Skip to main content

A Bibliography on Myoelectric Control of Upper Limb Prostheses

  • Chapter
Powered Upper Limb Prostheses
  • 399 Accesses

Abstract

This bibliography has been compiled using the RECAL Bibliographic Database and the resources of the Library of the National Centre for Training and Education in Prosthetics and Orthotics, University of Strathclyde, Glasgow, Scotland, UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Aaron SL, Stein RB. Comparison of an EMG-controlled prosthesis and the normal human biceps brachii muscle. Am J Phys Med 1976 55,1–14

    PubMed  CAS  Google Scholar 

  • Abul-Haj CJ, Hogan N. Functional assessment of control systems for cybernetic elbow prostheses-Part I: description of the technique. IEEE Trans Biomed Eng 1990 37, 1025–1036

    Article  PubMed  CAS  Google Scholar 

  • Abul-Haj CJ, Hogan N. Functional assessment of control systems for cybernetic elbow prostheses-Part II: application of the technique. IEEE Trans Biomed Eng 1990 37, 1037–1047

    Article  PubMed  CAS  Google Scholar 

  • Aghili F, Haghpanahi M. Use of a pattern recognition technique to control a multifunctional prosthesis. Med Biol Eng Comput 1995 33,504–508

    Article  PubMed  CAS  Google Scholar 

  • Agnew PJ. Functional effectiveness of a myo-electric prosthesis compared with a functional split-hook prosthesis: a single subject experiment. Prosthet Orthot Int 1981 5,92–96

    PubMed  CAS  Google Scholar 

  • Agnew PJ. Training for myoelectric prosthesis with sensory feedback. Br J Occup Ther 1979 42,286–288

    Google Scholar 

  • Agnew PJ, Shannon GF. Training program for a myo-electrically controlled prosthesis with sensory feedback system (myo-electric prosthesis, functional training). Am J Occup Ther 1981 35, 722–727

    Article  PubMed  CAS  Google Scholar 

  • Almstrom C. (et al.) Electrical stimulation and myoelectric control. A theoretical and applied study relevant to prosthesis sensory feedback. Med Biol Eng Comput 1981 19, 645–653

    Article  PubMed  CAS  Google Scholar 

  • Alstrom VC, Herberts P, Caine K. Klinische erprobung einer myoelektrische gesteurten multifunktionshand (clinical evaluation of a myoelectrically controlled multifunctional hand). Orthop Tech 1978 29,77–79*. (9000187)

    Google Scholar 

  • Almstrom C, Herberts P, Korner L. Experience with Swedish multifunctional prosthetic hands controlled by pattern recognition of multiple myoelectric signals. Int Orthop 1981 5, 15–21

    Article  PubMed  CAS  Google Scholar 

  • Al-Temen I, Mifsud M, Spencer J. (et al.) New variety Village electromechanical elbow and forearm for juvenile amputees (abstract). J Assoc Child Prosthet Orthot Clin 1986 21, 53

    Google Scholar 

  • American Academy of Orthopaedic Surgeons. Atlas of limb prosthetics: surgical and prosthetic principles.-St Louis: CVMosby,1981

    Google Scholar 

  • American Academy of Orthopaedic Surgeons. Atlas of limb prosthetics: surgical, prosthetic and rehabilitation principles. Edited by IH Bowker, IW Michael. 2nd edition.-St Louis: Mosby-Year Book, 1992

    Google Scholar 

  • Anani AB, Korner LM. Afferent electrical nerve stimulation: human tracking performance relevant to prosthesis sensory feedback. Med Biol Eng Comput 1979 17,425–434

    Article  PubMed  CAS  Google Scholar 

  • An artificial hand with a sense of touch. Acta Chir Plast (Prague) 1979 21,260–262*. (23740)

    Google Scholar 

  • Artificial hand. Design Council, 1986. single page leaflet*. (05232)

    Google Scholar 

  • Artificial hands are getting better. MBEC News 1988 6, N5*. (20732)

    Google Scholar 

  • Aspects techniques d’une nouvelle main myoelectrique pour enfants (technical details of a new myoelectric hand for children). Ortho-Scop 1982 7,79–83

    Google Scholar 

  • Atkins DJ. Comprehensive management of the upper limb amputee. edited by DJ Atkins, RH Meier.-New York: Springer-Verlag, 1989

    Google Scholar 

  • Atkins DJ, Donovan WH, Heard DCY. (et al.) Current trends in fitting the child with an upper limb deficiency and implications for future research (abstract). Orthop Trans 1995 19,123

    Google Scholar 

  • Atkins DJ, Meier RH, Muilenburg A. The upper-limb prosthetic prescription: conventional or electric components? (abstract). J Assoc Child Prosthet Orthot Clin 1985 20,37

    Google Scholar 

  • Bailon H, Vuskovic MI, Ivankovic B. Force interface for the multifingered robotic hand. In: IEEE International Conference on Systems, Man and Cybernetics; intelligent systems for the 21st century, Vancouver, B.C., October 22-25, 1995.-Piscataway, N.J.: IEEE, 1995. p96–102*. (9615940)

    Google Scholar 

  • Ballance R, Wilson BN, Harder JA. Factors affecting myoelectric prosthetic use and wearing patterns in the juvenile unilateral below-elbow amputee. Can J Occup Ther 1989 56, 132–137

    Google Scholar 

  • Ballance R. Review of prosthesis-wearing patterns and use in congenital unilateral below-elbow child amputees wearing a myoelectric prosthesis (abstract). J Assoc Child Prosthet Orthot Clin 1987 22,19

    Google Scholar 

  • Banziger E. Wrist rotation activation in myoelectric prosthetics-an innovative approach. O & P Business News 1996 15 July, 14-15, 17*. (9617483)

    Google Scholar 

  • Banziger E, Hewitt C. Partial hand external powered myoelectric controlled fitting, a case presentation (abstract). Orthop Trans 1998/99 22, 1205

    Google Scholar 

  • Basha T, Scott RN, Parker PA. (et al.) Deterministic components in the myoelectric signal. Med Biol Eng Comput 1994 32,233–235

    Article  PubMed  CAS  Google Scholar 

  • Battye CK, Nightingale A, Whillis J. The use of myoelectric currents in the operation of prostheses. J Bone Joint Surg 1955 37B, 506–510

    Google Scholar 

  • Baumgartner R, Ploger J. Die kanalplastik nach Sauerbruch: spatergerbnisse und verleich mit myoelektrischer Versorgung (the cineplasty according to Sauerbruch: long term results in comparison to myoelectric fitting). Orthop Tech 1989 40,5–8

    Google Scholar 

  • Becker FF. Optimierung der pro-und supinationsbewegung von myoelektrisch gesteuerten unterarmprothesen (optimization of the forearm rotation in myoelectric below-elbow prostheses). Orthop Tech 1978 29, 131–134

    Google Scholar 

  • Becker FF. Untersuchungen uber die benutzungshaufigkeit von eigen-und fremdkraftbetriebenen armprothesensystemen (an examination of the frequency of use of manually and externally powered upper limb prostheses). Biomed Tech 1978 23,185*. (01878)

    Google Scholar 

  • Bender LF. Prostheses and rehabilitation after arm amputation.-Springfield: CC Thomas, 1974

    Google Scholar 

  • Berger N, Edelstein JE. Children’s performance with myoelectrically controlled and body-powered hands (abstract). J Assoc Child Prosthet Orthot Clin 1989 24(2/3), 34

    Google Scholar 

  • Bergman K, Ornholmer L, Zackrisson K. (et al.) Functional benefit of an adaptive myoelectric prosthetic hand compared to a conventional myoelectric hand. Prosthet Orthot Int 1992 16,32–37

    PubMed  CAS  Google Scholar 

  • Berke GM, Nielsen CC. Establishing parameters affecting the use of myoelectric prostheses in children: a preliminary investigation. J Prosthet Orthot 1991 3, 162–167

    Article  Google Scholar 

  • Bierwirth W Konzept fur myo elektrische armprothesen bei hohen amputationsniveaus (a concept for myoelectric prostheses for high amputation levels). Orthop Tech 1989 40,441–445

    Google Scholar 

  • Bierwirth W. Orthopadie-technische konzepte zur myoelektrischen armversorgung (orthopaedic-technological programmes for myoelectric arm fitting). Orthop Tech 2002 53, 291–297

    Google Scholar 

  • Bierwirth W. Schafttechnik bei unterarmprotheses und eine anmerkung zur definierung von myosignalen (socket-design of below-elbow-prostheses and a comment on the definition of myo-signals. Orthop Tech 1992 43,720–724

    Google Scholar 

  • Bierwirth W, Fitzlaff G, Winkler W. Die Versorgung mit myoelektricschen armprosthesen in der rehabilitationsklinik Bellikon (myoelectric arm prostheses fitting at the rehabilitation hospital Bellikon). Orthop Tech 1985 36,735–738

    Google Scholar 

  • Bierwirth W, Winkler W Bis zu welcher amputationshohe kann mit eigenkraft-ellenbogen versorgt werden? Ein grenzfall am beispiel einer beidseitigen oberarm-prothesenversorgung (up to what amputation level can the body-powered elbow prosthesis be used? A boundary case exemplified through bilateral above elbow prostheses). Med Orthop Tech 1992 112,24–28

    Google Scholar 

  • Blair A. Inclusion of a battery level meter in a standard myoelectric prosthesis. Prosthet Orthot Int 2001 25,154–155

    Article  PubMed  CAS  Google Scholar 

  • Boenick U, Becker FF. Der derzeitige entwicklungsstand adaptiver kunsthande mit elektromechnischem antrieb (tiel 1) (the present state of development of electromechanically driven adaptive hands). Orthop Tech 1980 31,85–87

    Google Scholar 

  • Boenick U, Becker FF. Der derzeitige entwicklungsstand adaptiver kunsthande mit elektromechnischem antrieb (tiel 2) (the present state of development of electromechanically driven adaptive hands, part 2). Orthop Tech 1980 30, 97–100*. (23729)

    Google Scholar 

  • Boivin G. Nothing like the human hand. ICIB 1968 7(4), 17–19, 22

    Google Scholar 

  • Bonivento C, Davalli A, Fantuzzi C. (et al.) Automatic tuning of myoelectric prostheses. J Rehabil Res Dev 1998 35,294–304

    PubMed  CAS  Google Scholar 

  • Bottomley AH. The control of the upper limb. In: Modern trends in biomechanics-I./ edited by DC Simpson.-London: Butterworth, 1970. pl–24*. (9207504)

    Google Scholar 

  • Bottomley AH. Myo-electric control of powered prostheses. J Bone Joint Surg 1965 47B, 411–415

    Google Scholar 

  • Bottomley A, Wilson ABK, Nightingale A. Muscle substitutes and myoelectric control. J Br Inst Radio Eng 1963, 439–448*. (16548)

    Google Scholar 

  • Bousso D, Ishai G. A study of myoelectric signals for arm prosthesis control. Biomed Eng 1971 6, 509–517

    PubMed  CAS  Google Scholar 

  • Bousso D, Ishai G. Reports on the use of myoelectric signals for multiple degree-of-freedom arm prosthesis control.-Haifa: Technion-Israel Institute of Technology, 1969 (v.p.)*(22695)

    Google Scholar 

  • Bouzigues B, Chaluleau C, Bernardini R. (et al.) Le medicinconseil et Pappareillage du membre superieur (national health service and orthoses and prostheses of the upper limb). Probl Med Reed 1989 16,13–17*. (22579)

    Google Scholar 

  • Brenner CD. Electronic limbs for infants and pre-school children. J Prosthet Orthot 1992 4,184–190

    Article  Google Scholar 

  • Brinkley L. Development of a prosthetic system for an adolescent with congenital trimembral limb deficiency (abstract). Phys Ther 1997 77,S45

    Google Scholar 

  • Brittain RH, Sauter WF, Gibson DA. Sensory feedback in a myoelectric upper limb prosthesis: a preliminary report. Can J Surg 1979 22,481–482*. (02271)

    PubMed  CAS  Google Scholar 

  • Brody G, Balasubramanian R, Scott RN. A model for myoelectric signal generation. Med Biol Eng 1974 12, 29–41*. (03951)

    Article  PubMed  CAS  Google Scholar 

  • Brohmke F. Travel report of a German delegation of experts, on the bioelectric below-elbow prosthesis in the USSR (abstract). ICIB 1965 4(9), 15–19

    Google Scholar 

  • Broomfield MS, Hepburn PL. A clinical trial of the “Reach” electric hand (abstract). ISPO UK Newsletter 1993 Winter, 19

    Google Scholar 

  • Bruckner L. Betrachtungen zur Veroffentlichung Versorgung mit myoelektrischer armprothese bei Sauerbruch-ober-armmyoplastik (comments on: myoelectric prosthesis for an above elbow amputee with a Sauerbruch cineplasty-by E Castenholz in issue 1/90). Med Orthop Tech 1990 110, 148–149

    Google Scholar 

  • Bush G, Young W, Olive M. (et al.) Powered partial hand pros-thesis-a case report (abstract). Orthop Trans 1998/99 22, 460

    Google Scholar 

  • Caldwell RR. A new myoelectric below elbow prosthesis for in-fants. Orthot Prosthet 1985-86 39(2), 72–74

    Google Scholar 

  • Canty T J. New cineplastic prosthesis. J Bone Joint Surg 1951 33A, 612–617

    Google Scholar 

  • Carrozza MC, Micera S, Massa B. (et al.) The development of a novel biomechatronic hand-ongoing research and pri-mary results. In: 2002 IEEE/ASME International Confer-ence on Advanced Intelligent Mechantronic Proceedings, 8-12 July 2001.-Coma, Italy, 2001. p249–254*. (2237024)

    Google Scholar 

  • Castenholz E. Versorgung mit myoelektrischer Armprothese bei Sauerbruch-oberarmmyo-plastik (myoelectric prosthe-sis for an above elbow amputee with a Sauerbruch cineplas-ty). Med Orthop Tech 1990 110,30–32

    Google Scholar 

  • Cavrini R. Myoelektrische prothesen und spezielle schaftkon-struktionen fur kinder (myoelectric prostheses and specif-ic socket designs for children). Orthop Tech 1992 43,740–745

    Google Scholar 

  • Chappell PH, Kyberd PJ. Prehensile control of a hand prosthe-sis by a microcontroller. J Biomed Eng 1991 13,363–369

    Article  PubMed  CAS  Google Scholar 

  • The child with an acquired amputation: a symposium held in Toronto, June 9-11, 1970./ edited by GT Aitken.-Washing-ton: National Academy of Sciences, 1972

    Google Scholar 

  • Childress DS. Myoelectric control: brief history, signal origins and signal processing. Capabilities 1995 4(2), 6–7*. (9514842)

    Google Scholar 

  • Childress DS. Myoelectric control of powered prostheses. IEEE Eng Med Biol Mag 1982 1(4), 23–25

    Article  Google Scholar 

  • Childress DS. Myo electrically controlled NYU-hosmer prehen-sion actator and Michigan hook (abstract). J Assoc Child Prosthet Orthot Clin 1986 21,31

    Google Scholar 

  • Childress DS. Neural organization and myoelectric control. In: Neural organisation and its relevance to prosthetics./ edit-ed by Fields WS.-New York: Intercontinental Book Corp., 1973. pi 17–130*. (9205729)

    Google Scholar 

  • Childress DS. Powered prostheses with “boosted” cable activa-tion. Capabilities 1991 1(2), 1,4*. (9105191)

    Google Scholar 

  • Childress DS, Billock JN. Self-containment and self-suspension of externally powered prostheses for the forearm. Bull Pros-thet Res 1970 10(14), 4–21

    CAS  Google Scholar 

  • Childress DS, Hampton FL, Lambert CN. (et al.) Myoelectric immediate postsurgical procedure: a concept for fitting the upper-extremity amputee. Artificial Limbs 1969 13(2), 55–60

    PubMed  CAS  Google Scholar 

  • Chitore DS, Rahmatallah SF, Albakry KS. Digital electronic controller for above knee prostheses. Int J Electronics 1988 64,649–656*. (19937)

    Article  Google Scholar 

  • Clancy EA, Bouchard S, Rancourt D. Estimation and applica-tion of EMG amplitude during dynamic contractions: pro-cessing nonstationary EMG for applications in prosthesis control, biofeedback, and joint torque estimation. IEEE Eng Med Biol Mag 2001 20(6), 47–54

    Article  PubMed  CAS  Google Scholar 

  • Clark RR, Hoyt WA. Prosthetic pollicization. ICIB 1968 7(11), 1–7

    Google Scholar 

  • Clarke SD, Patton JG. Occupational therapy for the limb defi-cient child: a developmental approach to treatment plan-ning and selection of prostheses for infants and young chil-dren with unilateral upper extremity limb deficiencies. Clin Orthop 1980 148,47–54

    PubMed  Google Scholar 

  • Computerized prosthesis adapts to patients as they gain strength and skills. O & P Business World 1999 2(3), 66–68

    Google Scholar 

  • Cooper R. New amps for old. BAPOMAG 2000 No. 3,18

    Google Scholar 

  • Crandall RC, Tomhave W. Pediatric unilateral below-elbow am-putees: retrospective analysis of 34 patients given multiple prosthetic options. J Pediatr Orthop 2002 22,380–383

    Article  PubMed  Google Scholar 

  • Crane S, Mcmillan P, Rodriguez R. Non-dominant hand func-tion in elementary school-aged children (abstract). J Assoc Child Prosthet Orthot Clin 1993 28,9–10

    Google Scholar 

  • Curran B, Hambrey R. The prosthetic treatment of upper limb deficiency. Prosthet Orthot Int 1991 15,82–87

    PubMed  CAS  Google Scholar 

  • Daley TL, Scott RN, Parker PA. (et al.) Operator performance in myoelectric control of a malfunction prosthesis stimula-tor. J Rehabil Res Dev 1989 27(1), 9–20

    Article  Google Scholar 

  • Dalsey R, Gomez W, Seitz WH. (et al.) Myoelectric prosthetic replacement in the upper-extremity amputee. Orthop Rev 1989 18,697–702*. (9513258)

    PubMed  CAS  Google Scholar 

  • Daly W. Upper extremity socket design options. Phys Med Re-habil Clin North Am 2000 11,627–638

    CAS  Google Scholar 

  • Datta D, Brain ND. Clinical applications of myoelctrically-con-trolled prosthese. Crit Rev Phys Rehabil Med 1992 4, 215–239*. (9307678)

    Google Scholar 

  • Datta D, Ibbotson V. Prosthetic rehabilitation of upper limb amputees: a five year review. Clin Rehabil 1991 5,311–316

    Article  Google Scholar 

  • Datta D, Kingston JE. Myoelectric prostheses in the manage-ment of Poland’s syndrome. J Hand Surg 1994 19B, 659–661

    Google Scholar 

  • Datta D, Kingston J, Ronald J. Myoelectric prostheses for be-low-elbow amputees: the Trent experience. Int Disabil Stud-ies 1989 11,167–170

    Article  CAS  Google Scholar 

  • Davidson L. Survey shows benefit from myoelectric prosthesis. Therapy Weekly 1988 7 April, 3*. (17670)

    Google Scholar 

  • De Luca CJ. Control of upper-limb prostheses: a case for neu-roelectric control. J Med Eng Technol 1978 2,57–61

    Article  PubMed  Google Scholar 

  • De Luca CJ. Physiology and mathematics of myolectric signals. IEEE Trans Biomed Eng 1979 26,313–325*. (9411683)

    Article  PubMed  Google Scholar 

  • Debear P. Functional use of myoelectric and cable-driven pros-theses. J Assoc Child Prosthet Orthot Clin 1988 23,60–61

    Google Scholar 

  • Debear PC. Functional use of myoelectric prosthesis and stan-dard cable driven prostheses (abstract). Arch Phys Med Re-habil 1987 68,592

    Google Scholar 

  • Derhaag MMC, Schoorl PM, Derhaag PJFM. Personality devel-opment in one-handed children treated with a myoelectri-cally controlled prosthesis. J Rehabil 1990 56(3), 25–29*. (9513577)

    Google Scholar 

  • Desoutter E, Peyrard O, Rivera S. (et al.) L’appareillage myoe-lectrique des enfants: aide our contrainte?: experience d’un service de reeducation fonctionnelle infantile (the myo-electric apparatus in children: aid or constraint?: experi-ence of a functional rehabilitation service for children). J Ergother 1992 14,94–98*. (9307944)

    Google Scholar 

  • Dorcas DS, Dunfield VA, O’Shea BJ. A myoelectric prosthesis for a forequarter amputation. ICIB 1968 7(11), 15–20

    Google Scholar 

  • Dorcas DS, Dunfield VA, Scott RN. Improved myo-electric con-trol system. Med Biol Eng 1970 8,333–341*. (03948)

    Article  PubMed  CAS  Google Scholar 

  • Dorcas DS, Scott RN. A three-state myo-electric control. Med Biol Eng 1966 4,367–370

    Article  PubMed  CAS  Google Scholar 

  • Dunfield V, Shwedyk E. Digital EMG processor. Med Biol Eng Comput 1978 16,745–751

    Article  PubMed  CAS  Google Scholar 

  • Dupont A-C, Morin EL. A myoelectric control evaluation and trainer system. IEEE Trans Rehabil Eng 1994 2,100–107

    Article  Google Scholar 

  • Edelstein JE, Berger N. Performance comparison among chil-dren fitted with myolectric and body-powered hands. Arch Phys Med Rehabil 1993 74,376–380

    PubMed  CAS  Google Scholar 

  • Electronic technology aids UE amputees. O & P Business World 1999 2(1), 42–46

    Google Scholar 

  • Englehart K, Hudgins B, Parker PA. (et al.) Classification of the myoelectric signal using time-frequency based presen-tations. Med Eng Phys 1999 21,431–438

    Article  PubMed  CAS  Google Scholar 

  • Englehart K, Hudgins B, Parker PA. A wavelet-based continu-ous classification scheme for multifunctional myoelectric control. IEEE Trans Biomed Eng 2001 48,302–311

    Article  PubMed  CAS  Google Scholar 

  • Epps CH. Clinical report: a functionally advanced juvenile above-elbow prosthesis (abstract). J Assoc Child Prosthet Orthot Clin 1987 22,18

    Google Scholar 

  • Epps CH. Externally powered prostheses for children-1984. Clin Prosthet Orthot 1985 9(1), 17–18

    Google Scholar 

  • Epps CH. Special prostheses enhance rehabilitation. Clin Pros-thet Orthot 1982 6(4), 5–6

    Google Scholar 

  • Esquenazi A, Leonard JA, Meier RH. (et al.) Prosthetics, orthotics and assistive devices: 3. Prosthetics. Arch Phys Med Rehabil 1989 70(Suppl 5-S), S206–S209

    Article  PubMed  CAS  Google Scholar 

  • Ey MC. Experiences with myoelectric prostheses: a prelimi-nary report. ICIB 1978 17(3), 15–17

    Google Scholar 

  • Feron J. New process will help amputee to control limb with thought. ICIB 1965 5(2),22

    Google Scholar 

  • Fielden RHN, Fisher S. Electronic prostheses for children: use and abuse (abstract). J Assoc Child Prosthet Orthot Clin 1988 23,32

    Google Scholar 

  • Fleming LL. (et al.) Management of upper extremity amputa-tion with myoelectric prostheses (abstract). Orthop Trans 1983 7,506

    Google Scholar 

  • Gaber TA-ZK, Gardner CM, Kirker SGB. Silicone roll-on sus-pension for upper limb prostheses: users’ views. Prosthet Orthot Int 2001 25,113–118

    Article  PubMed  CAS  Google Scholar 

  • Galway HR, Hubbard S, Dakpa R. Myoelectrics for the achiria and partial hand amputee (abstract). J Assoc Child Prosthet Orthot Clin 1987 22,19

    Google Scholar 

  • Gassinger LA. Technische moglichkeiten der armversorgung mit myoelektrischen und schaltergesteuerten modulsy-stem (technical possibilities of upper extremity supply with myoelectric and switch controlled modul systemsar). Orth-op Tech 1978 29,129–131

    Google Scholar 

  • German research gives a helping hand to the disabled. New Sci-entist 1982 18 November, 424*. (23735)

    Google Scholar 

  • Godfrey SB. Workers with prostheses. J Hand Ther 1990 3, 101–110

    Article  Google Scholar 

  • Godin DT, Parker PA, Scott RN. Noise characteristics of stain-less-steel surface electrodes. Med Biol Eng Comput 1991 29, 585–590

    Article  PubMed  CAS  Google Scholar 

  • Goenaga-Alecki M. Presentation de la prothese myoelectrique pour enfant et place de l’ergotherapie (presentation of a myoelectric prosthesis for a child and the role of ergother-apy). J Ergother 1986 13,42–49*. (14333)

    Google Scholar 

  • Gozna ER, Scott RN. The UNB “three state” myoelectric control system (abstract). J Bone Joint Surg 1982 64B, 260

    Google Scholar 

  • Graupe D, Cline WK. Functional separation of EMG signals via ARMA identification methods for prosthesis control pur-poses. IEEE Trans Syst Man Cybern 1975 5, 252–259*. (9105339)

    Google Scholar 

  • Graupe D, Salahi J, Kohn KH. Multifunctional prosthesis and orthosis control via microcomputer identification of tem-poral differences in single-site myoelectric signals. J Bio-med Eng 1982 4, 17–22

    CAS  Google Scholar 

  • Graupe D, Salahi J, Zhang D. Stochastic analysis of myoelectric temporal signatures for multifunctional single-site activa-tion of prostheses and orthoses. J Biomed Eng 1985 7,18–29

    Article  PubMed  CAS  Google Scholar 

  • Greatting MD, Hill JJ. Myoelectric prostheses in upper extrem-ity amputees: cost, mechanical reliability and long term wear rate (abstract). Orthop Trans 1991 15,783

    Google Scholar 

  • Greshik J, Andrew JT, Doolan K. Toddlers and myoelectrics — do they go together (abstract). J Assoc Child Prosthet Ort-hot Clin 1993 28,25–26

    Google Scholar 

  • GROCH J. Advances in artificial hands. Med Trial Technique Q 1974 21,171–177*. (9513563)

    CAS  Google Scholar 

  • Groth H, Weltman G, Lyman J. An exploratory investigation of functional muscle isolation for coordinated arm prosthesis control. (Biotechnology Laboratory Technical Report No. 15).-Los Angeles: University of California, 1962. 8 pp*. (22689)

    Google Scholar 

  • Hambrey RA, Withinshaw G. Electrically powered upper limb prostheses: their development and application. Br J Occup Ther 1990 53,7–11

    Google Scholar 

  • Hartman HH, Hobart DC, Waring W. (et al.) A myoelectrical-ly controlled powered elbow. Artificial Limbs 1969 13(2), 61–63

    PubMed  CAS  Google Scholar 

  • Hean CC, Heidinger B, Bourhis G. (et al.) Les electrodes myoelectriques en technologie hybride pour la commande des protheses motorisees des membres superieurs (myo-electric sensor in hybrid technology for the upper limb electric prosthesis control). Innov Tech Biol Med 1987 8, 485–492*. (17502)

    Google Scholar 

  • Heckathorne CW, Philipson L. Cable-actuated position control of children’s electric elbows: a joint U.S.-Sweden evaluation. Capabilities 1992 2(2), 4–5*. (9206863)

    Google Scholar 

  • Hedstrom L, Holmquist T, Randstrom S. (et al.) Technische aspekte einer neuen myoelektrische gesteuerten hand fur kinder (technical aspects of a new myoelectrically con-trolled hand for children). Orthop Tech 1980 31, 23–25*. (23730)

    Google Scholar 

  • Heger H, Millstein S, Hunter GA. Electrically powered prosthe-ses for the adult with an upper limb amputation. J Bone Joint Surg 1985 67B, 278–281

    Google Scholar 

  • Hell C. Das DMC-system: ein universell einsetzbares steue-rungskonzept (the DMC control: a control system for uni-versal application). Orthop Tech 1998 49,182–190

    Google Scholar 

  • Herberts P. Myoelectric signals in control of prostheses: stud-ies on arm amputees and normal individuals. Acta Orthop Scand (Suppl) 1969 40(Suppl 124),83pp*. (14596)

    Google Scholar 

  • Herberts P, Almstrom C, Caine K. Clinical application of multi-functional prosthetic hands. J Bone Joint Surg 1978 60B, 552–560

    Google Scholar 

  • Herberts P, Almstrom C, Kadefors R. (et al.) Hand prosthesis control via myoelectric patterns. Acta Orthop Scand 1973 44,389–409

    Article  PubMed  CAS  Google Scholar 

  • Herberts P, Kadefors R, Kaiser E. (et al.) Implantation of mi-cro-circuits for myoelectric controls of prostheses. J Bone Joint Surg 1997 50B, 780–791

    Google Scholar 

  • Herberts P, Kaiser E, Magnusson R. (et al.) Power spectra of myoelectric signals in muscles of arm amputees and healthy normal controls. Acta Orthop Scand 1973 44, 161–193

    Article  PubMed  CAS  Google Scholar 

  • Herberts P, Korner L. Clinical evaluation of myoelectric pros-theses in below-elbow amputees. Int J Rehabil Res 1982 5, 62–63

    Article  Google Scholar 

  • Herberts P, Korner L. Ideas on sensory feedback in hand pros-theses. Prosthet Orthot Int 1979 3,157–162

    PubMed  CAS  Google Scholar 

  • Herberts P, Korner L, Caine K. (et al.) Rehabilitation of uni-lateral below-elbow amputees with myoelectric prostheses. Scand J Rehabil Med 1980 12, 123–128

    PubMed  CAS  Google Scholar 

  • Hermansson L, Eliasson A-C, Bernspang B. Development of an evaluation tool for children’s control of myoelectric hand prostheses (abstract). Dev Med Child Neurol 2001 43(Suppl 89), 19–20

    Google Scholar 

  • Hermansson LM. Structured training of children fitted with myoelectric prstheses. Prosthet Orthot Int 1991 15,88–92

    PubMed  CAS  Google Scholar 

  • Herment JP. Reeducation et problems professionnels des am-putes du membre superieur appareilles par prostheses myoelectriques (rehabilitation and vocational problems for upper limb amputees with myoelectrical prostheses). Rev Readapt 1983 11,51–54

    Google Scholar 

  • Hierton T. (et al.) The application of myoelectric hand pros-thesis at different amputation levels below the elbow. Scand J Rehabil Med 1970 2,23–26*. (02361)

    PubMed  CAS  Google Scholar 

  • Hirsch C, Kaiser E, Petersen I. Bioelectrical control in a servo-system: analysis and application of muscle action poten-tials in an experimental hand prosthesis. Acta Orthop Scand 1964 35,1–15

    PubMed  CAS  Google Scholar 

  • Hodgins J, Curtin M. Silicone elastomers-diverse application for upper limb prosthetics (abstract). J Assoc Child Pros-thet Orthot Clin 1993 28,6

    Google Scholar 

  • Hoek J. A temporary prosthesis for the forearm. ISPO Bull 1975 No. 13,6–7

    Google Scholar 

  • Hogan N, Mann RW. Myoelectric signal processing: optimal es-timation applied to electromyography-Part II: experimen-tal demonstration of optimal myoprocessor performance. IEEE Trans Biomed Eng 1980 27,396–410*. (02036)

    Article  PubMed  CAS  Google Scholar 

  • Holland OE, Kyberd PJ, Tregidgo R. (et al.) Erfahrungen mit einer hierarchisch kontraollierten myoelektrischen hand (experiences with a hierarchically controlled myoelectric hand). Orthop Tech 1996 47,968–974

    Google Scholar 

  • Hortensius P, Onyshko S, Quanbury A. A microcomputer-based prosthetic limb controller: design and implementa-tion. Ann Biomed Eng 1987 15,51–65

    Article  PubMed  CAS  Google Scholar 

  • Hortensius P, Onyshko S, Quanbury A. Low power multichan-nel electromyographic data acquisition system. J Biomed Eng 1986 8,364

    Article  PubMed  CAS  Google Scholar 

  • Hortensius P, Quanbury A, Onyshko S. A low-powered multi-channel electromyographic signal data acquisition system. J Med Eng Technol 1987 11,11–16

    Article  PubMed  CAS  Google Scholar 

  • Horvath W. Neue elektrohand fur kinder (a new electric hand for children). Orthop Tech 1992 43,732–739

    Google Scholar 

  • Hubbard J, Bebko JM, Jutai J. The self-concept of children with congenital upper-limb deficiencies (abstract). Orthop Trans 1998/99 22,457–458

    Google Scholar 

  • Hubbard S. The Toronto experience with pediatric myoelectric training. In: Comprehensive management of the upper-limb amputee./ edited by DJ Atkins, RH Meier.-New York: Springer-Verlag, 1988. p190–193*. (9927083)

    Google Scholar 

  • Hubbard S, Bush G, Kurtz I. (et al.) Myoelectric prostheses for the limb-deficient child. Phys Med Rehabil Clin North Am 1991 2,847–866

    Google Scholar 

  • Hubbard S, Galway HR, Milner M. Myolectric training methods for the preschool child with congenital below-elbow ampu-tation: a comparison of two training programmes. J Bone Joint Surg 1985 67B, 273–277

    Google Scholar 

  • Hubbard S, Galway R, Urquhardt K. (et al.) Preschool myo-electric program: a three-year review (abstract). J Assoc Child Prosthet Orthot Clin 1985 20,38

    Google Scholar 

  • Hubbard S, Heim W, Giavedoni B. Paediatric prosthetic man-agement. Curr Orthop 1997 11, 114–121*. (2029505)

    Article  Google Scholar 

  • Hudgins B, Parker P, Scott RN. A new strategy for multifunc-tion myoelectric control. IEEE Trans Biomed Eng 1993 40, 82–94

    Article  PubMed  CAS  Google Scholar 

  • Humbert SD, Snyder SA, Grill WM. Evaluation of command al-gorithms for control of upper-extremity neural prostheses. IEEE Trans Neural Syst Rehabil Eng 2002 10,94–101

    Article  PubMed  Google Scholar 

  • Hunter GA, Heger H, Millstein S. A review of the failures in the below elbow myoelectric prosthesis (abstract). Orthop Trans 1982 6,485

    Google Scholar 

  • Hunter Peckham P, Keith MW, Kilgore KL. (et al.) Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch Phys Med Rehabil 2001 82,1380–1388

    Article  Google Scholar 

  • Hunter Peckham P, Kilgore KL, Keith MW. (et al.) An ad-vanced neuroprosthesis for restoration of hand and upper arm control using an implantable controller. J Hand Surg 2002 27A, 265–276*. (2240141)

    Google Scholar 

  • Hutnick GF, Rothenberg, Ahlert J. Thermoplastic below elbow prostheses (abstract). J Assoc Child Prosthet Orthot Clin 1991 26,18

    Google Scholar 

  • Ingvarsson B, Karlsson I, Ottosson L-G. (et al.) Proposal for test instructions and test report for the technical testing of mono-functional myoelectrically-controlled prosthetic hands. Report 2/80.-Linkoping, Sweden: University Hospi-tal, Department of Rehabilitation Medicine, 1980. 29 pp*. (22151)

    Google Scholar 

  • Ingvarsson B, Karlsson I, Ottosson L-G. (et al.) Technical note-test instructions for the technical testing of mono-func-tional myoelectrically-controlled prosthetic hands: a pro-posal. Prosthet Orthot Int 1982 6,41–42

    PubMed  CAS  Google Scholar 

  • Ingvarsson B, Karlsson I, Ottosson L-G. (et al.) Test instruc-tions for the technical testing of mono-functional myoelec-trically-controlled prosthetic hands: a proposal (technical note). Prosthet Orthot Int 1982 6,41–42

    PubMed  CAS  Google Scholar 

  • Jacobsen SC. (et al.) Development of the Utah artificial arm. IEEE Trans Biomed Eng 1982 29,249–269*. (01586)

    Article  PubMed  CAS  Google Scholar 

  • Jacques GE, Ryan S, Naumann S. (et al.) Application of quali-ty function deployment in rehabilitation engineering. IEEE Trans Rehabil Eng 1994 2,158–164

    Article  Google Scholar 

  • James MA. Choosing the right prosthesis for a child with con-genital upper extremity absence: an ethical analysis (ab-stract). Orthop Trans 1998/99 22,1206

    Google Scholar 

  • Jerard RB, Jacobsen SC. Laboratory evaluation of a unified the-ory for simultaneous multiple axis artificial arm control. Trans ASME J Biomech Eng 1980 102,199–207

    Article  CAS  Google Scholar 

  • Johansen PB, Breitholtz M, Cavrini R. (et al.) Prosthetic reha-bilitation in bilateral high above elbow amputation. Scand J Rehabil Med 1987 19,85–87

    PubMed  CAS  Google Scholar 

  • Johnsson U, Körner L, Herberts P. A microprocessor based con-trol system for multifunctional hand prostheses. Int J Reha-bil Res 1984 7,193–195

    Article  CAS  Google Scholar 

  • Jouin E. La pronosupination dans les protheses myoelectriques (pronation/supination with myoelectric prostheses). Rev Readapt 1983 11,43–45

    Google Scholar 

  • Kaitan R. Die Verwendung von mikroControllern in der Pro-thetik (microcontrollers in the field of prosthetics). Med Orthop Tech 1997 117,26–30

    Google Scholar 

  • Kampas P. Myoelektroden-optimal eingesetz (the optimal use of myo-electrodes). 2001 121,21–27

    Google Scholar 

  • Kato I. Trends in powered upper limb prostheses. Prosthet Ort-hot Int 1978 2,64–68

    Article  CAS  Google Scholar 

  • Kato I, Morita H, Onozuka T. Development of myoelectric con-trol system for an above-knee prosthesis. In: Second CISM/IFTOMM International symposium on the theory and practice of robots and manipulators, 1977. p74–78*. (02406)

    Google Scholar 

  • Kejlaa GH. Consumer concerns and functional value of pros-theses to upper limb amputees. Prosthet Orthot Int 1993 17, 157–163

    PubMed  CAS  Google Scholar 

  • Kelly MF, Parker PA, Scott RN. The application of neural net-works to myoelectric signal analysis: a preliminary study. IEEE Trans Biomed Eng 1990 37,221–230

    Article  PubMed  CAS  Google Scholar 

  • Kelly MF, Parker PA, Scott RN. Neural network classification of myoelectric signal for prosthesis control. J Electromyogr Kinesiol 1991 1,229–236

    Article  PubMed  CAS  Google Scholar 

  • Kirtley C, Andrews BJ. Control of functional electrical stimula-tion with extended physiological proprioception. J Biomed Eng 1990 12,183–188

    Article  PubMed  CAS  Google Scholar 

  • Kiryu T, De Luca CJ, Saitoh Y. AR modeling of myoelectric in-terference signals during a ramp contraction. IEEE Trans Biomed Eng 1994 41,1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Kitzenmaier P, Boenick U. Moglichkeiten der myoelektri-schen Ansteuerung von Gliedmaßenprothesen (methods of achieving myoelectrical control of prostheses). Biomed Tech 1992 37,170–180*. (9307737)

    Article  CAS  Google Scholar 

  • Knowles JB, Stevens BL, Howe L. Myo-electric control of a hand prosthesis. J Bone Joint Surg 1965 47B, 416–417

    Google Scholar 

  • Kohn JG, Dunbar L, Bolding D. (et al.) Reports of a pilot pro-gram: myoelectric prostheses (abstract). Orthop Trans 1998/99 22,458

    Google Scholar 

  • Korner L. (et al.) The etiology of amputation stump fatigue in patients controlling myoelectric prostheses. Acta Orthop Scand 1981 52,693

    Google Scholar 

  • Kostuik JP. Amputation surgery and rehabilitation: the Toron-to experience.-New York: Churchill Livingstone, 1981

    Google Scholar 

  • Kritter AE. The bilateral upper extremity amputee. Orthop Clin North Am 1972 3,419–433*. (9513936)

    PubMed  CAS  Google Scholar 

  • Kritter AE. The Milwaukee experience with myoelectric pros-theses (abstract). ICIB 1984 19,1

    Google Scholar 

  • Kritter AE. Myoelectric prosthesis. J Bone Joint Surg 1985 67A, 654–657

    Google Scholar 

  • Kritter AE. Myoelectric prosthesis: current status (abstract). J Assoc Child Prosthet Orthot Clin 1985 20, 36–37

    Google Scholar 

  • Kruganti U, Hudgins B, Scott RN. Two-channel enhancement of a multifunctional control system. IEEE Trans Biomed Eng 1995 42, 109–111

    Article  Google Scholar 

  • Kruger LM. A comparison study of the myoelectric and body-powered hand in children (abstract) Orthop Trans 1988 12, 580

    Google Scholar 

  • Kruger LM, Fishman S. Myoelectric and body-powered pros-theses. J Pediatr Orthop 1993 13,68–75

    Article  PubMed  CAS  Google Scholar 

  • Kruger L, Skewes E, Haas J. Surlyn socket for below-elbow my-oelectric prostheses (abstract). J Assoc Child Prosthet Ort-hot Clin 1988 23,34

    Google Scholar 

  • Kruit J, Cool JC. Body-powered hand prosthesis with low oper-ating power for children. J Med Eng Technol 1989 13, 129–133

    Article  PubMed  CAS  Google Scholar 

  • Kuiken TA, Popovic M, Taslove A. A 2-D finite element model of myoelectric signals (abstract). Arch Phys Med Rehabil 1999 80,1122

    Google Scholar 

  • Kuiken T, Stoykov N, Lowery M. (et al.) The use of nerve-mus-cle grafts to improve myoelectric prosthesis control. Capa-bilities 2001 10(3), 1–3,11*. (2135185)

    Google Scholar 

  • Kurtz I. The Nintendo Entertainment System-Myoelectric Signal Interface System (NEMESIS) (abstract). J Assoc Child Prosthet Orthot Clin 1993 28, 15

    Google Scholar 

  • Kurtz I, Mifsud M, Hubbard S. (et al.) Microcomputer-based muscle site identification for electrode placement in myo-electric prostheses (abstract). J Assoc Child Prosthet Orthot Clin 1988 23,35

    Google Scholar 

  • Kuruganti U, Hudgins B, Scott RN. Two-channel enhancement of a multifunctional control system. IEEE Trans Biomed Eng 1995 42,109–111

    Article  PubMed  CAS  Google Scholar 

  • Kyberd P. The control of artificial hands. Postgrad Doct Middle East 1991 14,392–398*. (9821565)

    Google Scholar 

  • Kyberd P. Prosthetics lead the way. Electr Wireless World 1989 95,176–177*. (21601)

    Google Scholar 

  • Kyberd PJ. The appropriate control of manipulators for reha-bilitation robotics. In: Mechatronics-the integration of en-gineering design: papers prepared for the University of Dundee and the Solid Mechanics and Machine Systems Group of the Institute of Mechanical Engineers. 1992, p123–130*. (9821569)

    Google Scholar 

  • Kyberd PJ, Chappell PH. The Southampton Hand: an intelligent myoelectric prosthesis. J Rehabil Res Dev 1994 31,326–334

    PubMed  CAS  Google Scholar 

  • Kyberd PJ, Chappell PH, Nightingale JM. Sensory control of a multifunction hand prosthesis. Biosensors 1987/88 3, 347–357*. (22966)

    Article  Google Scholar 

  • Kyberd PJ, Holland OE, Chappell PH. (et al.) MARCUS: a two degree of freedom hand prosthesis with hierarchical grip control. IEEE Trans Rehabil Eng 1995 3,70–76

    Article  Google Scholar 

  • Kyberd PJ, Mustapha N, Carnegie F. (et al.) A clinical experi-ence with a hierarchically controlled myoelectric hand prosthesis with vibro-tactile feedback. Prosthet Orthot Int 1993 17,56–64

    Article  PubMed  CAS  Google Scholar 

  • Lamande F. Krankengymnastik zur Vorbereitung des patienten fur eine myoelektrische prothesenversorgung (physical therapy for preparation of patients for a myo electrically controlled prosthesis). Med Orthop Tech 1992 112,20–24

    Google Scholar 

  • Lamande F. La reeducation preprothetique: en vue d’un appar-eillage myoelectrique ou myoelectronique du membre su-perieur ampute (pre-prosthetic rehabilitation: an aspect of fitting a myoelectric or myoelectronic upper limb ampu-tee). Kinesitherapie Scientifique 1993 329,10–17

    Google Scholar 

  • Lamb DW. Upper limb amputations including prosthetic fit-ting. Curr Opin Orthop 1991 2,819–823

    Google Scholar 

  • Lambert CM, Pellicore RJ, Hamilton RC. (et al.) Twenty-three years of clinic experience. ICIB 1976 15(3/4), 15–20,25

    Google Scholar 

  • Leblanc MA. Clinical evaluation of externally powered pros-thetic elbows. Artificial Limbs 1971 15(1), 70–77

    PubMed  CAS  Google Scholar 

  • Leblanc MA. Externally powered prosthetic elbows: a clinical evaluation.-Washington, DC: National Research Council.

    Google Scholar 

  • Committee on Prosthetics Research and Development, 1970.16 pp*. (22669)

    Google Scholar 

  • Leblanc M. Study of body powered upper limb prostheses in Europe.-Washington, DC: World Rehabilitation Fund, 1986

    Google Scholar 

  • Leblanc MA. Upper-limb prosthetics current status and future needs. Orthot Prosthet 1977 31(4), 6–9

    Google Scholar 

  • Lee RE. Reassessing myoelectric control: is it time to look at al-ternatives. Can Med Assoc J 1987 136,467–469*. (05551)

    CAS  Google Scholar 

  • Lehmann A, Muller N, Zapfe J. Der nutzen neuer technologie fur trager von myo elektrischen armprothesen (new battery technology now also available for myoelectric arm prosthe-ses). Orthop Tech 1998 49,192–194

    Google Scholar 

  • Leite Da Cunha F, Schneebeli H-JA, Dynnikov VI. Development of anthropomorphic upper limb prostheses with human-like interphalangian and interdigital couplings. Artif Or-gans 2000 24,193–197*. (2031739)

    Article  Google Scholar 

  • Light CM, Chappell PH. Development of a lightweight and adaptable multiple-axis hand prosthesis. Med Eng Phys 2000 22,679–684

    Article  PubMed  CAS  Google Scholar 

  • Light CM, Chappel PH, Hudgins B. (et al.) Intelligent multi-functional myoelectric control of hand prostheses. J Med Eng Technol 2002 26,139–146

    Article  PubMed  CAS  Google Scholar 

  • Lind K. The electric elbow. ICIB 1969 8(7), 8–9

    Google Scholar 

  • Lippay AL. Clinical experience with a myoelectric prosthesis. ICIB 1967 6(4), 25–31

    Google Scholar 

  • Lippay AL. External power and the amputee: an engineer’s view. ICIB 1968 7(5), 7–12

    Google Scholar 

  • Livingstone SM. Some arguments in favour of direct electric drive for an artificial elbow. J Bone Joint Surg 1965 47B, 453–454

    Google Scholar 

  • Lombardo JR. Myoelectric camp: an innovative interdiscipli-nary concept for fitting myoelectric prostheses (abstract). J Assoc Child Prosthet Orthot Clin 1991 26,22

    Google Scholar 

  • Lopez JMM. Protesis mioelectricas para amputaciones de mano (myoelectric aids for hand-prostheses). Mundo Elec-tronico 1979 82,41–51*. (23733)

    Google Scholar 

  • Lovely DF, Buck CS, Scott RN. Improved battery saving device for use with myoelectric control systems. Med Biol Eng Comput 1986 24,203–205

    Article  PubMed  CAS  Google Scholar 

  • Lovely DF, Hruczkowski TW, Scott RN. A microprocessor based trainer for both single-site and two-site myoelectric pros-theses. J Microcomputer Applications 1988 11, 31–45*. (20936)

    Article  Google Scholar 

  • Lovely DF, Hudgins B, Stocker DE. A wireless electrode for my-oelectric training (abstract). Orthop Trans 1995 19,122

    Google Scholar 

  • Lovely DF, Stocker D, Scott RN. A computer-aided myoelectric training system for young upper limb amputees. J Micro-computAppl 1990 13,245–259*. (9001823)

    Google Scholar 

  • Lozac’h Y. An improved and more versatile myoelectric con-trol. ICIB 1972 11(8), 13–15

    Google Scholar 

  • Lucaccini LF, Kaiser PK, Lyman J. The French electric hand: some observations and conclusions. Bull Prosthet Res 1966 10(6),30–51

    Google Scholar 

  • Luzzio CC. Controlling an artificial arm with foot movements. Neurorehabil Neural Repair 2000 14,207–212

    PubMed  CAS  Google Scholar 

  • Lyttle D, Sweitzer R, Steinke T. (et al.) Experiences with myo-electric below-elbow fittings in teenagers. ICIB 1974 13(6), 11–20

    Google Scholar 

  • Malone JH, Childers SJ, Underwood J. (et al.) Immediate postsurgical management of upper extremity amputation: conventional, electric and myoelectric prosthesis. Orthot Prosthet 1981 35(2), 1–9

    Google Scholar 

  • Mann RW. Cybernetic limb prosthesis. Ann Biomed Eng 1981 9,1–43*. (00547)

    Article  Google Scholar 

  • Mann RW. Tradeoffs at the man-machine interface in cyber-netic prostheses/orthoses. In: Perspectives in biomedical engineering: proceedings of a symposium organised in as-sociation with the Biological Engineering Society, and held in the University of Strathclyde, Glasgow, Scotland, June./ edited by RM Kenedi.-London: MacMillan Press, 1973. p73–77*. (9207493)

    Google Scholar 

  • Manneschi V, Palmerio B, Pauluzzi P. (et al.) Contact Derma-titis from myoelectric prostheses. Contact Dermatitis 1989 21,116–117*.(23148)

    Article  PubMed  CAS  Google Scholar 

  • Marquardt E. Prothetische Versorgung nach Amputationen (prosthetic treatment after amputation). Chirurg 1984 55, 311–317*.(10488)

    PubMed  CAS  Google Scholar 

  • Marquardt E, Neff G. The angulation osteotomy of above-el-bow stumps. Clin Orthop 1974 104,232–238

    Article  PubMed  Google Scholar 

  • Marquardt E, Trauth J. Kriterien fur die Versorgung von Kin-dern mit Hand und Armprothesen (criteria for the supply of children with hand and arm prostheses). Orthop Tech 1985 36,524–529

    Google Scholar 

  • Mason CP. Design of a powered prosthetic arm system for the above-elbow amputee. Bull Prosthet Res 1972 10(18), 10–24

    Google Scholar 

  • Mason CP. Practical problems in myoelectric control of pros-theses. Bull Prosthet Res 1970 10(13), 39–45

    PubMed  CAS  Google Scholar 

  • Mauriello GE. Some electronic problems of myoelectric con-trol of powered orthotic and prosthetic appliances. J Bone Joint Surg 1968 50A, 524–534

    Google Scholar 

  • Mayagoita R, Ozuna S. Design and development of a myoelec-trically controlled hand prostheses. Proc Int Conf Med Biol Eng 1985 August, 617–618*. (23660)

    Google Scholar 

  • McCarthy CF, De Luca CJ. A myofeedback instrument for clin-ical use. J Rehabil Res Dev 1984 21(2), 39–44

    PubMed  CAS  Google Scholar 

  • McDonnell PM. Developmental response to limb deficiency and limb replacement. Can J Psychol 1988 42, 120–143*. (21165)

    Article  PubMed  CAS  Google Scholar 

  • McDonnell PM, Scott RN, Dickison J. (et al.) Do artificial limbs become part of the user? New evidence. J Rehabil Res Dev 1989 26,17–24

    PubMed  CAS  Google Scholar 

  • McKenzie DS. The clinical application of externally powered artificial arms. J Bone Joint Surg 1965 47B, 399–410

    Google Scholar 

  • McKenzie DS. Powered arms. Ann R Coll Surg Engl 1967 40, 279–286*. (9206195)

    PubMed  CAS  Google Scholar 

  • McKenzie DS. The Russian myo-electric arm. J Bone Joint Surg 1965 47B,418–420

    Google Scholar 

  • McLaurin CA. On the use of electricity in upper extremity prostheses. J Bone Joint Surg 1965 47B, 448–452

    Google Scholar 

  • McLaurin CA. Prosthetic research and training unit. ICIB 1966 6(2), 13–22

    Google Scholar 

  • McLeod KJ, Lovely DF, Scott RN. A biphasic pulse burst gener-ator for afferent nerve stimulation. Med Biol Eng Comput 1987 25,77–80

    Article  PubMed  CAS  Google Scholar 

  • Medical Research Council. Centre for Muscle Substitutes. Group on power and control systems for upper limb pros-theses. Progress Report No. 1. / by AB Kinnier Wilson, SR Montgomery, R McWilham.-London: MRC, 1966

    Google Scholar 

  • Medical Research Council. Powered Limbs Unit. The design and development of an experimental externally powered upper-limb prosthetic system. Progress Report No. 2. / by R McWilham, SR Montgomery, DD Sanderson.-London: MRC, 1970

    Google Scholar 

  • Meek SG, Fetherston SJ. Comparison of signal-to-noise ratio of myoelectric filters for prosthesis control. J Rehabil Res Dev 1992 29(4), 9–20

    Article  PubMed  CAS  Google Scholar 

  • Meek SG, Jacobsen SC, Goulding PP. Extended physiologic traction: design and evaluation of a proportional force feedback system. J Rehabil Res Dev 1989 26(3), 53–62

    PubMed  CAS  Google Scholar 

  • Meghdari A, Arefi M, Mahmoudian M. Geometric adaptability: a novel mechanical design in the Sharif artificial hand. Int J Robotics Autom 1992 7,80–85*. (9410017)

    Google Scholar 

  • Mendez MA. Evaluation of a myoelectric hand prosthesis for children with a below-elbow absence. Prosthet Orthot Int 1985 9,137–140

    PubMed  CAS  Google Scholar 

  • Mendez MA. Myoelectric hands. Newsletter. Demonstration Centres in Rehabilitation 1984 33,71–73

    Google Scholar 

  • Menkveld SR, Novotny MP, Schwartz M. Age-appropriateness of myoelectric prosthetic fitting. J Assoc Child Prosthet Orthot Clin 1987 22,60–65

    Google Scholar 

  • Meredith JM. Comparison of three myoelectrically controlled prehensors and the voluntary-opening split hook. Am J Oc-cup Ther 1994 48,932–937

    Article  CAS  Google Scholar 

  • Meredith JM, Uellendahl JE, Keagy RD. Successful voluntary grasp and release using the Cookie Crusher myoelectric hand in 2-years old. Am J Occup Ther 1993 47,825–829

    Article  PubMed  CAS  Google Scholar 

  • Michael JW, Bowker JH. Prosthetics/orthotics research for the twenty-first century: summary of 1992 conference proceed-ings. J Prosthet Orthot 1994 6, 100–107

    Article  Google Scholar 

  • Mifsud M, AI-Temen I, Sauter W. (et al.) Variety village elec-tromechanical hand for amputees under two years of age. J Assoc Child Prosthet Orthot Clin 1987 22, 41–46

    Google Scholar 

  • Mifsud M, Galway HR, Milner M. Current myoprosthetic devel-opments at the Hugh MacMillan Medical Centre. J Assoc Child Prosthet Orthot Clin 1986 21,1–7

    Google Scholar 

  • Mifsud M, Hubbard TS, Verburg G. (et al.) Microcomputer-based myoelectric assessment system (abstract). J Assoc Child Prosthet Orthot Clin 1989 24(2/3) 36

    Google Scholar 

  • Mifsud M, Milner M. Two-channel miniature data-acquisition device. Med Biol Eng Comput 1986 24,199–202

    Article  PubMed  CAS  Google Scholar 

  • Mifsud M, Naumann S, Milner M. Powered upper extremity prosthetics research and developments. Can J Rehabil 1987 1,119–122*. (23931)

    Google Scholar 

  • Miault D, Dechamps E, Lamande F. (et al.) Erfahrungen mit der “UTAH”-armprothese (experience with the “UTAH” — Arm). Med Orthop Tech 1992 112,17–19

    Google Scholar 

  • Miguelez JM. Clinical factors in electrically powered upper-ex-tremity prosthetics. J Prosthet Orthot 2002 14,36–38

    Article  Google Scholar 

  • Miguelez JM. High-level bilateral upper extremity amputee pa-tient: a case study (abstract). Arch Phys Med Rehabil 1997 78,1046

    Google Scholar 

  • Millstein S, Heger H, Hunter G. A review of the failures in use of the below elbow myoelectric prosthesis. Orthot Prosthet 1982 36(2), 29–34

    Google Scholar 

  • Millstein SG, Heger H, Hunter GA. Prosthetic use in adult up-per limb amputees: a comparison of the body powered and electrically powered prostheses. Prosthet Orthot Int 1986 10,27–34

    PubMed  CAS  Google Scholar 

  • Mongeau M. New hope for the patient with severe upper-ex-tremity deficiencies: externally powered prostheses. ICIB 1968 7(5), 1–6

    Google Scholar 

  • Moradi AA, Fallah A, Mikaili R. Control of the electric motor in a cybernetic arm. Cybernet Syst 1991 22, 119–134*. (9514018)

    Article  Google Scholar 

  • Morin E, Parker A, Scott RN. Operator error in a level coded myoelectric control channel. IEEE Trans Biomed Eng 1993 40,558–562

    Article  PubMed  CAS  Google Scholar 

  • Moscow research team develops ‘cybernetic’ prosthesis (news item). ICIB 1963 2(6), 8

    Google Scholar 

  • Moseley M, Baron E. Myoelectric wiring technique for children and young adults. J Prosthet Orthot 1988 1,41–44

    Article  Google Scholar 

  • Moss JR, Jackson JA. Myoelectric prosthesis for children. Br J Occup Ther 1979 42,40

    Google Scholar 

  • Moss Rehabilitation Hospital. Rehabilitation Engineering Cen-ter. Pattern-recognition arm prosthesis: an historical per-spective./ by R Wirta, D Taylor, FR Finley.-Philadelphia, PA: Rehabilitation Engineering Hospital, Moss Rehabilitation Hospital, 1977

    Google Scholar 

  • Muilenburg AL, Leblanc MA. Body-powered upper-limb com-ponents. In: Comprehensive management of the upper-limb amputee./ edited by DJ Atkins, RH Meier.-New York: Springer-Verlag, 1988.p28–38*. (9927072)

    Google Scholar 

  • Munoz R, Leija L, Tovar B. (et al.) Real-time digital myoelec-tric pattern detector system. In: Proceedings of the 18th An-nual International Conference of the IEEE Engineering in Medicine and Biology Society, 31 October-3 November, 1996, Amsterdam.-Piscataway: IEEE, 1997. p21–23*. (9823659)

    Google Scholar 

  • Murray D. Problems in prosthetics. Can Fam Physician 1989 35, 309–312*. (21812)

    PubMed  CAS  Google Scholar 

  • Myers DR, Moskowitz GD. Myoelectric pattern recognition for use in the volitional control of above-knee prostheses. IEEE Trans Syst Man Cybern 1981 11,296–302*. (02112)

    Article  Google Scholar 

  • Myoelectric hand-more available for more children. DHSS Press Release 1981,27 July. 3 pp*. (05519)

    Google Scholar 

  • Nader M. Industrielle Fertigung und Forschung (industrial production and research). Med Orthop Tech 1987 107, 111–115

    Google Scholar 

  • Nader M, Ing EH. The artificial substitution of missing hands with myoelectric prostheses. Clin Orthop 1990 258,9–17

    PubMed  Google Scholar 

  • Neal M. Coming to grips with artificial hand design. Design Eng 1993 March, 26–27,29,32,34*. (9410134)

    Google Scholar 

  • Neff G. Prothetische Versorgung nach winkel Osteotomie (prosthetic management following angulation osteotomy in above-elbow amputees). Orthop Tech 1979 30,1–5

    Google Scholar 

  • Nickel VL, Waring W. Future developments in externally pow-ered orthotic and prosthetic devices. J Bone Joint Surg 1965 47B,469–471

    Google Scholar 

  • Nightingale JM. Microprocessor control of an artificial arm. M Microcomputer Applications 1985 8,167–193*. (9821804)

    Article  Google Scholar 

  • Norris JF, Lovely DF. Real-time compression of myoelectric da-ta utilising adaptive differential pulse code modulation. Med Biol Eng Comput 1995 33,629–635

    Article  PubMed  CAS  Google Scholar 

  • Northmore-Ball MD, Heger H, Hunter GA. The below-elbow myo-electric prostheses: a comparison of the Otto Bock myo-electric prosthesis with the hook and functional hand. J Bone Joint Surg 1980 62B, 363–367

    Google Scholar 

  • O’Neill PA, Morin EL, Scott RN. (et al.) Myoelectric signal characteristics from muscles in residual upper limbs. IEEE Trans Rehabil Eng 1994 2,266–270

    Article  Google Scholar 

  • O’Shea BJ, Dunfield VA. Myoelectric training for preschool children. Arch Phys Med Rehabil 1983 64,451–455

    PubMed  Google Scholar 

  • Otto EJ, Shannon GE A microelectronic myofeedback control system. Aust J Biomed Eng 1980 1,4–9*. (9000486)

    Google Scholar 

  • Otto J. O & P technology: soaring into the new millenium. O & P Business News 2000 9(3), 40–49

    Google Scholar 

  • Paciga JE. (et al.) Clinical evaluation of UNB 3-state myoelec-tric control for arm prostheses. Bull Prosthet Res 1980 10(34), 21–33

    Google Scholar 

  • Paciga JE, Richard PD, Scott RN. Error rate in five-state myo-electric control systems. Med Biol Eng Comput 1980 18, 287–290

    Article  PubMed  CAS  Google Scholar 

  • Paquin JM, Andre JM, Herment JP. (et al.) Le bras UTAH: Pre-miere experience a propos de quatre amputes des deux bras appareilles bilateralement (the UTAH arm: first experience with four two arm amputees bilaterally fitted). Probl Med Reed 1989 16,98–105*. (22584)

    Google Scholar 

  • Parker P, Korner L, Almstrom C. (et al.) Skeletal muscle force, pressure and myoelectric signal. Zdrav Vestn 1982 51(Sup-pi 1), 33–34*. (9207473)

    Google Scholar 

  • Parker PA, Scott RN. Myoelectric control of prostheses. Crit Rev Biomed Eng 1995 13,283–310*. (9515086)

    Google Scholar 

  • Patterson DB, McMillan PM, Rodriguez RR Acceptance rate of myoelectric prosthesis. J Assoc Child Prosthet Orthot Clin 1989 24(2/3), 37

    Google Scholar 

  • Patterson DB, McMillan PM, Rodriguez RP. Acceptance rate of myoelectric prosthesis. J Assoc Child Prosthet Orthot Clin 1990/1991 25,73–76

    Google Scholar 

  • Patterson PE, Katz JA. Design and evaluation of a sensory feed-back system that provides grasping pressure in a myoelec-tric hand. J Rehabil Res Dev 1992 29(1), 1–8

    Article  PubMed  CAS  Google Scholar 

  • Patton JG. Upper-limb prosthetic components for children and teenagers. In: Comprehensive management of the upper-limb amputee./ edited by DJ Atkins, RH Meier.-New York: Springer-Verlag, 1988.p99–120*. (9927086)

    Google Scholar 

  • Patton JG, Shida-Tokeshi J, Setoguchi Y. Prosthetic components for children. Phys Med Rehabil: State Art Rev 1991 5, 245–264

    Google Scholar 

  • Peizer E. External power in prosthetics, orthotics and ortho-paedic aids. Prosthet Int 1971 4(1), 4–60

    Google Scholar 

  • Peizer E, Pirrello T. Principles and practice in upper extremity prostheses. Orthop Clin North Am 1992 3, 397–417*. (9513937)

    Google Scholar 

  • Petersen I. Electromyography in cases of congenital and trau-matic arm amputations. Acta Orthop Scand 1966 37, 166–176

    Article  PubMed  CAS  Google Scholar 

  • Philipson L. The electromyographic signal used for control of upper extremity prostheses and for quantification of motor blockade during epidural anaesthesia. Linkoping Studies Sci Technol 1987 172,8–126*. (20529)

    Google Scholar 

  • Philipson L, Childress D, Strysik J. Digital approaches to myo-electric state control of prostheses. Bull Prosthet Res 1982 10(36),3–11

    Google Scholar 

  • Philipson L, Sorbye R. Control accuracy and response time in multiple-state myoelectric control of upper-limb prosthe-ses: initial results in nondisabled volunteers. Med Biol Eng Comput 1987 25,289–293

    Article  PubMed  CAS  Google Scholar 

  • Philipson L, Sorbye R. Myoelectric elbow and hand prosthesis controlled by signals from 2 muscles only, in a 9 year old girl. Prosthet Orthot Int 1981 5, 29–32

    PubMed  CAS  Google Scholar 

  • Philipe-Auguste JS, Gibbons DT, O’Riain MD. Simulation and modelling of a microcomputer controlled above-elbow prosthesis. Automedica 1989 11,99–109*. (22605)

    Google Scholar 

  • Picken R. Myoelectric prosthesis for a partial hand amputee (abstract). J Assoc Child Prosthet Orthot Clin 1986 21,30

    Google Scholar 

  • Platt W, Shutty MS, Buckelew SP. (et al.) Biofeedback-assisted assessment and myoelectric training in an adolescent be-low elbow amputee (abstract). Arch Phys Med Rehabil 1989 70(11),A99–A100

    Google Scholar 

  • Plettenburg DH. A myoelectrically controlled pneumatically powered hand prosthesis for children. J Rehabil Sci 1988 1, 135–137

    Google Scholar 

  • Plettenburg DH. Electric versus pneumatic power in hand prostheses for children. J Med Eng Technol 1989 13, 124–128

    Article  PubMed  CAS  Google Scholar 

  • Ploger J, Baumgartner R. Die Kineplastik nach Sauerbruch im Zeitalter der Myoelektrik (Sauerbruch’s cineplasty versus myoelectric prostheses). Med Orthop Tech 1986 106,110–113

    Google Scholar 

  • Popov B. The bio-electrically controlled prosthesis. J Bone Joint Surg 1965 47B, 421–424

    Google Scholar 

  • Pouthier F, Vincent C, Morissette M-J. (et al.) Clinical results of an investigation of paediatric upper limb myoelectric prosthesis fitting at the Quebec Rehabilitation Institute. Prosthet Orthot Int 2001 25,119–131

    Article  Google Scholar 

  • Prehension assessment: prosthetic therapy for the upper limb child amputee./edited by David Krebs.-Thorofare, NJ: Slack,1987

    Google Scholar 

  • Proot W. The New York electric elbow, the New York prehen-sion actuator, and the NU-VA synergetic prehension. In: Comprehensive management of the upper-limb amputee./ edited by DJ Atkins, RH Meier.-New York: Springer-Verlag, 1988. p221–226*. (9927080)

    Google Scholar 

  • Puchhammer G. Der taktile rutschsensor: integrated minia-turisierter sensorik in einer myo-hand (the tactile sup sen-sor: integration of a miniaturized sensory device on an my-oelectric hand). Orthop Tech 1999 50,564–569 (E)

    Google Scholar 

  • Putzi R. Myoelectric partial-hand prosthesis. J Prosthet Orthot 1992 4,103–108

    Article  Google Scholar 

  • Radocy R. Willkurlich schlieβende eigen kraftprothesen in den USA (voluntary closing devices for body-powered up-per extremity prostheses in the USA). Med Orthop Tech 2001 121,18–20

    Google Scholar 

  • Rebuck C, Ciocco R, Harrington SE. (et al.) The ultimate camp experience (abstract). Orthop Trans 1998/99 22,1199

    Google Scholar 

  • Reswick JB. Development of feedback control prosthetic and orthotic devices. Adv Biomed Eng 1972 2,139–217*. (01866)

    Google Scholar 

  • Ringaert L, Lyttle D. Wearing patterns and usage of myoelectric prostheses in a population of young amputees (abstract). J Assoc Child Prosthet Orthot Clin 1991 26,25

    Google Scholar 

  • Robdeutscher W, Hammerl M, Wen L. (et al.) Ein myo-train-er mit animierter darstellung-neue moglichkeiten des muskeltrainings fur amputierte (a myoelectric training sys-tem with animated presentation-new possibilities of mus-cle training with amputees). Orthop Tech 1999 50,560–562

    Google Scholar 

  • Robertson E. Rehabilitation of arm amputees and limb defi-cient children.-London: Bailliere Tindall, 1978

    Google Scholar 

  • Rodriquez RR Amputation surgery and prostheses. Orthop Clin North Am 1996 27,525–539*. (9617644)

    Google Scholar 

  • Roesler H. Entwicklung, stand und Perspektiven kunstlicher hande (development present state and perspectives of arti-ficial hands). Orthop Tech 1982 33,101–105*. (23741)

    Google Scholar 

  • Rohland TA. Sensory feedback in upper-limb prosthetic sys-tems. ICIB 1974 13(9), 1–4

    Google Scholar 

  • Ronald JR, Kingston JE. How early can we start myoelectrics (abstract). BAPO Newsletter 1997 No. 2,25

    Google Scholar 

  • Ronald JR, Kingston JE. Myoelektrische prothesen fur kinder mit ellbogen-exartikulationsamputationen (myoelectric prostheses for children with elbow distraction). Orthop Tech 1997 48,918–924

    Google Scholar 

  • Rossdeutscher W. Steuerungsmoglichkeiten in der armprothe-tik (facilities of control of upper limb prosthetics). Orthop Tech 2000 51,865–868

    Google Scholar 

  • Rowe J. Record breaking development in artificial limb tech-nology. Within Reach 1999 No. 69,6

    Google Scholar 

  • Rubin G, Harris E An above-elbow electrically controlled pros-thesis complicated by the presence of a cardiac pacemaker. Clin Prosthet Orthot 1987 11,251–253

    Google Scholar 

  • Sacchetti R, Schmidl H. Les protheses dan le traitement de l’en-fant (prostheses used in treatment of children). Techn Orthop Int 1994 No. 25,4–13*. (9411213)

    Google Scholar 

  • Salam Y. The use of silicone suspension sleeves with myoelec-tric fittings. J Prosthet Orthot 1994 6,119–120

    Article  Google Scholar 

  • Sanderson ER, Caldwell RR, Wedderburn Z. (et al.) Myoelec-tric below-elbow prostheses in the very young child (ab-stract). ICIB 1984 19, 55

    Google Scholar 

  • Sauter WE Application of a three-state myoelectric control sys-tem. ICIB 1977 16(1/2), 9–12

    Google Scholar 

  • Sauter WE Erfahrungen mit elektrischen Antriebs-und Steuer-systemen in armprothesen fur kinder und erwachsene (ex-periences with electrically powered and myoelectric con-trol systems in upper extremity prosthetics for children and adults). Med Orthop Tech 1992 112,13–16

    Google Scholar 

  • Sauter WE Reassessing myoelectric control: is it time to look at alternatives? (letter) Can Med Assoc J 1987 137,10*. (16944)

    Google Scholar 

  • Sauter WF, Bush G, Sommerville J. A single case study: myoelectrically controlled exoskeletal mobilizer for amyotrophic lateral sclerosis (ALS) patients. Prosthet Orthot Int 1989 13,145–148

    PubMed  CAS  Google Scholar 

  • Sauter WF, Dakpa R, Galway R. (et al.) Development of layered “unionized” silicone sockets for juvenile below-elbow amputees. J Assoc Child Prosthet Orthot Clin 1987 22,57–59

    Google Scholar 

  • Sauter WF, Dakpa R, Hamilton E. (et al.) Prosthesis with electric elbow and hand for a three-year-old multiply handicapped child: case note. Prosthet Orthot Int 1985 9,105–108

    PubMed  CAS  Google Scholar 

  • Sauter WF, Naumann S, Milner M. A three-quarter type belowelbow socket for myoelectric prostheses. Prosthet Orthot Int 1986 10,79–82

    PubMed  CAS  Google Scholar 

  • Schultz CJ, Kritter AE. Myoelectric single-site electrode fitting for a short below-elbow amputee. ICIB 1983 18(3), 1–6

    Google Scholar 

  • Scotland TR, Galway HR. A long-term review of children with congenital and acquired limb deficiency. J Bone Joint Surg 1983 65B, 346–349

    Google Scholar 

  • Scott RN. Biomedical engineering in upper-extremity prosthetics. In: Comprehensive management of the upper-limb amputee./ edited by DJ Atkins, RH Meier,-New York: Springer-Verlag, 1988. p9173–189*. (9927084)

    Google Scholar 

  • Scott RN. Feedback in myoelectric prostheses. Clin Orthop 1990 256,58–63

    PubMed  Google Scholar 

  • Scott RN. Myo-electric control. Science J 1966 March, 8pp*. (17327)

    Google Scholar 

  • Scott RN. Myo-electric energy spectra (technical note). Med Biol Eng 1967 5,303–305*. (17326)

    Article  PubMed  CAS  Google Scholar 

  • Scott RN. Myoelectric control of prostheses. Arch Phys Med Rehabil 1966 47,174–181*. (17328)

    PubMed  CAS  Google Scholar 

  • Scott RN. Myoelectric control of prostheses and orthoses. Bull Prosthet Res 1967 10(7), 93–114

    Google Scholar 

  • Scott RN. Myoelectric control systems. In: Advances in biomedical engineering and medical physics. Vol. 2./ edited by SN Levine.-New York, NY: Wiley 1962 p45–72*. (01453)

    Google Scholar 

  • Scott RN. Myo-electric control systems. Progress report No. 5. University of New Brunswick. Bioengineering Institute, 1965. 25 pp*. (22668)

    Google Scholar 

  • Scott RN. Myo-electric control systems. Progress report No. 6. University of New Brunswick. Bio engineering Institute, 1967. 41 pp*. (22667)

    Google Scholar 

  • Scott RN. Myoelectric control systems research at the Bioengineering Institute, University of New Brunswick. Med Prog Technol 1990 16,5–10*. (9002083)

    PubMed  CAS  Google Scholar 

  • Scott RN. (et al.) New myoelectric control system (abstract). J Assoc Child Prosthet Orthot 1986 21,30

    Google Scholar 

  • Scott RN. Reassessing myoelectric control: is it time to look at alternatives? (letter). Can Med Assoc J 1987 137,10*. (16962)

    Google Scholar 

  • Scott RN. Understanding and using your myoelectric prostheses. / by RN Scott. (et al.)-New Brunswick: Bioengineer-ing Institute, University of New Brunswick, 1985

    Google Scholar 

  • Scott RN, Brittain RH, Caldwell PR. (et al.) Sensory feedback system compatible with myoelectric control. Med Biol Eng Comput 1980 18,65–69

    Article  PubMed  CAS  Google Scholar 

  • Scott RN, Dunfield VA, Richard PD. (et al.) A myoelectric control system for young children (abstract). ICIB 1984 19,4–5

    Google Scholar 

  • Scott RN, Lovely DF. Amplifier input impedances for myoelectric control. Med Biol Eng Comput 1986 24,527–530

    Article  PubMed  CAS  Google Scholar 

  • Scott RN, O’shea BJ, Dunfield VA. (et al.) Myo-electric control systems. Muscle function analysis. Progress report No. 7. University of New Brunswick. Bioengineering Institute, 1968. 30 pp*. (22666)

    Google Scholar 

  • Scott RN, Parker PA. Myoelectric prostheses: state of the art. J Med Eng Technol 1988 12,143–151

    Article  PubMed  CAS  Google Scholar 

  • Scott RN, Parker PA. A review of the criteria for setting switching levels in myoelectric prostheses (abstract). J Assoc Child Prosthet Orthot Clin 1990 25,46

    Google Scholar 

  • Scott RN, Parker PA, O’Neill PA. (et al.) Criteria for setting switched levels in myoelectric prostheses. J Assoc Child Prosthet Orthot Clin 1990 25,11–14

    Google Scholar 

  • Scott RN, Sanderson ER. Sensory feedback in prosthetics: where do we go now? (abstract). ICIB 1984 19,54

    Google Scholar 

  • Scott RN, Tucker FR. Surgical implications of myoelectric control. Clin Orthop 1968 61,248–260*. (17300)

    PubMed  CAS  Google Scholar 

  • Scott TRD, Hunter Peckham P, Kilgore KL. Tri-state myoelectric control of bilateral upper extremity neuroprostheses for tetraplegic individuals. IEEE Trans Rehabil Eng 1996 4, 251–263

    Article  PubMed  CAS  Google Scholar 

  • Sears HH. Approaches to prescription of body-powered and myoelectric prostheses. Phys Med Rehabil Clin North Am 1991 2,361–371*. (9104940)

    Google Scholar 

  • Sears HH, Andrew JT, Jacobsen SC. Experience with the Utah Arm, Hand, and Terminal Device. In: Comprehensive management of the upper-limb amputee./ edited by DJ Atkins, RH Meier.-New York: Springer-Verlag, 1988. p194–210*. (9927082)

    Google Scholar 

  • Sears H, Rendi J. A look at myoelectric prosthetic technology. O & P Business World 1999 2(1), 48–52

    Google Scholar 

  • Sears HH, Shaperman J. Proportional myoelectric hand control: an evaluation. Am J Phys Med Rehabil 1991 70,20–28

    Article  PubMed  CAS  Google Scholar 

  • Selvarajah K, Datta D. An unusual complication of a myoelectric prosthesis. Prosthet Orthot Int 2001 25,243–245

    Article  PubMed  CAS  Google Scholar 

  • Sensky TE. A consumer’s guide to “bionic arms”. Br Med J 1980 12 July, 126–127*. (00190)

    Google Scholar 

  • Setoguchi Y. Alternative pediatric prosthetic fittings. Capabilities 1993 3(1), 4–5*. (9308315)

    Google Scholar 

  • Shannon GE The case for sensory feedback on artificial limbs. Inst Eng Australia Elect Eng Trans 1975 EE11, 36–38*. (05586)

    Google Scholar 

  • Shannon GE A comparison of alternative means of providing sensory feedback on upper limb prostheses. Med Biol Eng 1976 14,289–294

    Article  PubMed  CAS  Google Scholar 

  • Shannon GE A myoelectrically-controlled prosthesis with sensory feedback. Med Biol Eng Comput 1979 17,73–80

    Article  PubMed  CAS  Google Scholar 

  • Shannon GF. Characteristics of a transducer for tactile displays. Biomed Eng 1974 9,247–249

    PubMed  CAS  Google Scholar 

  • Shannon GF. Sensory feedback for artificial limbs. Med Prog Technol 1979 6,73–79*. (23739)

    PubMed  CAS  Google Scholar 

  • Shannon GF. Some experience in fitting a myoelectrically con-trolled hand which has a sense of touch. J Med Eng Technol 1978 2,312–314

    Article  PubMed  CAS  Google Scholar 

  • Shannon GF, Agnew PJ. Fitting below-elbow prostheses which convey a sense of touch. Med J Aust 1979 24 March, 242–244*. (17363)

    Google Scholar 

  • Sherman ED, Gingras G, Lippay AL. (et al.) New trends in ex-ternally powered upper extremity prostheses. World Med J 1968 15,121–125*. (9822159)

    Google Scholar 

  • Sherman ED, Lippman Al, Gingras G. Prosthesis given new perspectives by external power. Hosp Management 1965 100, 44–49*. (17329)

    PubMed  CAS  Google Scholar 

  • Sherman ED, Lippay AL, Gingras G. Prosthesis given new perspectives by external power (abstract). ICIB 1966 5(10), 10–12

    Google Scholar 

  • Silcox DH, Rooks MD, Vogel RR. (et al.) Myoelectric prostheses: a long-term follow-up and a study of the use of alternate prostheses. J Bone Joint Surg 1993 75A, 1781–1789

    Google Scholar 

  • Skewes E, Haas J, Kruger LM. Surlyn sockets for below-elbow myoelectric prostheses. J Assoc Child Prosthet Orthot Clin 1988 23,19–23

    Google Scholar 

  • Solomonow M. (et al.) The myoelectric signal of electrically stimulated muscle during recruitment: an inherent feedback parameter for a closed-loop control scheme. IEEE Trans Biomed Eng 1986 33,735–745

    Article  PubMed  CAS  Google Scholar 

  • Solomonow M, Adair C, Lyman JH. Harnessing technique for myoelectric arm prosthesis-technical note. Bull Prosthet Res 1979 10(32), 208–212

    Google Scholar 

  • Sorbye R. Myoelectric controlled hand prostheses in children. Int J Rehabil Res 1977 1,15–25

    Google Scholar 

  • Sorbye R. Myoelectric prosthetic fitting in young children. Clin Orthop 1980 148,34–40

    PubMed  Google Scholar 

  • Sorbye R. Myoelektrisch gesteuerte handprothese fur kinder klinische betrachtungen (myoelectrically controlled hand prostheses in children-clinical considerations). Orthop Tech 1980 31(1), 19–22*. (23744)

    Google Scholar 

  • Sorbye R. Upper-extremity amputees: Swedish experiences concerning children. In: Comprehensive management of the upper-limb amputee./ edited by DJ Atkins, RH Meier.-New York: Springer-Verlag, 1988.p227–239*. (9927085)

    Google Scholar 

  • Spaeth JP. (et al.) Handbook of externally powered prostheses for the upper extremity amputation.-Springfield, I11: CC Thomas, 1981

    Google Scholar 

  • Spiegier SR. Adult myoelectrical upper-limb prosthetic training. In: Comprehensive management of the upper-limb amputee./ edited by DJ Atkins, RH Meier.-New York: Springer-Verlag, 1988. p60–71*. (9927074)

    Google Scholar 

  • Spittler AW, Rosen IE. Cineplastic muscle motors for prostheses of arm amputees. J Bone Joint Surg 1951 33 A, 601–611

    PubMed  Google Scholar 

  • Stack DM, McDonnell PM. Conditioning 1-6 month old infants by means of myoelectrically controlled reinforcement. Int J Rehabil Res 1995 18,151–156

    Article  PubMed  CAS  Google Scholar 

  • Stein RB, Charles D, James KB. Providing motor control for the handicapped: a fusion of modern neurosciences, bioengineering, and rehabilitation. Adv Neurol 1988 47,565–581*. (19917)

    PubMed  CAS  Google Scholar 

  • Stein RB, Charles D, Walley M. Bioelectric control of powered limbs for amputees. Adv Neurol 1983 39, 1093–1109*. (05011)

    PubMed  CAS  Google Scholar 

  • Stein RB, Walley M. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses. Arch Phys Med Rehabil 1983 64,243–248

    PubMed  CAS  Google Scholar 

  • Stern PH, Lauko T. A myoelectrically controlled prosthesis using remote muscle sites. ICIB 1973 12(7), 1–4

    Google Scholar 

  • Stinus H, Baumgartner R, Schuling S. Uber die akzeptanz von armprothesen (on the acceptance of upper extremity prostheses). Med Orthop Tech 1992 112,7–12

    Google Scholar 

  • Stocker D, Caldwell R. Pattern of usage of cosmetic gloves for myoelectric prostheses (abstract). J Assoc Child Prosthet Orthot Clin 1993 28,17

    Google Scholar 

  • Stocker DE, Lovely DF, McDonnell PM. Children using computer video games in myoelectric training. Rehabil Digest 1991 22,7–10

    Google Scholar 

  • Stocker D, McDonnell PM, Lovely DE Computer aided myoelectric training (abstract). J Assoc Child Prosthet Orthot Clin 1991 26,17

    Google Scholar 

  • Thaury MN, Gauquil C, Vergnettes J. (et al.) Le point sur les protheses myoelectriques (position on myoelectric prosthesis). Probl Med Reed 1989 16,91–98*. (22585)

    Google Scholar 

  • Thyberg M, Johansen PB. Prosthetic rehabilitation in unilateral high above-elbow amputation and brachial plexus lesion: case report. Arch Phys Med Rehabil 1987 67,260–262

    Google Scholar 

  • Triolo RJ, Moskowitz GD. The experimental demonstration of a multichannel time-series myoprocessor: system testing and evaluation. IEEE Trans Biomed Eng 1989 36,1018–1027

    Article  PubMed  CAS  Google Scholar 

  • Trost FJ. A long term follow-up on amputees with myoelectric prostheses (abstract). J Assoc Child Prosthet Orthot Clin 1993 28,30

    Google Scholar 

  • Tura A, Lamberti C, Davalli A. (et al.) Experimental development of a sensory control system for an upper limb myoelectric prosthesis with cosmetic covering. J Rehabil Res Dev 1998 35,14–26

    PubMed  CAS  Google Scholar 

  • Uellandahl J. Pediatric myolectric fittings. Capabilities 1993 3(1), 1,4*. (9308313)

    Google Scholar 

  • Uellandahl JE. Upper extremity myoelectric prosthetics. Phys Med Rehabil Clin North Am 2000 11,639–652

    Google Scholar 

  • Uellandahl JE, Heelan JR. Prosthetic management of the upper limb deficient child. Phys Med Rehabil: State Art Rev 2000 14,221–235

    Google Scholar 

  • Ulsass W. Les possibilities fonctionnelles pour un ampute des quatre membres (the functional possibilities for a quadrimembral amputee). Ortho-Scop 1980 1,55–58

    Google Scholar 

  • Upper-limb electronic technology moves forward. O & P Business News 1999 8(23), 1, 20–23

    Google Scholar 

  • Van Lunteren A, Van Lunteren-Gerritsen GHM, Stassen HB. (et al.) A field evaluation of arm prostheses for unilateral amputees. Prosthet Orthot Int 1983 7, 141–151

    PubMed  Google Scholar 

  • Vitali M. (et al.) Amputations and prostheses.-London: Bailliere Tindall, 1978

    Google Scholar 

  • Wakefield GS, Auty B, Tottle CR. Powered exo-skeleton for the treatment of paralytic upper limb disease. Rehabilitation (Lond) 1975 No. 94,22–25

    Google Scholar 

  • Wang G, Zhang X, Zhang J. (et al.) Gripping force sensory feedback for a myoelectrically controlled forearm prosthesis. In: IEEE International Conference on Systems, Man and Cybernetics; intelligent systems for the 21st century, Vancouver, B.C., October 22-25,1995.-Piscataway, N.J: IEEE, 1995. p501–504*. (9615942)

    Google Scholar 

  • Waring W. Spectrum analysis of the myoelectric signal: a bibliography. Bull Prosthet Res 1972 10(18), 5–9

    Google Scholar 

  • Waring W, Antonelli DJ. Myoelectric control systems. Orthop Prosthet Appl J 1967 21(1), 27–32*. (9308714)

    Google Scholar 

  • Wasserman WL. Human amplifiers. Int Sei Technol, 1964. 9 pp*. (17301)

    Google Scholar 

  • Weaver SA, Lange LR, Vogts VM. Comparison of myoelectric and conventional prostheses for adolescent amputees. Am J Occup Ther 1988 42,87–91

    Article  PubMed  CAS  Google Scholar 

  • Weaver SA, Lange LR. Myoelectric prostheses versus body powered prostheses with unilateral, congenital, adolescent below elbow amputees (abstract). Orthot Prosthet 1986 39(4), 56

    Google Scholar 

  • Wedlick LT. External power and recent concepts in control of limb prostheses. Med J Aust 1969 8 February, 278–280*. (16671)

    Google Scholar 

  • Weir RFF, Grahn EC, Duff SJ. A new externally powered, myoelectrically controlled prosthesis for persons with partialhand amputations at the metacarpals. J Prosthet Orthot 2001 13,26–31

    Article  Google Scholar 

  • Weir RFF, Heckathorne CW, Childress DS. Cineplasty as a control input for externally powered prosthetic components. J Rehabil Res Dev 2001 38,357–363

    PubMed  CAS  Google Scholar 

  • Wetz HH, Gisbertz D. Amputation und prothetik: teil 1: amputation und prothesenversorgung der oberen extremitat (amputation and prosthetics: part 1: the upper limb. Orthopade 1998 27,397–411*. (9824061)

    Article  PubMed  CAS  Google Scholar 

  • What normality means to a girl called Aasa. New Scientist 1978 9 March, 659*. (23736)

    Google Scholar 

  • Williams TW One-muscle infant’s myoelectric control. J Assoc Child Prosthet Orthot Clin 1989 24(2/3), 53–56

    Google Scholar 

  • Williams TW. Practical methods for controlling powered upper-extremity prostheses. Assistive Technol 1990 2,3–18

    Article  Google Scholar 

  • Williams TW. The Boston elbow. SOMA 1986 1(2), 29–33

    Google Scholar 

  • Williams TW. Use of the Boston Elbow for high-level amputees. In: Comprehensive management of the upper-limb amputee./ edited by DJ Atkins, RH Meier.-New York: Springer-Verlag, 1988. p211–220*. (9927081)

    Google Scholar 

  • Williams TW, Polsky S, Gans B. (et al.) Hybrid myoelectric prosthesis for congenital elbow disarticulation (abstract). J Assoc Child Prosthet Orthot Clin 1986 21,53

    Google Scholar 

  • Winkler W, Bierwirth W, Fitzlaff G. Myoelektrische Prothesen bei Amputationen oberhalb des Ellenbogens (myoelectric prostheses for above-elbow amputations). Med Orthop Tech 1986 106,114–119

    Google Scholar 

  • Wirta R, Taylor DR, Finley FR. Patttern-recognition arm prosthesis: a historical perspective-a final report. Bull Prosthet Orthot Res 1978 10(30), 8–35

    Google Scholar 

  • Withrow CA, Schuck M. Early prosthetic fittings-the Grenville experience (abstract). J Assoc Child Prosthet Orthot Clin 1991 26,26

    Google Scholar 

  • Wood JC, Barry DT, Alter B. (et al.) Myoacoustic control of upper-extremity prostheses (abstract). J Assoc Prosthet Orthot Clin 1989 24(2/3), 37

    Google Scholar 

  • Wood JE, Meek SG, Jacobsen SC. Quantitation of human shoulder anatomy for prosthetic arm control-1. Surface modelling. J Biomech 1989 22,273–292

    Article  PubMed  CAS  Google Scholar 

  • Wright TW, Hagen AD, Wood MB. Prosthetic usage in upper extremity amputations. J Hand Surg 1995 20A, 619–622*. (9515453)

    Google Scholar 

  • Yeh EC, Chung WP, Chan RC. (et al.) Development of neural network controller for below-elbow prosthesis using single-chip micrcontroller. Biomed Eng Appl Basis Comm 1993 5,340–346*. (9411761)

    Google Scholar 

  • Yu W, Yokoi H, Nishikawa D. Adaptive electromyographic (EMG) prosthetic hand control using Reinforcement Learning. In: Intelligent autonomous systems./ edited by Y Kakuza, M Wada, T Sato.-Amsterdam: ISO Press, 1998. p266–271*. (9924804)

    Google Scholar 

  • Zhang Y, Gruver WA. Force distribution of power grasps based on the controllability of contact forces. In: IEEE Interna-tional Conference on Systems, Man and Cybernetics; intelligent systems for the 21st century, Vancouver, B.C., October 22-25, 1995.-Piscataway, N.J: IEEE, 1995. p83–88*. (9615938)

    Google Scholar 

  • Zhang YT, Parker PA, Scott RN. Control performance characteristics of myoelectric signal with additive interference. Med Biol Eng Comput 1991 29,84–88

    Article  PubMed  CAS  Google Scholar 

  • Zwaan A. Der gebrauchswert einer myoelektrischen prothese: eine nachuntersuchung an 12 patienten (utility value of the myoelectric prosthesis-follow-up study on 12 patients). Orthop Tech 1992 43,727–731

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smart, H. (2004). A Bibliography on Myoelectric Control of Upper Limb Prostheses. In: Muzumdar, A. (eds) Powered Upper Limb Prostheses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18812-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18812-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62302-8

  • Online ISBN: 978-3-642-18812-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics