Skip to main content

Phosphorylation Pattern of tau Associated with Distinct Changes of the Growth Cone Cytoskeleton

  • Chapter
Guidance Cues in the Developing Brain

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 32))

Abstract

That both axons and dendrites grow at specialized terminations called growth cones was recognized already by Santiago Ramon y Cajal (Ramon y Cajal 1890). After inventing the technique of tissue culture, Ross G. Harrison confirmed Cajal’s inference that growth cones represent the elongating tips of axons and first described a living growth cone that is moving by local extension and retraction (Harrison 1907).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad FJ, Pienkowski TP, Baas PW (1993) Regional differences in microtubule dynam

    Google Scholar 

  • Andreadis A, Brown BK, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochemistry 31:10626–10633

    PubMed  CAS  Google Scholar 

  • Arendt T (2000) Alzheimer’s disease as a loss of differentiation control in a subset of neurons that retain immature features in the adult brain. Neurobiol Aging 21:783–796

    PubMed  CAS  Google Scholar 

  • Phosphorylation Pattern of tau Associated with Distinct Changes of the Growth 43

    Google Scholar 

  • Arnold CS, Johnson GV, Cole RN, Dong DLY, Lee M, Hart GW (1996) The microtubuleassociated protein tau is extensively modified with 0-linked N-acetylglucosamine. J Biol Chem 271:28741–28744

    PubMed  CAS  Google Scholar 

  • Aronov S, Aranda G, Behar L, Ginzburg I (2001) Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal. J Neurosci 21:6577–6587

    PubMed  CAS  Google Scholar 

  • Atashi JR, Klinz SG, Ingraham CA, Matten WT, Schachner M, Maness PF (1992) Neural cell adhesion molecules modulate tyrosine phosphorylation of tubulin in nerve growth cone membranes. Neuron 8:831–842

    PubMed  CAS  Google Scholar 

  • Audesirk G, Cabell L, Kern M (1997) Modulation of neurite branching by phosphorylation in cultured rat hippocampal neurons. Dev Brain Res 102:247–260

    CAS  Google Scholar 

  • Baas PW, Black MM (1990) Individual microtubules in the axon consist of domains that differ in both composition and stability. J Cell Biol 111:495–509

    PubMed  CAS  Google Scholar 

  • Baas PW, Brown (1997) Slow axonal transport: the polymer transport model. Trends Cell Biol 7:380–384

    PubMed  CAS  Google Scholar 

  • Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang-B-K, Kandel E, Tsien R (1993) Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260:222–226

    PubMed  CAS  Google Scholar 

  • Bassell G, Singer RH (1997) mRNA and cytoskeletal filaments. Curr Opin Cell Biol 9:109–115

    PubMed  CAS  Google Scholar 

  • Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau polypeptides in the mammalian central nervous system. J Cell Biol 101:1371–1378

    PubMed  CAS  Google Scholar 

  • Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci 16:3601–3619

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol (Berl) 87:554–567

    CAS  Google Scholar 

  • Brady RM, Zinkowski RP, Binder LI (1995) Presence of tau in isolated nuclei from human brain. Neurobiol Aging 16:479–486

    PubMed  CAS  Google Scholar 

  • Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM-Y (1993) Abnormal tau phosphorylation at Ser-396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10:1089–1099

    PubMed  CAS  Google Scholar 

  • Brandt R, Leger J, Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal domain. J Cell Biol 131:1327–1340

    PubMed  CAS  Google Scholar 

  • Brion JP, Smith C, Couck AM, Gallo JM, Anderton BH (1993) Developmental changes in tau phosphorylation: fetal-type tau is transiently phosphorylated in a manner similar to paired helical filament-tau characteristic of Alzheimer’s disease. J Neurochem 61:2071–2080

    PubMed  CAS  Google Scholar 

  • Brion JP, Octave JN, Couck AM (1994) Distribution of the phosphorylated microtubule-associated protein tau in developing cortical neurons. Neuroscience 63:895–909

    PubMed  CAS  Google Scholar 

  • Brion JP, Couck AM, Conreur JL, Octave JN (1995) A phosphorylated tau species is transiently present in developing cortical neurons and is not associated with stable microtubules. In: Kosik KS, Christen Y, Selkoe DJ (eds) Alzheimer’s disease: lessons from cell biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Butner KA, Kirschner MW (1991) Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol 115:717–730

    PubMed  CAS  Google Scholar 

  • Buée L, Delacourte A (2001) Tau phosphorylation. In: Hof PR, Mobbs CV (eds) Functional neurobiology of aging. Academic Press, San Diego, pp 315–332

    Google Scholar 

  • Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33:95130

    Google Scholar 

  • Caceres A, Kosik KS (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343:461–463

    PubMed  CAS  Google Scholar 

  • Caceres A, Potrevic S, Kosik KS (1991) The effect of tau antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons. J Neurosci 11:1515–1523

    PubMed  CAS  Google Scholar 

  • Chen J, Kanai Y, Cowan NJ, Hirokawa N (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360:674–677

    PubMed  CAS  Google Scholar 

  • Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubuleassociated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225

    PubMed  CAS  Google Scholar 

  • Devoto SH (1990) Neuronal growth cone migration. Experientia 46:916–922

    PubMed  CAS  Google Scholar 

  • DiTella MC, Feiguin F, Morfini G, Caceres A (1996) MAP1b/tau functional redundancy during laminin-enhanced axonal growth. J Cell Sci 109:467–477

    PubMed  CAS  Google Scholar 

  • Dotti CG, Banker GA (1987) Experimentally induced alterations in the polarity of developing neurons. Nature 330:254–256

    PubMed  CAS  Google Scholar 

  • Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    PubMed  CAS  Google Scholar 

  • Drubin DG, Feinstein SC, Shooter EM, Kirschner MW (1985) Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol 101:1799–1807

    PubMed  CAS  Google Scholar 

  • Dudek SM, Johnson GV (1995) Postnatal changes in serine/threonine protein phos-phatases and their association with the microtubules. Dev Brain Res 90:54–61

    CAS  Google Scholar 

  • Ferreira A, Busciglio J, Caceres A (1989) Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: evidence for the involvement of the microtubule-associated proteins, MAP1a, HMW-MAP2 and tau. Dev Brain Res 49:215–228

    CAS  Google Scholar 

  • Fritsche J, Reber BF, Schindelholz B, Bandtlow CE (1999) Differential cytoskeletal changes during growth cone collapse in response to hSema III and thrombin. Moll Cell Neurosci 14:398–418

    CAS  Google Scholar 

  • Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230

    PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399

    PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Crowther RA, Six J, Lübke U, Vandermeerren M, Cras P, Trojanowski JQ, Lee VM-Y (1993) The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer’s disease recapitulates phosphorylation during development. Proc Natl Acad Sci USA 90:5066–5070

    PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Vanmechelen E (1995) Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett 189:167–169

    PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383:550–553

    PubMed  CAS  Google Scholar 

  • Goode BL, Feinstein SC (1994) Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. J Cell Biol 124:769–782

    PubMed  CAS  Google Scholar 

  • Gordon-Weeks PR (1987) The cytoskeletons of isolated, neuronal growth cones. Neuroscience 21:977–989

    PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Quinlan M, Tung Y-C, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau: a component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    PubMed  CAS  Google Scholar 

  • Haas C, Steiner H (2001) Protofibrils, the unifying toxic molecule of neurodegenerative disorders? Nat Neurosci 4:859–861

    Google Scholar 

  • Hagestedt T, Lichtenberg B, Wille H, Mandelkow EM, Mandelkow E (1989) Tau proteins become long and stiff upon phosphorylation: correlation between paracrystalline structure and degree of phosphorylation. J Cell Biol 109:1643–1651

    PubMed  CAS  Google Scholar 

  • Haltiwanger RS, Busby S, Grove K, Li S, Mason D, Medina L, Moloney D, Philipsberg G, Scartozzi R (1997) 0-glycosylation of nuclear and cytoplasmic proteins: regulation analogous to phosphorylation? Biochem Biophys Res Commun 231:237–242

    PubMed  CAS  Google Scholar 

  • Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takei Y, Noda T, Hirokawa N (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369:488–491

    PubMed  CAS  Google Scholar 

  • Harrison RG (1907) Observations on the living developing nerve fiber. Anat Rec 1:116–118

    Google Scholar 

  • Heicklen-Klein A, Ginzburg I (2000) Tau promoter confers neuronal specificity and binds Spl and AP-2. J Neurochem 75:1408–1418

    PubMed  CAS  Google Scholar 

  • Heicklen-Klein A, Aronov S, Ginzburg I (2000) Tau promoter activity in neuronally differentiated P19 cells. Brain Res 874:1–9

    PubMed  CAS  Google Scholar 

  • Hirokawa N, Bloom GS, Vallee RB (1985) Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the IPDN-intoxicated axon as a model system. J Cell Biol 101:1858–1870

    PubMed  CAS  Google Scholar 

  • Hirokawa N, Funakoshi T, Sato-Harada R, Kanai Y (1996) Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J Cell Biol 132:667–679

    PubMed  CAS  Google Scholar 

  • Ihara Y, Nukina N, Miura R, Ogawara M (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J Biochem 99:1807–1810

    PubMed  CAS  Google Scholar 

  • Janke C, Beck M, Stahl T, Holzer M, Brauer K, Bigl V, Arendt T (1999) Phylogenetic diversity of the expression of the microtubule-associated protein tau: implications for neurodegenerative disorders. Mol Brain Res 68:119–128

    PubMed  CAS  Google Scholar 

  • Jenkins SM, Johnson GVW (1997) Phosphorylation of microtubule-associated protein tau on Ser 262 by an embryonic 100-kDa protein kinase. Brain Res 767:305–313

    PubMed  CAS  Google Scholar 

  • Kamiguchi H, Yoshihara F (2001) The role of endocytic Ll trafficking in polarized adhesion and migration of nerve growth cones. J Neurosci 21:9194–9203

    PubMed  CAS  Google Scholar 

  • Kanai Y, Takemura R, Ohshima T, Mori H, Ihara Y, Yanagisawa M, Masaki T, Hirokawa N (1989) Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA. J Cell Biol 109:1173–1184

    PubMed  CAS  Google Scholar 

  • Kanemaru K, Takio K, Miura R, Titani K, Ihara Y (1992) Fetal-type phosphorylation of the tau in paired helical filaments. J Neurochem 58:1667–1675

    PubMed  CAS  Google Scholar 

  • Kater SB, Mattson MP, Cohan CC, Connor J (1988) Calcium regulation of the neuronal growth cone. Trends Neurosci 11:315–322

    PubMed  CAS  Google Scholar 

  • Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule-and microfilament-dependent manner. J Neurosci 16:5583–5592

    PubMed  CAS  Google Scholar 

  • Kennesey A, Yen S-HC (1993) The extent of phosphorylation of fetal tau is comparable to that of PHF-tau from Alzheimer paired helical filaments. Brain Res 629:40–46

    Google Scholar 

  • Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer’s disease. Proc Natl Acad Sci USA 83:4044–4048

    PubMed  CAS  Google Scholar 

  • Kosik KS, Orecchio LD, Bakalis S, Neve RL (1989) Developmentally regulated expression of specific tau sequences. Neuron 2:1389–1397

    PubMed  CAS  Google Scholar 

  • Lee G, Neve RL, Kosik KS (1989) The microtubule binding domain of tau protein. Neuron 2:1615–1624

    PubMed  CAS  Google Scholar 

  • Lee G, Newman ST, Gard DL, Band H, Panchamoorthy (1998) Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci 111:3167–3177

    PubMed  CAS  Google Scholar 

  • Lin CH, Forscher P (1993) Cytoskeletal remodeling during growth cone-target interactions. J Cell Biol 121:1369–1383

    PubMed  CAS  Google Scholar 

  • Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259:5301–5305

    PubMed  CAS  Google Scholar 

  • Liu CA, Lee G, Jay DG (1999) Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons. Cell Motil Cytoskel 43:232–242

    CAS  Google Scholar 

  • Lodish H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J (1997) XXX Molecular cell biology (eds Freeman WH and Co.). Scientific American Books, New York, pp 1061–1070

    Google Scholar 

  • Mandell JW, Banker GA (1996) A spatial gradient of tau protein phosphorylation in nascent axons. J Neurosci 16:5727–5740

    PubMed  CAS  Google Scholar 

  • Matus A, Bernhardt R, Hugh-Jones T (1981) High molecular weight microtubuleassociated proteins are preferentially associated with dendritic microtubules in brain. Proc Natl Acad Sci USA 78:3010–3014

    PubMed  CAS  Google Scholar 

  • Mawal-Dewan M, Henley J, Van de Voorde A, Trojanowski JQ, Lee VMY (1994) The phosphorylation state of tau in the developing rat brain is regulated by phosphoprotein phosphatases. J Biol Chem 269:30981–30987

    PubMed  CAS  Google Scholar 

  • Mehler MF, Gokhan S (2001) Developmental mechanisms in the pathogenesis of neurodegenerative diseases. Prog Neurobiol 63:337–363

    PubMed  CAS  Google Scholar 

  • Mesulam M-M (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24:521–529

    PubMed  CAS  Google Scholar 

  • Miyata Y, Hoshi M, Nishida E, Minami Y, Sakai H (1986) Binding of MAP2 and tau to the intermediate filament reassembled from neurofilament 70-kDa subunit protein. Its regulation by calmodulin. J Biol Chem 261:13026–13030

    PubMed  CAS  Google Scholar 

  • Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y (1995) Proline-directed and nonproline directed phosphorylation of PHF-tau. J Biol Chem 270:823–829

    PubMed  CAS  Google Scholar 

  • Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule associated protein 2. Mol Brain Res 1:271–280

    CAS  Google Scholar 

  • Panda D, Goode BL, Feinstein SC, Wilson L (1995) Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau. Biochemistry 34:11117–11127

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal (1890) A quelle époque apparaissent les extensions des cellules nerveuses de la moëlle épinière du poulet? Anat Anz 5:609–613

    Google Scholar 

  • Rebhan M, Vacun G, Rösner H (1995) Complementary distribution of tau proteins in different phosphorylation states within growing axons. Neuroreport 6:429–432

    PubMed  CAS  Google Scholar 

  • Riederer BM, Mourton-Gilles C, Frey P, Delacourte A, Probst A (2001) Differential phosphorylation of tau proteins during kitten brain development and Alzheimer’s disease. J Neurocytol 30:145–158

    PubMed  CAS  Google Scholar 

  • Rösner H, Rebhan M, Vacun G, Vanmechelen E (1995) Developmental expression of tau proteins in the chicken and rat brain: Rapid down-regulation of a paired helical filament epitope in the rat cerebral cortex coincides with the transition from immature to adult tau isoforms. Int J Dev Neurosci 13:607–617

    PubMed  Google Scholar 

  • Sato-Yoshitake R, Shiomura Y, Miyasaka H, Hirokawa N (1989) Microtubule-associated protein 1B: Molecular structure, localization, and phosphorylation-dependent expression in developing neurons. Neuron 3:229–238

    PubMed  CAS  Google Scholar 

  • Schaefer AW, Kamei Y, Kamiguchi H, Wong EV, Rapoport I, Kirchhausen T, Beach CM, Landreth G, Lemmon S, Lemmon V (2002) LI endocytosis is controlled by a phosphorylation-dephosphorylation cycle stimulated by outside-in signaling by L1. J Cell Biol 157:1223–1232

    PubMed  CAS  Google Scholar 

  • Selden SC, Pollard TD (1983) Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J Biol Chem 258:7064–7071

    PubMed  CAS  Google Scholar 

  • Simic G, Gnjidic M, Kostovic I (1998) Cytoskeletal changes as an alternative view on pathogenesis of Alzheimer’s disease. Period Biol 100:165–173

    Google Scholar 

  • Slaughter T, Wang J, Black MM (1997) Microtubule transport from the cell body into the axons of growing neurons. J Neurosci 17:5807–5819

    PubMed  CAS  Google Scholar 

  • Smith CJ, Anderton BH, Davis DR, Gallo JM (1995) Tau isoform expression and phosphorylation state during differentiation of cultured neuronal cells. FEBS Lett 375:243–248

    PubMed  CAS  Google Scholar 

  • Snow DM, Mullins N, Hynds DL (2001) Nervous system-derived chondroitin-sulfate proteoglycans regulate growth cone morphology and inhibit neurite outgrowth: a light, epifluorescence, and electron microscopic study. Microsc Res Tech 54:273–286

    PubMed  CAS  Google Scholar 

  • Szaro B, Lee V, Gainer H (1989) Spatial and temporal expression of phosphorylated and non-phosphorylated forms of the neurofilament proteins in the developing nervous system of Xenopus laevis. Dev Brain Res 48:87–103

    CAS  Google Scholar 

  • Szendrei GI, Lee VMY, Otvos L (1993) Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location. J Neurosci Res 34:243–249

    PubMed  CAS  Google Scholar 

  • Takahashi M, Tsujioka Y, Yamada T, Tsuboi Y, Okada H, Yamamoto T, Liposits Z (1999) Glycosylation of microtubule-associated protein tau in Alzheimer’s disease brain. Acta Neuropathol (Berl) 97:635–641

    CAS  Google Scholar 

  • Takei Y, Teng J, Harada A, Hirokawa N (2000) Defects in axonal elongation and neuronal migration in mice with disrupted tau and map lb genes. J Cell Biol 150:989–1000

    PubMed  CAS  Google Scholar 

  • Tanaka E, Sabry J (1995) Making connection: cytoskeletal rearrangements during growth cone guidance. Cell 83:171–176

    PubMed  CAS  Google Scholar 

  • Tint I, Slaughter T, Fischer I, Black MM (1998) Acute inactivation of tau has no effect on dynamic of microtubules in growing axons of cultured sympathetic neurons. J Neurosci 18:8660–8673

    PubMed  CAS  Google Scholar 

  • Uberti D, Rizzini C, Spano P-F, Memo M (1997) Characterization of tau proteins in human neuroblastoma SH-SY5Y cell line. Neurosci Lett 235:149–153

    PubMed  CAS  Google Scholar 

  • Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60:139–165

    PubMed  CAS  Google Scholar 

  • Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 2:871–875

    PubMed  CAS  Google Scholar 

  • Watanabe A, Hasegawa M, Suzuki M, Takio K, Morishima-Kawashima M, Titani K, Arai T, Kosik KS, Ihara Y (1993) In vivo phosphorylation sites in fetal and adult rat tau. J Biol Chem 268:25712–25717

    PubMed  CAS  Google Scholar 

  • Williamson T, Gordon-Weeks PR, Schachner M, Taylor J (1996) Microtubule reorganization is obligatory for growth cone turning. Proc Natl Acad Sci USA 93:15221–15226

    PubMed  CAS  Google Scholar 

  • Wood JG, Mirra SS, Pollock NJ, Binder LI (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau. Proc Natl Acad Sci USA 83:1–4

    Google Scholar 

  • Yamada KM, Spooner BS, Wessells NK (1971) Ultrastructure and function of growth cones and axons in cultured nerve cells. J Cell Biol 49:614–635

    PubMed  CAS  Google Scholar 

  • Zmuda JF, Rivas RJ (2000) Actin disruption alters the localization of tau in the growth cones of cerebellar granule neurons. J Cell Sci 113:2797–2809

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Šimić, G., Diana, A., Hof, P.R. (2003). Phosphorylation Pattern of tau Associated with Distinct Changes of the Growth Cone Cytoskeleton. In: Kostović, I. (eds) Guidance Cues in the Developing Brain. Progress in Molecular and Subcellular Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55557-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55557-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62426-1

  • Online ISBN: 978-3-642-55557-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics