Skip to main content

Neural Phase Transitions That Made Us Mammals

  • Conference paper
Computational Neuroscience: Cortical Dynamics (NN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3146))

Included in the following conference series:

Abstract

I review two studies that both deal with radical changes in neuronal circuitry, presumed to have occurred at the transition from early reptilians to mammals: the lamination of sensory cortex and the differentiation into sub-fields of the mammalian hippocampus. In neither case the qualitative structural change seems to be accompanied by an equally dramatic functional change in the operation of those circuits. Both studies discuss the evolution of cortical networks in terms of their computations, quantified by simulating simplified formal models. The models can be conceived as variants of a basic autoassociative neural network model, whose storage capacity plays an important role in the results. Both studies dwell on the interrelationship between qualitative and quantitative change, and both studies include, as a necessary ingredient of the relevant computational mechanism, a simple feature of pyramidal cell biophysics: firing rate adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge Univ. Press, Cambridge (1991)

    Google Scholar 

  2. Allman, J.: Evolution of neocortex. In: Jones, E.G., Peters, A. (eds.) Cerebral Cortex. Comparative Structure and Evolution of Cerebral Cortex, vol. 8A, pp. 269–283. Plenum Press, New York (1990)

    Google Scholar 

  3. Amaral, D.G., et al.: Neurons, numbers and the hippocampal network. Progress in Brain Research 83, 1–11 (1990)

    Article  Google Scholar 

  4. Amit, D.J.: Modelling Brain Function. Cambridge Univ. Press, New York (1989)

    Google Scholar 

  5. Amit, D.J.: The Hebbian paadigm reintegrated: local reverberations as internal representations. Behavioral and Brain Sciences 18, 617–657 (1995)

    Article  Google Scholar 

  6. Amit, D.J., Brunel, N.: Dynamics of a recurrent network of spiking neurons before and following learning. Network: Comput Neural Syst. 1, 381 (1997)

    Article  Google Scholar 

  7. Batardiere, A., et al.: Area-specific laminar distribution of cortical feedback neurons projecting to cat area 17: Quantitative analysis in the adult and during ontogeny. J. Comp. Neurol. 396, 493–510 (1998)

    Article  Google Scholar 

  8. Battaglia, F.P., Treves, A.: Stable and rapid recurrent processing in realistic autoassociative memories. Neural Computation 10, 431–450 (1998a)

    Article  Google Scholar 

  9. Battaglia, F.P., Treves, A.: Attractor neural networks storing multiple space representations: a model for hippocampal place fields. Physical Review E 58, 7738–7753 (1998b)

    Article  Google Scholar 

  10. Bingman, V.P., Jones, T.-J.: Sun-compass based spatial learning impaired in homing pigeons with hippocampal lesions. Journal of Neuroscience 14, 6687–6694 (1994)

    Google Scholar 

  11. Bliss, T.V., Lomo, T.: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology 232, 331–356 (1973)

    Google Scholar 

  12. Braitenberg, V.: Cortical architectonics: general and areal. In: Brazier, M.A.B., Petsche, H. (eds.) Architectonics of the cerebral cortex, Raven, New York (1978)

    Google Scholar 

  13. Braitenberg, V., Schuz, A.: Anatomy of the Cortex. Springer, Berlin (1991)

    Google Scholar 

  14. Carroll, R.L.: Vertebrate Paleontology and Evolution. W H Freeman & Co., New York (1988)

    Google Scholar 

  15. Clayton, N., Krebs, J.R.: Memory in food-storing birds: from behaviour to brain. Current Opinion in Neurobiology 5, 149–154 (1995)

    Article  Google Scholar 

  16. Clayton, N.S., Griffiths, D.P., Emery, N.J., Dickinson, A.: Elements of episodiclike memory in animals. Philosophical Transactions of the Royal Society of London B 356, 1483–1491 (2001)

    Article  Google Scholar 

  17. Collingridge, G.L., Bliss, T.V.: Memories of NMDA receptors and LTP. Trends in Neuroscience 18, 54–56 (1995)

    Article  Google Scholar 

  18. DeFelipe, J., et al.: Microstructure of the neocortex: comparative aspects. J. Neurocytol. 31, 299–316 (2002)

    Article  Google Scholar 

  19. Diamond, I.T., Hall, W.C.: Evolution of neocortex. Science 164, 251–262 (1969)

    Article  Google Scholar 

  20. Diamond, I.T., et al.: Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus. J. Comp. Neurol. 242, 610 (1985)

    Article  Google Scholar 

  21. Donoghue, J.P., et al.: Evidence for two organizational plans in the somatic sensory-motor cortex in the rat. J. Comp. Neurol. 183, 647–666 (1979)

    Article  Google Scholar 

  22. Erickson, R.P., et al.: Organization of the posterior dorsal thalamus of the hedgehog. J. Comp. Neurol. 131, 103–130 (1967)

    Article  Google Scholar 

  23. Finlay, B.L., Darlington, R.B.: Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995)

    Article  Google Scholar 

  24. Gardner-Medwin, A.R.: The recall of events through the learning of associations between their parts. Proceedings of the Royal Society of London B 194, 375–402 (1976)

    Article  Google Scholar 

  25. Haberly, L.B.: Comparative aspects of olfactory cortex. In: Jones, E.G., Peters, A. (eds.) Cerebral Cortex. Comparative Structure and Evolution of Cerebral Cortex, vol. 8B, pp. 137–166. Plenum Press, New York (1990)

    Google Scholar 

  26. Hasselmo, M.E., Schnell, E.: Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: Computational modeling and brain slice physiology. Journal of Neuroscience 14, 3898–3914 (1994)

    Google Scholar 

  27. Hasselmo, M., et al.: Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. Journal of Neuroscience 15, 5249–5262 (1995)

    Google Scholar 

  28. Hasselmo, M., et al.: Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in hippocampus. Hippocampus 6, 693–708 (1996)

    Article  Google Scholar 

  29. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Aca. Sci. USA 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  30. Jerison, H.J.: In: Jones, E.G., Peters, A. (eds.) Cerebral Cortex. Comparative Structure and Evolution of Cerebral Cortex, vol. 8A, pp. 285–309. Plenum Press, New York (1990)

    Google Scholar 

  31. Jones, E.G.: Viewpoint: the core and matrix of thalamic organization. Neuroscience 85, 331–345 (1998)

    Article  Google Scholar 

  32. Kaas, J.H.: In: Contributions to sensory physiology, vol. 7, pp. 201–240. Academic Press, New York (1982)

    Google Scholar 

  33. Kesner, R.P., et al.: Subregional analysis of hippocampal function in the rat. In: Squire, L.R., Schacter, D.L. (eds.) Neuropsychology of Memory, vol. 3, Guilford Press, New York (2002)

    Google Scholar 

  34. Krubitzer, L.: The organization of neocortex in mammals: are species differences really so different? Trends Neurosci. 18, 408–417 (1995)

    Article  Google Scholar 

  35. Lassalle, J.M., et al.: Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiol. Lear. Mem. 73, 243–257 (2000)

    Article  Google Scholar 

  36. Lee, I., et al.: Differential coherence of CA1 vs CA3 place field ensembles in cue-conflict environments. Soc Neurosci abs 29, 91.11 (2003)

    Google Scholar 

  37. Lee, I., et al.: Network dynamics for pattern completion in the CA3 field of the hippocampus (2004) (submitted)

    Google Scholar 

  38. Lende, R.A.: Cerebral cortex: a sensorimotor amalgam in the Marsupialia. Science 141, 730–732 (1963)

    Article  Google Scholar 

  39. Leutgeb, S., et al.: Differential representation of context in hippocampal areas CA3 and CA1. Soc. Neurosci. abs. 29, 91.5 (2003)

    Google Scholar 

  40. Leutgeb, S., et al.: Distinct ensemble codes in hippocampal areas CA3 and CA1 (2004) (submitted)

    Google Scholar 

  41. Lorente de Nó, R.: Architectonics and structure of the cerebral cortex. In: Fulton, J.F. (ed.) Physiology of the Nervous System, pp. 291–330. Oxford University Press, New York (1938)

    Google Scholar 

  42. Marr, D.: Simple memory: a theory for archicortex. Phil. Trans. Roy. Soc (London) B 262, 23–81 (1971)

    Article  Google Scholar 

  43. Nicoll, A., Blakemore, C.: Patterns of local connectivity in the neocortex. Neural Comput. 5, 665–668 (1993)

    Article  Google Scholar 

  44. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Research 34, 171–175 (1971)

    Article  Google Scholar 

  45. Rauschecker, J.P., et al.: Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111–114 (1995)

    Article  Google Scholar 

  46. Rockel, A.J., et al.: The basic uniformity in structure of the neocortex. Brain 103, 221–224 (1980)

    Article  Google Scholar 

  47. Rolls, E.T., Treves, A.: Neural Networks and Brain. Oxford University Press, Oxford (1998)

    Google Scholar 

  48. Treves, A.: Graded-response neurons and information encoding. Phys. Rev. A 42, 2418 (1990)

    Article  Google Scholar 

  49. Treves, A., Rolls, E.T.: Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2, 189–199 (1992)

    Article  Google Scholar 

  50. Treves A (1995) Quantitative estimate of the information relayed by the Schaffer collaterals. J Comput Neurosci 2:259-272

    Google Scholar 

  51. Treves A et al (1996) How much of the hippocampus can be explained by functional constraints? Hippocampus 6:666-674

    Google Scholar 

  52. Treves A (2001) In Handbook of Biological Physics, vol. 4: Neuro-Informatics and Neural Modelling, eds Moss F & Gielen S (Elsevier, Amsterdam) pp. 825-852

    Google Scholar 

  53. Treves A (2003) Computational constraints that may have favoured the lamination of sensory cortex, J Comput Neurosci 14:271-282

    Google Scholar 

  54. Treves A (2004) Computational constraints between retrieving the past and predicting the future, and the CA3-CA1 differentiation. Hippocampus: in press

    Google Scholar 

  55. Ulinski PS (1990) The cerebral cortex of reptiles, In Cerebral Cortex, vol. 8A: Comparative Structure and Evolution of Cerebral Cortex, eds EG Jones & A Peters (Plenum Press, New York) pp 139-215

    Google Scholar 

  56. Whitfield IC (1979) The object of the sensory cortex. Brain Behav Evol 16:129-154

    Google Scholar 

  57. Willshaw D & Buckingham J (1990) An assessment of Marr’s theory of the hippocampus as a temporary memory store. Philosophical Transaction of the Royal Society of London B 329:205-215

    Google Scholar 

  58. Wilson EO (1975) Sociobiology. The New Synthesis (Harvard Univ. Press, Cambridge, MA)

    Google Scholar 

  59. Yoshioka T et al (1992) Intrinsic lattice connections of macaque monkey visual cortical area V4. J. Neurosci. 12:2785-2802

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Treves, A. (2004). Neural Phase Transitions That Made Us Mammals. In: Érdi, P., Esposito, A., Marinaro, M., Scarpetta, S. (eds) Computational Neuroscience: Cortical Dynamics. NN 2003. Lecture Notes in Computer Science, vol 3146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27862-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27862-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22566-9

  • Online ISBN: 978-3-540-27862-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics