Skip to main content

Itinerant Dynamics of Class I* Neurons Coupled by Gap Junctions

  • Conference paper
Computational Neuroscience: Cortical Dynamics (NN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3146))

Included in the following conference series:

Abstract

Although it is generally recognized that “interneurons generate a variety of synchronous inhibitory rhythms in the neocortex...”(J. R. Gibson et al. ) and they “may play a key role in coordinating cortical activity...”(M. Galarreta & S. Hestrin), little is known how they behave in the in vivo neocortex. A salient property of some interneuron systems in the neocortex is that they are coupled by gap junctions (GJs) – a kind of electrical couplings very intensively between the same type of interneurons. In our previous studies, we reported the theoretical possibility that a class of neuron systems may exhibit spatio-temporal chaos when they are coupled by GJs, while the individual neurons, when isolated, exhibit only simple repetitive firings. This dynamics is emergent, and unveils only when cells are coupled by GJs. Mathematically, this phenomenon could be an expression of chaotic itinerancy among pseudo-attractors (or, attractor ruins). In view of the ubiquity of GJs – there are at least five distinct interneuron systems coupled by GJs in the six layers of the neocortex, and in view of the significance of the concept of chaotic itinerancy in memory dynamics we give in this lecture a review about general property and collective dynamics of GJ-coupled neuronal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blatow, M., et al.: A Novel Network of Multipolar Bursting Interneurons generates Threta Frequency Oscillations in Neocortex. Neuron 38, 805–817 (2003)

    Article  Google Scholar 

  2. Cauli, B., et al.: Molecular and physiological diversity of cortical nonpyramidal cells. J. Neurosci., 3894–3906 (1997)

    Google Scholar 

  3. Connor, J.A., et al.: Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophys. J. 18, 81–102 (1977)

    Article  Google Scholar 

  4. Connor, J.A., Stevens, C.F.: Inward and delayed outward membrane currents in isolated neural somata under volatage clamp. J. Physiol. 213, 1–19 (1971)

    Google Scholar 

  5. Connor, J.A., Stevens, C.F.: Volatge clamp studies of a transient outward membrane current in gastropod neural somata. J. Physiol. 213, 21–30 (1971)

    Google Scholar 

  6. Connor, J.A., Stevens, C.F.: Prediction of repetitive firing behaviour from volatage clamp data on an isolated neurone soma. J. Physiol. 213, 31–53 (1971)

    Google Scholar 

  7. Dantzker, E.L., Callaway, E.M.: Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nature Neuroscience 3, 701–707 (2000)

    Article  Google Scholar 

  8. Ermentrout, B.R., Type, I.: membranes, phase resetting curves, and synchrony. Neural Computation 8, 979–1001 (1996)

    Article  Google Scholar 

  9. FitzHugh, R.: Impulses and physiological states in models of nerve membrane. Biophy. J. 1, 445 (1961)

    Article  Google Scholar 

  10. FitzHugh, R.: Mathematical Models of Excitation and Propagation in Nerve. In: Schwan, H.P. (ed.) Biological Engineering, pp. 1–85. McGraw-Hill, New York (1969)

    Google Scholar 

  11. Fujii, H., Tsuda, I.: Neocortical gap junction-coupled interneuron systems may induce chaotic behavior itinerant among quasi-attractors exhibiting transient synchrony. To appear in Neurocomputing

    Google Scholar 

  12. Galarreta, M., Hestrin, S.: A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75 (1999)

    Article  Google Scholar 

  13. Gibson, J.R., et al.: Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999)

    Article  Google Scholar 

  14. Gray, C., Engel, A.K., Koenig, P., Singer, W.: Synchronization of oscillatory neuronal responses in cat striate cortex: Temporal properties. Visual Neuroscience 8, 337–347 (1992)

    Article  Google Scholar 

  15. Han, S.K., Kurrer, C., Kuramoto, Y.: Diffusive interaction leading to dephasing of coupled neural oscillators. Intern. J. Bifurc. & Chaos 7(4), 869–876 (1997)

    Article  Google Scholar 

  16. Han, S.K., Kurrer, C., Kuramoto, Y.: Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75, 3190–3193 (1995)

    Article  Google Scholar 

  17. Hansel, D., Sompolinsky, H.: Synchronization and computataion in achaotic neural network. Phys. Rev Lett. 68, 718–721 (1992)

    Article  Google Scholar 

  18. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two firstorder differential equations. Nature 296, 162–164 (1982)

    Article  Google Scholar 

  19. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proceedings of Royal Soceity of London 221, 87–102 (1984)

    Article  Google Scholar 

  20. Hodgkin, A.L.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiology 107, 165–181 (1948)

    Google Scholar 

  21. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current an application to conduction and excitation in nerve. J. of Physiology 117, 500–544 (1954)

    Google Scholar 

  22. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurcation and Chaos 10, 1171–1266 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kaas-Petersen, C.: Bifurcations in the Rose-Hindmarsh model and the Chay model. In: Degn, H., Holden, A.V., Olsen, L.F. (eds.) Chaos in Biological Systems, pp. 183–190. Plenum, New York (1987)

    Google Scholar 

  24. Milnor, J.: On the concept of attractor. Communications in Mathematical Physics 99, 177–195 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nagumo, J., Arimoto, J., Yoshizawa, S.: An active pulse transmission line simulating a nerve axon. Proc. of IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  26. Nakano, M., Yokoyama, H., Fujii, H.: Spatio-temporal Chaos in Gap Junction- Coupled Class I Neurons Exhibiting Saddle-Node Bifurcations (in Japanese, Acta Humanistica et Scientifica Universitatis Sangio Kyotiensis - Natural Science Series, vol. 32 (2003); Nakano, M. Spatio-temporal chaos in gap-junction coupled systems of model neurons with saddle-node bifurcations (in Japanese), Master Dissertation, Graduate School of Engineering, Kyoto Sangyo University, January 15 (2002)

    Google Scholar 

  27. Raffone, A., van Leeuwen, C.: Dynamic synchronization and chaos in an associative neural network with multiple active memories. Chaos 13, 1090–1104 (2003); Focus issue on “Chaotic Itinerancy” Kaneko, K., Tsuda, I. (eds.)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rinzel, J.: Excitation dynamics: insights from simplified membrane models. Fed. Proc. 44, 2944–2946 (1985)

    Google Scholar 

  29. Rinzel, J., Ermentrout, G.B.: Analysis of neural excitability and oscillation. In: Koch, C., Segev, I. (eds.) Method in Neuronal Modeling: from Synapses to Networks, pp. 135–169. MIT Press, Cambridge (1989)

    Google Scholar 

  30. Rogawski, M.A.: The A-current: how ubiquitous a feature of excitable cells is it? TINS 8, 214–219 (1985)

    Google Scholar 

  31. Rose, R.M., Hindmarsh, J.L.: The assembly of ionic currents in a thalamic neuron I. The three-dimensional model. Proc. R. Soc. Lond. B 237, 267–288 (1989)

    Article  Google Scholar 

  32. Schweighofer, N., Doya, K., Kawato, M.: Electrophysiological Properties of Inferior Olive Neurons: A Compartment model. J. Neurophysiol. 82, 804–817 (1999)

    Google Scholar 

  33. Sloper, J.J.: Gap junctions between dendrites in the primate neocortex. Brain Res 44, 641–646 (1972)

    Article  Google Scholar 

  34. Tamas, G., et al.: Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Neuroscience 3, 366–371 (2000)

    Google Scholar 

  35. Tsuda, I.: Chaotic itinerancy as a dynamical basis of Hermeneutiocs of brain and mind. World Futures 32, 167–185 (1991)

    Article  Google Scholar 

  36. Tsuda, I.: Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behavioral and Brain Sciences 24, 793–847 (2001)

    Article  Google Scholar 

  37. Tsuda, I., Fujii, H.: Complex Dynamical Systems’ Approach Toward an Interpretation of Dynamic Brain Activity, Part I: Chaotic itinerancy can afford a mathematical basis of information processing in cortical transitory and nonstationary dynamics. In: Érdi, P., Esposito, A., Marinaro, M., Scarpetta, S. (eds.) Computational Neuroscience: Cortical Dynamics. LNCS, vol. 3146, pp. 129–139. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  38. Wilson, H.R.: Simplified dynamics of human and mammalian neocortical neurons. J. Theor. Biol. 200, 375–388 (1999a)

    Article  Google Scholar 

  39. Wilson, H.R.: Spikes, Decisions & Actions. Oxford University Press, Oxford (1999b)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fujii, H., Tsuda, I. (2004). Itinerant Dynamics of Class I* Neurons Coupled by Gap Junctions. In: Érdi, P., Esposito, A., Marinaro, M., Scarpetta, S. (eds) Computational Neuroscience: Cortical Dynamics. NN 2003. Lecture Notes in Computer Science, vol 3146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27862-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27862-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22566-9

  • Online ISBN: 978-3-540-27862-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics