Skip to main content

Abstract

The lancelet Branchiostoma lanceolatum, or amphioxus as it is commonly called, is a small, translucent animal some 4–6 cm in length. Although amphioxus resembles a fish, it has a much simpler organisation (Fig. 9.1). There is no true head, and paired special sense organs are entirely lacking. Its body axis is formed by a well-developed notochord, extending from the very tip of the rostrum (Fig. 9.2) to the end of the tail. As its body shape suggests, the animal is able to swim effectively. The propulsive force is provided by the patterned contractions of the body musculature, which is segmented into a series of some 60 myotomes on either side of the body. The myotomes of the right side alternate with those of the left. There are two modes of undulatory movements during forward swimming, fast and slow, that appear to depend on a differentiation of the muscle fibres, as in cyclostomes and in certain groups of fish (Guthrie 1975). In addition to forward swimming, amphioxus displays backward swimming and is also able to burrow rapidly in the sand with either the rostrum or the tail leading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ariëns Kappers CU (1929) The evolution of the nervous system. Bohn, Haarlem

    Google Scholar 

  • Ariëns Kappers CU (1934) Feinerer Bau und Bahnverbindungen des Zentralnervensystems. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie. Zerebrospinales Nervensystem. Urban and Schwarzenberg, Berlin, Vol II, 1 pp 319–486

    Google Scholar 

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, vol 1. MacMillan, New York

    Google Scholar 

  • Barnes SN (1974) Fine structure of the photoreceptor of the ascidian tadpole during development. Cell Tissue Res 155:27–45

    Article  CAS  PubMed  Google Scholar 

  • Boeke J (1902) Über das Homologon des Infundibularorgans bei Amphioxus lanceolatus. Anat Anz 15:411–414

    Google Scholar 

  • Boeke J (1908) Das Infundibularorgan im Gehirn des Amphioxus. Anat Anz 32:473–488

    Google Scholar 

  • Boeke J (1935) The autonomic (enteric) nervous system of Amphioxus lanceolatus. J Microsc Sci 77:623–658

    Google Scholar 

  • Bone Q (1958) Synaptic relations in the atrial nervous system of amphioxus. J Microsc Sci 99:243–261

    Google Scholar 

  • Bone Q (1959) The central nervous system in larval acraniates. J Microsc Sci 100:509–527

    Google Scholar 

  • Bone Q (1960a) A note on the innervation of the integument in amphioxus, and its bearing on the mechanism of cutaneous sensibility. J Microsc Sci 101:371–379

    Google Scholar 

  • Bone Q (1960b) The central nervous system in amphioxus. J Comp Neurol 115:27–64

    Article  Google Scholar 

  • Bone Q (1961) The organization of the atrial nervous system of amphioxus (Branchiostoma lanceolatum (Pallas). Philos Trans R Soc Lond B 243:241–269

    Article  Google Scholar 

  • Chang CY, Liu YX, Zhu YT, Zhu HH (1985) The reproductive endocrinology of amphioxus. In: Carlick DG, Kroner PI (eds) Frontiers in physiological research. Australian Academy of Science, Canberra, pp 79–86

    Google Scholar 

  • Delsman HC (1913) Ist das Hirnbläschen des Amphioxus dem Gehirn der Kranioten homolog? Anat Anz 44:481–497

    Google Scholar 

  • de Quatrefages MA (1845) Mémoire sur le système nerveux et sur l’histologie du Branchiostoma ou Amphioxus. Ann Sci Nat 3:197–248

    Google Scholar 

  • Eakin RM, Westfall JA (1962) Fine structure of photoreceptors in amphioxus. J Ultrastruct Res 6:531–539

    Article  CAS  PubMed  Google Scholar 

  • Edinger L (1906) Einiges vom ‘Gehirn’ des Amphioxus. Anat Anz 28:417–428

    Google Scholar 

  • Ermisch A (1973) Zur Charakterisierung des Komplexes Subcommissuralorgan-Reissnerscher Faden und seiner Beziehungen zum Liquor unter besonderer Berücksichtigung autoradiographischer Untersuchungen sowie funk-tioneller Aspekte. Wiss Z Karl Marx Univ, Leipzig, Math Naturwiss R 22:297–336

    Google Scholar 

  • Flood PR (1966) A peculiar mode of muscular innervation in amphioxus. Light and electron microscopic studies on the so-called ventral roots. J Comp Neurol 126:181–218

    Article  CAS  PubMed  Google Scholar 

  • Flood PR (1968) Structure on the segmental trunk muscle in amphioxus. With notes on the course and ‘endings’ of the so-called ventral root fibres. Z Zellforsch 84:389–416

    Article  CAS  PubMed  Google Scholar 

  • Flood PR (1970) The connection between spinal cord and notochord in amphioxus (Branchiostoma lanceolatum). Z Zellforsch 103:115–128

    Article  CAS  PubMed  Google Scholar 

  • Flood PR (1974) Histochemistry of cholinesterase in amphioxus (Branchiostoma lanceolatum (Pallas)). J Comp Neurol 157:407–438

    Article  CAS  PubMed  Google Scholar 

  • Flood PR (1975) Fine structure of the notochord of amphioxus. In: Barrington EJW, Jefferies RPS (eds) Protochorda-tes. Symposia of the Zoological Society of London, vol 36. Academic, London, pp 81–104

    Google Scholar 

  • Franz V (1923) Haut, Sinnesorgane und Nervensystem der Akranier. Jen Z Naturwiss 59:401–526

    Google Scholar 

  • Garcia-Fernández, Holland PWH (1994) Archetypical organization of the amphioxus Hox gene cluster. Nature 370:563–566

    Article  PubMed  Google Scholar 

  • Guthrie DM (1975) The physiology and structure of the nervous system of amphioxus (the lancelet), Branchiostoma lanceolatum pallas. In: Barrington EJW, Jefferies RPS (eds) Protochordates. Symposia of the Zoological Society of London, vol 36. Academic, London, pp 43-80

    Google Scholar 

  • Guthrie DM, Banks JR (1970) Function and physiological properties of a fast paramyosin muscle — the notochord of amphioxus (Branchiostoma lanceolatum). J Exp Biol 52:125–138

    Google Scholar 

  • Hagiwara S, Kidokoro Y (1971) Na and Ca components of action potential in amphioxus muscle cells. J Physiol (Lond) 219:217–232

    CAS  Google Scholar 

  • Hagiwara S, Henkart MP, Kidokoro Y (1971) Excitation-contraction coupling in amphioxus muscle cells. J Physiol (Lond) 219:233–251

    CAS  Google Scholar 

  • Hatschek B (1882) Studien über die Entwicklung von Amphioxus. Arb Zool Inst Univ Wien 4:1–88

    Google Scholar 

  • Hatschek B (1884) Mitteilungen über Amphioxus. Zool Anz 7:86–127

    Google Scholar 

  • Hatschek B (1892) Die Metamerie des Amphioxus und des Ammocoetes. Anat Anz 7:89–81

    Google Scholar 

  • Heymans JF, van der Stricht O (1898) Le sytème nerveux de l’amphioxus et en particulier sur la constitution et la genèse des racines sensibles. Mémoires couronnés et Mémoires des savants étrangers de l’Akad Roy Bruxelles, vol 56, ppl-74

    Google Scholar 

  • Hofer H (1959) Über das Infundibularorgan und den Reissnerschen Faden von Branchiostoma lanceolatum. Zool Jahrb 77:465–490

    Google Scholar 

  • Holland ND, Holland LZ (1993) Serotonin-containing cells in the nervous system and other tissues during ontogeny of a lancelet, Branchiostoma floridae. Acta Zool (Stockh) 74:195–204

    Article  Google Scholar 

  • Holland PWH, Holland LZ, Williams NA, Holland ND (1992) An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development 116:653–661

    CAS  PubMed  Google Scholar 

  • Holland PWH, Garcia-Fernández J, Holland LZ, Williams NA, Holland ND (1994) The molecular control of spatial patterning in amphioxus. J Mar Biol Ass (UK) 74:49–60

    Article  CAS  Google Scholar 

  • Johnston JB (1905) The cranial and spinal ganglia, and the viscero-motor roots in amphioxus. Biol Bull 9:113–127

    Article  Google Scholar 

  • Joseph H (1904) Über eigentümliche Zellstrukturen im Zentralnervensystem von Amphioxus. Verh Anat Ges 18:16–26

    Google Scholar 

  • Kölliker A (1843) Über des Geruchsorgan von Amphioxus. Arch Anat Physiol Berl 32-35

    Google Scholar 

  • Kowalewski A (1876) Studien über den Amphioxus lanceolatus. Mém Acad Imp St Pétersbourg 19:1–29

    Google Scholar 

  • Lacalli T (1996) Frontal eye circuitry, rostral sensory pathways, and brain organization in amphioxus larvae: evidence from 3D reconstructions. Philos Trans R Soc Lond B 351:243–263

    Article  Google Scholar 

  • Lacalli TC, Holland ND, West JE (1994) Landmarks in the anterior central nervous system of amphioxus larvae. Philos Trans R Soc Lond B 344:165–185

    Article  Google Scholar 

  • Leonhardt H (1980) Ependym und circumventriculäre Organe. In: Oksche A, Vollrath L (eds) Neuroglia I. Springer, Berlin Heidelberg New York, pp 177–665 (Handbuch der mikroskopischen Anatomie des Menschen, vol IV, part 10)

    Chapter  Google Scholar 

  • Meves A (1973) Elektronenmikroskopische Untersuchungen über die Zytoarchitektur des Gehirns von Branchiostoma lanceolatum. Z Zellforsch 139:511–532

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1977) The brain of the lamprey in a comparative perspective. Ann NY Acad Sci 299:97–145

    Article  CAS  PubMed  Google Scholar 

  • Nozaki M, Gorbman A (1992) The question of functional homology of Hatschek’s pit of amphioxus (Branchiostoma belcheri) and the vertebrate adenohypophysis. Zool Sci 9:387–395

    CAS  Google Scholar 

  • Obermüller-Wilén H (1976) The infundibular organ of Branchiostoma lanceolatum. Acta Zool (Stockh) 57:211–216

    Article  Google Scholar 

  • Obermüller-Wilén H (1979) A neurosecretory system in the brain of the lancelet, Branchiostoma lanceolatum. Acta Zool (Stockh) 60:187–196

    Article  Google Scholar 

  • Obermüller-Wilén H (1984) Neuroendocrine systems in the brain of the lancelet, Branchiostoma lanceolatum (Cephalochordata). Thesis, Stockholm

    Google Scholar 

  • Obermüller-Wilén H, Olsson R (1974) The Reissner’s fiber termination in some lower chordates. Acta Zool (Stockh) 55:71–79

    Article  Google Scholar 

  • Obermüller-Wilén H, van Veen T (1981) Monoamines in the brain of the lancelet, Branchiostoma lanceolatum: a fluorescence-histochemical and electron-microscopical investigation. Cell Tissue Res 221:245–256

    Article  PubMed  Google Scholar 

  • Oksche A (1969) The subcommissural organ. J Neuro Visc Relat [Suppl] 9:111–139

    Google Scholar 

  • Olsson R (1956) The development of Reissner’s fibre in the brain of the salmon. Acta Zool (Stockh) 37:235–250

    Article  Google Scholar 

  • Olsson R (1958) Studies on the subcommissural organ. Acta Zool (Stockh) 39:71–102

    Article  CAS  Google Scholar 

  • Olsson R (1962) The infundibular cells of amphioxus and the question of fibre-forming secretions. Arkiv Zool 15:347–356

    Google Scholar 

  • Olsson R (1986) Basic design of the chordate brain. In: Uyeno T, Arai R, Taniuchi T, Matsuura K (eds) Indo-Pacific fish biology: proceedings of the 2nd International Conference on Indo-Pacific Fishes. Ichthyological Society of Japan, Tokyo, pp 86–93

    Google Scholar 

  • Olsson R (1992) Reconstructing the ‘Eochordate’ brain. J Gen Biol (Moscow) 53:350–361

    Google Scholar 

  • Olsson R (1993) Reissner’s fiber mechanisms: some common denominators. In: Oksche A, Rodriguez EM, Fernández-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 33–39

    Chapter  Google Scholar 

  • Olsson R, Wingstrand KG (1954) Reissner’s fibre and the infundibular organ in amphioxus. Publ Biol Station Bergen 14:3–14

    Google Scholar 

  • Reissner E (1860) Beiträge zur Kenntnis vom Bau des Rückenmarkes von Petromyzon fluviatilis. Arch Anat Physiol Wiss Med, Leipzig, pp 545-588

    Google Scholar 

  • Retzius G (1891) Zur Kenntniss des Centralnervensystems von Amphioxus lanceolatus. Biol Untersuch NF 2:29–46

    Google Scholar 

  • Rohde E (1888a) Histologische Untersuchungen über das Nervensystem von Amphioxus. Zool Anz 11:190–196

    Google Scholar 

  • Rohde E (1888b) Histologische Untersuchungen über das Nervensystem von Amphioxus lanceolatus. Schneiders Zool Beitr 2:169–211

    Google Scholar 

  • Rohon JV (1882) Untersuchungen über Amphioxus lanceolatus. Denkschr Kaiserl Akad Wiss Wien 45:1–64

    Google Scholar 

  • Rolph W (1876) Untersuchungen über den Bau des Amphioxus lanceolatus. Morphol Jahrb 2:87–164

    Google Scholar 

  • Ruiz MS, Anadón R (1989) Some observations on the fine structure of the Rohde cells of the spinal cord of the amphioxus, Branchiostoma lanceolatum (Cephalochordata). J Hirnforsch 30:671–677

    Google Scholar 

  • Ruiz S, Anadón R (1991a) The fine structure of lamellate cells in the brain of amphioxus (Branchiostoma lanceolatum, Cephalochordata). Cell Tissue Res 263:597–600

    Article  CAS  PubMed  Google Scholar 

  • Ruiz MS, Anadón R (1991b) Ultrastructural study of the filum terminale and caudal ampulla of the spinal cord of amphioxus (Branchiostoma lanceolatum Pallas). Acta Zool (Stockh) 72:63–71

    Article  Google Scholar 

  • Sahlin K (1988) Gastrin/CCK-like immunoreactivity in Hatschek’s groove of Branchiostoma lanceolatum (Cephalochordata). Gen Comp Endocrinol 70:436–441

    Article  CAS  PubMed  Google Scholar 

  • Schneider A (1879) Beiträge zur vergleichenden Anatomie und Entwicklungsgeschichte der Wirbeltiere. Reimer, Berlin

    Google Scholar 

  • Sterba G (1969) Morphologie und Funktion des Subcommissuralorgans. In: Sterba G (ed) Zirkumventrikuläre Organe und Liquor. Fischer, Jena, pp 17-32

    Google Scholar 

  • Sterba G, Fredriksson G, Olsson R (1983) Immunocytochemical investigations of the infundibular organ in amphioxus (Branchiostoma lanceolatum; Cephalochordata). Acta Zool (Stockh) 64:149–153

    Article  Google Scholar 

  • Tagliani G (1897) Considerazioni morfologiche intorno alle cellule nervose colossali dell’ Amphioxus lanceolatus e alle cellule nervose giganti del midollo spinale di alcuni Teleostei. Monit Zool Ital 8:264–275

    Google Scholar 

  • Ten Cate J (1938a) Zur Physiologie des Zentralnervensystems des Amphioxus (Branchiostoma lanceolatus). I. Die reflektorische Tätigkeit des Amphioxus. Arch Neerl Physiol 23:409–415

    Google Scholar 

  • Ten Cate J (1938b) Contribution à la physiologie du système nerveux central du Amphioxus (Branchiostoma lanceolatus). IL Les mouvements ondulatoires et leurs innervations. Arch Neerl Physiol 23:416–423

    Google Scholar 

  • Tjoa LT, Welsch U (1974) Electron microscopical observations on Kölliker’s and Hatschek’s pit and on the wheel organ in the head region of amphioxus (Branchiostoma laneceola-tum). Cell Tissue Res 153:175–188

    Article  CAS  PubMed  Google Scholar 

  • Uemura H, Tezuka Y, Hasegawa C, Kobayashi H (1994) Immunohistochemical investigation of neuropeptides in the central nervous system of the amphioxus, Branchiostoma belcheri. Cell Tissue Res 277:279–287

    Article  CAS  Google Scholar 

  • von Kupffer K (1893) Studien zur vergleichenden Entwicklungsgeschichte des Kopfes der Cranioten, Heft 1. Lehman, Munich, pp 1-95

    Google Scholar 

  • von Kupffer K (1906) Die Morphogenie des Centralnervensystems. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwicklungsgeschichte der Wirbeltiere, vol II, part 3. Fischer, Jena, pp 1–272

    Google Scholar 

  • Vallet PG, Ody MG (1985) Oxytocinergic-like cells and fibers in the nervous system of amphioxus (Branchiostoma lanceolatum Pallas). Experientia 41:776–777

    Google Scholar 

  • Von Ubisch LV (1937) Ist das ‘Gehirn’ von Branchiostoma primitiv oder rudimentär? Z Wiss Zool 150:155–187

    Google Scholar 

  • Wada H, Satoh N (1994) Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci USA 91:1801–1804

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Yoshida M (1986) Morphological and histochemical studies on Joseph cells of amphioxus, Branchiostoma belcheri Gray. Exp Biol 46:67–73

    CAS  PubMed  Google Scholar 

  • Webb JE (1969) On the feeding and behavior of the larva of Branchiostoma lanceolatum. Mar Biol 3:58–72

    Article  Google Scholar 

  • Welsch U (1968) Die Feinstruktur der Josephschen Zellen im Gehirn von Amphioxus. Z Zellforsch 86:252–261

    Article  CAS  PubMed  Google Scholar 

  • Whiting HP (1955) Functional development in the nervous system. In: Waelsch H (ed) Biochemistry in the developing nervous system. Academic Press, New York, pp 85–103

    Google Scholar 

  • Wickstead JH, Bone Q (1959) Ecology of acraniate larvae. Nature 184:1849–1851

    Article  Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nieuwenhuys, R. (1998). Amphioxus. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics