Z, Lu G, Leavitt BR, Hayden MR (2006) Body weight is modulated by levels of full-length huntingtin. Hum Mol Genet 15:1513–1523

    Article  PubMed  CAS  Google Scholar 

  44. Southwell AL, Franciosi S, Villanueva EB, Xie Y, Winter LA, Veeraraghavan J, Jonason A, Felczak B, Zhang W, Kovalik V, Waltl S, Hall G, Pouladi MA, Smith ES, Bowers WJ, Zauderer M, Hayden MR (2015) Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol Dis 76:46–56

    Article  CAS  PubMed  Google Scholar 

  45. Van Raamsdonk JM, Murphy Z, Selva DM, Hamidizadeh R, Pearson J, Petersen A, Bjorkqvist M, Muir C, Mackenzie IR, Hammond GL, Vogl AW, Hayden MR, Leavitt BR (2007) Testicular degeneration in Huntington disease. Neurobiol Dis 26:512–520

    Article  PubMed  CAS  Google Scholar 

  46. Hult S, Soylu R, Bjorklund T, Belgardt BF, Mauer J, Bruning JC, Kirik D, Petersen A (2011) Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab 13:428–439

    Article  CAS  PubMed  Google Scholar 

  47. Lalic NM, Maric J, Svetel M, Jotic A, Stefanova E, Lalic K, Dragasevic N, Milicic T, Lukic L, Kostic VS (2008) Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 65:476–480

    Article  PubMed  Google Scholar 

  48. Pouladi MA, Xie Y, Skotte NH, Ehrnhoefer DE, Graham RK, Kim JE, Bissada N, Yang XW, Paganetti P, Friedlander RM, Leavitt BR, Hayden MR (2010) Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Hum Mol Genet 19:1528–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aziz NA, Pijl H, Frolich M, van der Graaf AW, Roelfsema F, Roos RA (2009) Increased hypothalamic-pituitary-adrenal axis activity in Huntington’s disease. J Clin Endocrinol Metab 94:1223–1228

    Article  CAS  PubMed  Google Scholar 

  50. Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2005) Plasma testosterone in male patients with Huntington’s disease: relations to severity of illness and dementia. Ann Neurol 57:520–525

    Article  CAS  PubMed  Google Scholar 

  51. Menalled L, El-Khodor BF, Patry M, Suarez-Farinas M, Orenstein SJ, Zahasky B, Leahy C, Wheeler V, Yang XW, MacDonald M, Morton AJ, Bates G, Leeds J, Park L, Howland D, Signer E, Tobin A, Brunner D (2009) Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis 35:319–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen X, Wu J, Lvovskaya S, Herndon E, Supnet C, Bezprozvanny I (2011) Dantrolene is neuroprotective in Huntington’s disease transgenic mouse model. Mol Neurodegener 6:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mantovani S, Gordon R, Li R, Christie DC, Kumar V, Woodruff TM (2016) Motor deficits associated with Huntington’s disease occur in the absence of striatal degeneration in BACHD transgenic mice. Hum Mol Genet 25:1780–1791

    Article  CAS  PubMed  Google Scholar 

  54. Lichter DG, Hershey LA (2010) Before chorea: pre-Huntington mild cognitive impairment. Neurology 75:490–491

    Article  PubMed  Google Scholar 

  55. Giralt A, Saavedra A, Alberch J, Perez-Navarro E (2012) Cognitive dysfunction in Huntington’s disease: humans, mouse models and molecular mechanisms. J Huntingtons Dis 1:155–173

    PubMed  Google Scholar 

  56. Doria JG, Silva FR, de Souza JM, Vieira LB, Carvalho TG, Reis HJ, Pereira GS, Dobransky T, Ribeiro FM (2013) Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington’s disease. Br J Pharmacol 169:909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Southwell AL, Ko J, Patterson PH (2009) Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J Neurosci 29:13589–13602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Van Raamsdonk JM, Pearson J, Slow EJ, Hossain SM, Leavitt BR, Hayden MR (2005) Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci 25:4169–4180

    Article  PubMed  CAS  Google Scholar 

  59. Abada YS, Schreiber R, Ellenbroek B (2013) Motor, emotional and cognitive deficits in adult BACHD mice: a model for Huntington’s disease. Behav Brain Res 238:243–251

    Article  PubMed  Google Scholar 

  60. Aharony I, Ehrnhoefer DE, Shruster A, Qiu X, Franciosi S, Hayden MR, Offen D (2015) A Huntingtin-based peptide inhibitor of caspase-6 provides protection from mutant Huntingtin-induced motor and behavioral deficits. Hum Mol Genet 24:2604–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brooks S, Higgs G, Janghra N, Jones L, Dunnett SB (2012) Longitudinal analysis of the behavioural phenotype in YAC128 (C57BL/6 J) Huntington’s disease transgenic mice. Brain Res Bull 88:113–120

    Article  PubMed  Google Scholar 

  62. Brooks SP, Janghra N, Higgs GV, Bayram-Weston Z, Heuer A, Jones L, Dunnett SB (2012) Selective cognitive impairment in the YAC128 Huntington’s disease mouse. Brain Res Bull 88:121–129

    Article  PubMed  Google Scholar 

  63. Hult Lundh S, Nilsson N, Soylu R, Kirik D, Petersen A (2013) Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of Huntington’s disease. Hum Mol Genet 22:3485–3497

    Article  CAS  PubMed  Google Scholar 

  64. Pouladi MA, Graham RK, Karasinska JM, Xie Y, Santos RD, Petersen A, Hayden MR (2009) Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain 132:919–932

    Article  PubMed  Google Scholar 

  65. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    Article  CAS  PubMed  Google Scholar 

  66. Carroll JB, Lerch JP, Franciosi S, Spreeuw A, Bissada N, Henkelman RM, Hayden MR (2011) Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease. Neurobiol Dis 43:257–265

    Article  CAS  PubMed  Google Scholar 

  67. Teo RT, Hong X, Yu-Taeger L, Huang Y, Tan LJ, Xie Y, To XV, Guo L, Rajendran R, Novati A, Calaminus C, Riess O, Hayden MR, Nguyen HP, Chuang KH, Pouladi MA (2016) Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and BACHD models of Huntington disease. Hum Mol Genet 25:2621–2632

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gatto RG, Chu Y, Ye AQ, Price SD, Tavassoli E, Buenaventura A, Brady ST, Magin RL, Kordower JH, Morfini GA (2015) Analysis of YFP(J16)-R6/2 reporter mice and postmortem brains reveals early pathology and increased vulnerability of callosal axons in Huntington’s disease. Hum Mol Genet 24:5285–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jin J, Peng Q, Hou Z, Jiang M, Wang X, Langseth AJ, Tao M, Barker PB, Mori S, Bergles DE, Ross CA, Detloff PJ, Zhang J, Duan W (2015) Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington’s disease. Hum Mol Genet 24:2508–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rosas HD, Tuch DS, Hevelone ND, Zaleta AK, Vangel M, Hersch SM, Salat DH (2006) Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Mov Disord 21:1317–1325

    Article  PubMed  Google Scholar 

  71. Heng MY, Tallaksen-Greene SJ, Detloff PJ, Albin RL (2007) Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington’s disease. J Neurosci 27:8989–8998

    Article  CAS  PubMed  Google Scholar 

  72. Wheeler VC, Auerbach W, White JK, Srinidhi J, Auerbach A, Ryan A, Duyao MP, Vrbanac V, Weaver M, Gusella JF, Joyner AL, MacDonald ME (1999) Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum Mol Genet 8:115–122

    Article  CAS  PubMed  Google Scholar 

  73. Menalled LB, Sison JD, Dragatsis I, Zeitlin S, Chesselet MF (2003) Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol 465:11–26

    Article  CAS  PubMed  Google Scholar 

  74. Menalled LB, Kudwa AE, Miller S, Fitzpatrick J, Watson-Johnson J, Keating N, Ruiz M, Mushlin R, Alosio W, McConnell K, Connor D, Murphy C, Oakeshott S, Kwan M, Beltran J, Ghavami A, Brunner D, Park LC, Ramboz S, Howland D (2012) Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS ONE 7:e49838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse AB, Ren S, Li XJ, Albin RL, Detloff PJ (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10:137–144

    Article  CAS  PubMed  Google Scholar 

  76. Holter SM et al (2013) A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington’s disease CAG knock-in mice. PLoS ONE 8:e80923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Phan J, Hickey MA, Zhang P, Chesselet MF, Reue K (2009) Adipose tissue dysfunction tracks disease progression in two Huntington’s disease mouse models. Hum Mol Genet 18:1006–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wheeler VC, White JK, Gutekunst CA, Vrbanac V, Weaver M, Li XJ, Li SH, Yi H, Vonsattel JP, Gusella JF, Hersch S, Auerbach W, Joyner AL, MacDonald ME (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 9:503–513

    Article  CAS  PubMed  Google Scholar 

  79. Hickey MA, Kosmalska A, Enayati J, Cohen R, Zeitlin S, Levine MS, Chesselet MF (2008) Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington’s disease mice. Neuroscience 157:280–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lawrence AD, Sahakian BJ, Hodges JR, Rosser AE, Lange KW, Robbins TW (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119:1633–1645

    Article  PubMed  Google Scholar 

  81. Curtin PC, Farrar AM, Oakeshott S, Sutphen J, Berger J, Mazzella M, Cox K, He D, Alosio W, Park LC, Howland D, Brunner D (2015) Cognitive training at a young age attenuates deficits in the zQ175 mouse model of HD. Front Behav Neurosci 9:361

    PubMed  Google Scholar 

  82. Heikkinen T, Lehtimaki K, Vartiainen N, Puolivali J, Hendricks SJ, Glaser JR, Bradaia A, Wadel K, Touller C, Kontkanen O, Yrjanheikki JM, Buisson B, Howland D, Beaumont V, Munoz-Sanjuan I, Park LC (2012) Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS ONE 7:e50717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smith GA, Rocha EM, McLean JR, Hayes MA, Izen SC, Isacson O, Hallett PJ (2014) Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington’s disease. Hum Mol Genet 23:4510–4527

    Article  CAS  PubMed  Google Scholar 

  84. Brooks S, Higgs G, Jones L, Dunnett SB (2012) Longitudinal analysis of the behavioural phenotype in Hdh(CAG)150 Huntington’s disease knock-in mice. Brain Res Bull 88:182–188

    Article  PubMed  Google Scholar 

  85. Orvoen S, Pla P, Gardier AM, Saudou F, David DJ (2012) Huntington’s disease knock-in male mice show specific anxiety-like behaviour and altered neuronal maturation. Neurosci Lett 507:127–132

    Article  CAS  PubMed  Google Scholar 

  86. Ciamei A, Detloff PJ, Morton AJ (2015) Progression of behavioural despair in R6/2 and Hdh knock-in mouse models recapitulates depression in Huntington’s disease. Behav Brain Res 291:140–146

    Article  PubMed  Google Scholar 

  87. Wheeler VC, Gutekunst CA, Vrbanac V, Lebel LA, Schilling G, Hersch S, Friedlander RM, Gusella JF, Vonsattel JP, Borchelt DR, MacDonald ME (2002) Early phenotypes that presage late-onset neurodegenerative disease allow testing of modifiers in Hdh CAG knock-in mice. Hum Mol Genet 11:633–640

    Article  CAS  PubMed  Google Scholar 

  88. Lerner RP, Trejo Martinez Ldel C, Zhu C, Chesselet MF, Hickey MA (2012) Striatal atrophy and dendritic alterations in a knock-in mouse model of Huntington’s disease. Brain Res Bull 87:571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cummings DM, Cepeda C, Levine MS (2010) Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington’s disease. ASN Neuro 2:e00036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Yu ZX, Li SH, Evans J, Pillarisetti A, Li H, Li XJ (2003) Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington’s disease. J Neurosci 23:2193–2202

    CAS  PubMed  Google Scholar 

  91. Baldo B, Paganetti P, Grueninger S, Marcellin D, Kaltenbach LS, Lo DC, Semmelroth M, Zivanovic A, Abramowski D, Smith D, Lotz GP, Bates GP, Weiss A (2012) TR-FRET-based duplex immunoassay reveals an inverse correlation of soluble and aggregated mutant huntingtin in huntington’s disease. Chem Biol 19:264–275

    Article  CAS  PubMed  Google Scholar 

  92. Marcellin D, Abramowski D, Young D, Richter J, Weiss A, Marcel A, Maassen J, Kauffmann M, Bibel M, Shimshek DR, Faull RL, Bates GP, Kuhn RR, Van der Putten PH, Schmid P, Lotz GP (2012) Fragments of HdhQ150 mutant huntingtin form a soluble oligomer pool that declines with aggregate deposition upon aging. PLoS ONE 7:e44457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, Almqvist EW, Turner D, Bachoud-Levi AC, Simpson SA, Delatycki M, Maglione V, Hayden MR, Donato SD (2003) Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain 126:946–955

    Article  PubMed  Google Scholar 

  94. Heng MY, Detloff PJ, Paulson HL, Albin RL (2010) Early alterations of autophagy in Huntington disease-like mice. Autophagy 6:1206–1208

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dougherty SE, Reeves JL, Lesort M, Detloff PJ, Cowell RM (2013) Purkinje cell dysfunction and loss in a knock-in mouse model of Huntington disease. Exp Neurol 240:96–102

    Article  CAS  PubMed  Google Scholar 

  96. Ehrlich ME (2012) Huntington’s disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease. Neurotherapeutics 9:270–284

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81:294–330

    Article  CAS  PubMed  Google Scholar 

  98. Niccolini F, Politis M (2014) Neuroimaging in Huntington’s disease. World J Radiol 6:301–312

    Article  PubMed  PubMed Central  Google Scholar 

  99. von Horsten S et al (2003) Transgenic rat model of Huntington’s disease. Hum Mol Genet 12:617–624

    Article  CAS  Google Scholar 

  100. Kirch RD, Meyer PT, Geisler S, Braun F, Gehrig S, Langen KJ, von Horsten S, Nikkhah G, Cassel JC, Dobrossy MD (2013) Early deficits in declarative and procedural memory dependent behavioral function in a transgenic rat model of Huntington’s disease. Behav Brain Res 239:15–26

    Article  PubMed  Google Scholar 

  101. Nguyen HP, Kobbe P, Rahne H, Worpel T, Jager B, Stephan M, Pabst R, Holzmann C, Riess O, Korr H, Kantor O, Petrasch-Parwez E, Wetzel R, Osmand A, von Horsten S (2006) Behavioral abnormalities precede neuropathological markers in rats transgenic for Huntington’s disease. Hum Mol Genet 15:3177–3194

    Article  CAS  PubMed  Google Scholar 

  102. Petrasch-Parwez E, Nguyen HP, Lobbecke-Schumacher M, Habbes HW, Wieczorek S, Riess O, Andres KH, Dermietzel R, Von Horsten S (2007) Cellular and subcellular localization of Huntingtin [corrected] aggregates in the brain of a rat transgenic for Huntington disease. J Comp Neurol 501:716–730

    Article  PubMed  Google Scholar 

  103. Kantor O, Temel Y, Holzmann C, Raber K, Nguyen HP, Cao C, Turkoglu HO, Rutten BP, Visser-Vandewalle V, Steinbusch HW, Blokland A, Korr H, Riess O, von Horsten S, Schmitz C (2006) Selective striatal neuron loss and alterations in behavior correlate with impaired striatal function in Huntington’s disease transgenic rats. Neurobiol Dis 22:538–547

    Article  PubMed  Google Scholar 

  104. Winkler C, Gil JM, Araujo IM, Riess O, Skripuletz T, von Horsten S, Petersen A (2006) Normal sensitivity to excitotoxicity in a transgenic Huntington’s disease rat. Brain Res Bull 69:306–310

    Article  CAS  PubMed  Google Scholar 

  105. Fink KD, Rossignol J, Crane AT, Davis KK, Bavar AM, Dekorver NW, Lowrance SA, Reilly MP, Sandstrom MI, von Horsten S, Lescaudron L, Dunbar GL (2012) Early cognitive dysfunction in the HD 51 CAG transgenic rat model of Huntington’s disease. Behav Neurosci 126:479–487

    Article  PubMed  Google Scholar 

  106. Casteels C, Vandeputte C, Rangarajan JR, Dresselaers T, Riess O, Bormans G, Maes F, Himmelreich U, Nguyen H, Van Laere K (2011) Metabolic and type 1 cannabinoid receptor imaging of a transgenic rat model in the early phase of Huntington disease. Exp Neurol 229:440–449

    Article  CAS  PubMed  Google Scholar 

  107. Kandasamy M, Couillard-Despres S, Raber KA, Stephan M, Lehner B, Winner B, Kohl Z, Rivera FJ, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Horsten S, Aigner L (2010) Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease. J Neuropathol Exp Neurol 69:717–728

    Article  PubMed  Google Scholar 

  108. Cao C, Temel Y, Blokland A, Ozen H, Steinbusch HW, Vlamings R, Nguyen HP, von Horsten S, Schmitz C, Visser-Vandewalle V (2006) Progressive deterioration of reaction time performance and choreiform symptoms in a new Huntington’s disease transgenic ratmodel. Behav Brain Res 170:257–261

    Article  PubMed  Google Scholar 

  109. Urbach YK, Raber KA, Canneva F, Plank AC, Andreasson T, Ponten H, Kullingsjo J, Nguyen HP, Riess O, von Horsten S (2014) Automated phenotyping and advanced data mining exemplified in rats transgenic for Huntington’s disease. J Neurosci Methods 234:38–53

    Article  PubMed  Google Scholar 

  110. Zeef DH, van Goethem NP, Vlamings R, Schaper F, Jahanshahi A, Hescham S, von Horsten S, Prickaerts J, Temel Y (2012) Memory deficits in the transgenic rat model of Huntington’s disease. Behav Brain Res 227:194–198

    Article  CAS  PubMed  Google Scholar 

  111. Yu-Taeger L, Petrasch-Parwez E, Osmand AP, Redensek A, Metzger S, Clemens LE, Park L, Howland D, Calaminus C, Gu X, Pichler B, Yang XW, Riess O, Nguyen HP (2012) A novel BACHD transgenic rat exhibits characteristic neuropathological features of Huntington disease. J Neurosci 32:15426–15438

    Article  CAS  PubMed  Google Scholar 

  112. Adjeroud N, Yague S, Yu-Taeger L, Bozon B, Leblanc-Veyrac P, Riess O, Allain P, Nguyen HP, Doyere V, El Massioui N (2015) Reduced impact of emotion on choice behavior in presymptomatic BACHD rats, a transgenic rodent model for Huntington Disease. Neurobiol Learn Mem 125:249–257

    Article  PubMed  Google Scholar 

  113. Clemens LE, Weber JJ, Wlodkowski TT, Yu-Taeger L, Michaud M, Calaminus C, Eckert SH, Gaca J, Weiss A, Magg JC, Jansson EK, Eckert GP, Pichler BJ, Bordet T, Pruss RM, Riess O, Nguyen HP (2015) Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat. Brain 138:3632–3653

    Article  PubMed  Google Scholar 

  114. Clemensson EK, Clemensson LE, Riess O, Nguyen HP (2017) The BACHD Rat model of huntington disease shows signs of fronto-striatal dysfunction in two operant conditioning tests of short-term memory. PLoS ONE 12:e0169051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. El Massioui N, Lamirault C, Yague S, Adjeroud N, Garces D, Maillard A, Tallot L, Yu-Taeger L, Riess O, Allain P, Nguyen HP, von Horsten S, Doyere V (2016) Impaired Decision making and loss of inhibitory-control in a rat model of Huntington disease. Front Behav Neurosci 10:204

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lamirault C, Yu-Taeger L, Doyere V, Riess O, Nguyen HP, El Massioui N (2017) Altered reactivity of central amygdala to GABAAR antagonist in the BACHD rat model of Huntington disease. Neuropharmacology 123:136–147

    Article  CAS  PubMed  Google Scholar 

  117. Manfre G, Doyere V, Bossi S, Riess O, Nguyen HP, El Massioui N (2016) Impulsivity trait in the early symptomatic BACHD transgenic rat model of Huntington disease. Behav Brain Res 299:6–10

    Article  PubMed  Google Scholar 

  118. Weber JJ, Ortiz Rios MM, Riess O, Clemens LE, Nguyen HP (2016) The calpain-suppressing effects of olesoxime in Huntington’s disease. Rare Dis 4:e1153778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Yu-Taeger L, Bonin M, Stricker-Shaver J, Riess O, Nguyen HH (2017) Dysregulation of gene expression in the striatum of BACHD rats expressing full-length mutant huntingtin and associated abnormalities on molecular and protein levels. Neuropharmacology 117:260–272

    Article  CAS  PubMed  Google Scholar 

  120. Nagy D, Tingley FD 3rd, Stoiljkovic M, Hajos M (2015) Application of neurophysiological biomarkers for Huntington’s disease: evaluating a phosphodiesterase 9A inhibitor. Exp Neurol 263:122–131

    Article  CAS  PubMed  Google Scholar 

  121. Abada YS, Nguyen HP, Schreiber R, Ellenbroek B (2013) Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for huntington disease. PLoS ONE 8:e68584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Abada YS, Nguyen HP, Ellenbroek B, Schreiber R (2013) Reversal learning and associative memory impairments in a BACHD rat model for Huntington disease. PLoS ONE 8:e71633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jansson EK, Clemens LE, Riess O, Nguyen HP (2014) Reduced motivation in the BACHD rat model of Huntington disease is dependent on the choice of food deprivation strategy. PLoS ONE 9:e105662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Gouarne C, Tardif G, Tracz J, Latyszenok V, Michaud M, Clemens LE, Yu-Taeger L, Nguyen HP, Bordet T, Pruss RM (2013) Early deficits in glycolysis are specific to striatal neurons from a rat model of huntington disease. PLoS ONE 8:e81528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stricker-Shaver, J., Novati, A., Yu-Taeger, L., Nguyen, H.P. (2018). Genetic Rodent Models of Huntington Disease. In: Nóbrega, C., Pereira de Almeida, L. (eds) Polyglutamine Disorders. Advances in Experimental Medicine and Biology, vol 1049. Springer, Cham. https://doi.org/10.1007/978-3-319-71779-1_2

Download citation

Publish with us

Policies and ethics