Skip to main content

Chaotic Neuron Dynamics, Synchronization, and Feature Binding

  • Conference paper
Computational Neuroscience: Cortical Dynamics (NN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3146))

Included in the following conference series:

Abstract

Neuroscience studies how a large collection of coupled neurons combines external data with internal memories into coherent patterns of meaning. Such a process is called “feature binding”, insofar as the coherent patterns combine together features which are extracted separately by specialized cells, but which do not make sense as isolated items. A powerful conjecture, with experimental confirmation, is that feature binding implies the mutual synchronization of axonal spike trains in neurons which can be far away and yet contribute to a well defined perception by sharing the same time code.

Based on recent investigations of homoclinic chaotic systems, and how they mutually synchronize, a novel conjecture on the dynamics of the single neuron is formulated. Homoclinic chaos implies the recurrent return of the dynamical trajectory to a saddle focus, in whose neighbourhood the system susceptibility (response to an external perturbation) is very high and hence it is very easy to lock to an external stimulus. Thus homoclinic chaos appears as the easiest way to encode information by a train of equal spikes occurring at erratic times.

In conventional measurements we read the number indicated by a meter’s pointer and assign to the measured object a set position corresponding to that number. On the contrary, a time code requires a decision time T sufficiently longer than the minimal interspike separation t 1, so that the total number of different set elements is related in some way to the size \(\frac{T}{t_1}\). In neuroscience it has been shown that T ~ 200ms while t 1 ~ 3 ms .

In a sensory layer of the brain neocortex an external stimulus spreads over a large assembly of neurons building up a collective state, thus synchronization of trains of different individual neurons is the basis of a coherent perception.

The percept space can be given a metric structure by introducing a distance measure. This distance is conjugate of the duration time in the sense that an uncertainty relation is associated with time limited perceptions. If the synchronized train is truncated at a time ΔT < T, then the corresponding identification of a percept P carries an uncertainty cloud ΔP. As two uncertainty clouds overlap, interference occurs; this is a quantum behavior. Thus the quantum formalism is not exclusively limited to microscopic phenomena, but here it is conjectured to be the appropriate description of truncated perceptions.

This quantum feature is not related to Planck’s action but to the details of the perceptual chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaria, E., Arecchi, F.T., Di Garbo, A., Meucci, R.: Synchronization of homoclinic chaos. Phys. Rev. Lett. 86, 791 (2001)

    Article  Google Scholar 

  2. Arecchi, F.T.: Instabilities and chaos in single mode homogeneous line lasers. In: Arecchi, F.T., Harrison, R.G. (eds.) Instabilities and chaos in quantum optics. Springer Series Synergetics, vol. 34, pp. 9–48 (1987)

    Google Scholar 

  3. Arecchi, F.T., Meucci, R., Gadomski, W.: Laser dynamics with competing instabilities. Phys. Rev. Lett. 58, 2205 (1987)

    Article  Google Scholar 

  4. Arecchi, F.T.: Complexity and adaptation: a strategy common to scientific modeling and perception. Cognitive Processing 1, 23 (2000)

    Google Scholar 

  5. Arecchi, F.T., Meucci, R., Allaria, E., Di Garbo, A., Tsimring, L.S.: Delayed selfsynchronization in homoclinic chaos. Phys. Rev. E 65, 46237 (2002)

    Article  Google Scholar 

  6. Arecchi, F.T., Allaria, E., Leyva, I.: A propensity criterion for networking in an array of coupled chaotic systems. Phys. Rev. Lett. 91, 234101 (2003)

    Article  Google Scholar 

  7. Edelman, G.M., Tononi, G.: Neural Darwinism: The brain as a selectional system. In: Cornwell, J. (ed.) Nature’s Imagination: The frontiers of scientific vision, pp. 78–100. Oxford University Press, New York

    Google Scholar 

  8. Grossberg, S.: The attentive brain. The American Scientist 83, 439 (1985)

    Google Scholar 

  9. Hubel D.H.: Eye, brain and vision. Scientific American Library (22), W.H. Freeman, New York (1995)

    Google Scholar 

  10. Izhikevich, E.M.: Neural Excitability, Spiking, and Bursting. Int. J. of Bifurcation and Chaos. 10, 1171 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Julesz, B.: Early vision and focal attention. Reviews of Modern Physics 63, 735–772 (1991)

    Article  Google Scholar 

  12. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev.Lett. 54, 857 (1985)

    Article  MathSciNet  Google Scholar 

  13. Leyva, I., Allaria, E., Boccaletti, S., Arecchi, F.T.: Competition of synchronization patterns in arrays of homoclinic chaotic systems. Phys. Rev. E 68, 066209 (2003)

    Article  Google Scholar 

  14. Libet, B., Wright, E.W., Feinstein, B., Pearl, D.K.: Subjective referral of the timing for a conscious sensory experience. Brain 102, 193 (1979)

    Article  Google Scholar 

  15. MacKay, D., McCulloch, W.S.: The limiting information capacity of a neuronal link. Bull. Math. Biophys. 14, 127 (1952)

    Article  Google Scholar 

  16. MacLeod, K., Backer, A., Laurent, G.: Who reads temporal information contained across synchronized and oscillatory spike trains? Nature 395, 693–698 (1988)

    Google Scholar 

  17. Mallat, S.: A wavelet tour of signal processing. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  18. Meucci, R., Di Garbo, A., Allaria, E., Arecchi, F.T.: Autonomous Bursting in a Homoclinic System. Phys. Rev. Lett. 88, 144101 (2002)

    Article  Google Scholar 

  19. Omnès, R.: The interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  20. Penrose, R.: Shadows of the Mind. Oxford University Press, New York (1994)

    Google Scholar 

  21. Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes: Exploring the neural code. MIT Press, Cambridge (1997)

    Google Scholar 

  22. Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., Varela, F.: Perception’s shadow:Long-distance synchronization in the human brain. Nature 397, 340–343 (1999)

    Google Scholar 

  23. Singer, W.E., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555 (1995)

    Article  Google Scholar 

  24. Softky, W.: Simple codes versus efficient codes. Current Opinions in Neurobiology 5, 239 (1995)

    Article  Google Scholar 

  25. Strong, S.P., et al.: Entropy and information in neural spike trains. Phys. Rev. Lett. 80, 197 (1998)

    Article  Google Scholar 

  26. Turing, A.: Computing Machinery and Intelligence. Mind 59, 433 (1950)

    Article  MathSciNet  Google Scholar 

  27. Von der Malsburg, C.: The correlation theory of brain function. In: Domani, E., Van Hemmen, J.L., Schulten, K. (eds.) Models of neural networks II, Springer, Berlin (1981) (reprinted)

    Google Scholar 

  28. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40 (1963)

    Google Scholar 

  29. Zhou, C.S., Kurths, J., Allaria, E., Boccaletti, S., Meucci, R., Arecchi, F.T.: Noise induced synchronization and coherence resonance of homoclinic chaos. Phys. Rev. E 67, 015205 and 67, 066220 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arecchi, F.T. (2004). Chaotic Neuron Dynamics, Synchronization, and Feature Binding. In: Érdi, P., Esposito, A., Marinaro, M., Scarpetta, S. (eds) Computational Neuroscience: Cortical Dynamics. NN 2003. Lecture Notes in Computer Science, vol 3146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27862-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27862-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22566-9

  • Online ISBN: 978-3-540-27862-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics