Skip to main content

Mannose-Binding Lectins in Cerebrum Development

  • Chapter
Guidance Cues in the Developing Brain

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 32))

Abstract

The nervous system is so complex that it is not ordinarily considered as an interesting model for studying cellular mechanisms. However, its morphology (at least in some well-defined areas) provides essential information because cells are polarised: cell body, axons and dendrites can be easily identified in vivo, an essential property when studies are concerned with the intracellular traffic of molecules and with the biochemical steps involved in cell adhesion and cell recognition mechanisms. The development of the central nervous system presents features that are phylogenetically preserved. Although most studies were performed on a special portion of the central nervous system (CNS), the cerebellum (Fig.1), because its organisation is extremely simple, reproducible from one area to the other and its development is relatively synchronous compared with other brain areas, the mechanisms deduced from this simple part of the CNS can be extrapolated to other brain areas. The formation of the specialised contacts between neurones at the synapses is only one aspect of the complexity of the CNS development. In fact, the formation of the CNS can be reduced to sequential steps: neuronal cell proliferation, neuronal cell migration and axonal growth, synaptogenesis and glial wrapping (myelination and astrocytic insulation). In the cerebellum, after the initial phase of neuronal cell proliferation, the cell bodies of immature neurones undergo migration on pre-existing astrocytic fibres to reach their adult location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman J (1971) Coated vesicles and synaptogenesis. A developmental study in the cerebellar cortex of the rat. Brain Res 30:311–322

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972a) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol 145:353–398

    Article  CAS  Google Scholar 

  • Altman J (1972b) Postnatal development of the cerebellar cortex in rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–464

    Article  CAS  Google Scholar 

  • Altman J (1972c) Postnatal development of the cerebellar cortex in the rat. III. Maturation of the components of the granular layer. J Comp Neurol 145:465–514

    Article  CAS  Google Scholar 

  • Badache A, Burger D, Villarroya H, Robert Y, Kuchler S, Steck AS, Zanetta J-P (1992) Carbohydrate moieties of MAG, PO and other myelin glycoproteins potentially involved in cell adhesion. Dev Neurosci 14:342–350

    Article  PubMed  CAS  Google Scholar 

  • Badache A, Lehmann S, Kuchler-Bopp S, Hand N, Zanetta J-P (1995) An endogenous lectin and its glycoprotein ligands are triggering basal and axon-induced Schwann cell proliferation. Glycobiology 5:371–383

    Article  PubMed  CAS  Google Scholar 

  • Bardosi A, Dimitri T, Gabius H-J (1988) Endogenous carbohydrate binding proteins in oligodendrogliomas. A histochemical study. Acta Neuropathol (Berl) 446:1–7

    Google Scholar 

  • Bardosi A, Bardosi L, Hendrys M, Wosgien B, Gabius H-J (1990a) Spatial differences of endogenous lectin expression within the cellular organisation of the human heart. A glycohistochemical immunohistochemical and glycobiochemical study. Am J Anat 188:409–418

    Article  CAS  Google Scholar 

  • Bardosi A, Bardosi L, Lindenblatt R, Gabius H-J (1990b) Detection and mapping of endogenous receptors for carrier-immobilized constituents of glycoconjugates (lectins) by labelled (neo)glycoproteins and by affinity chromatography in human adult mesencephalon, pons, medulla oblongata and cerebellum. Histochemistry 94:285–291

    Article  CAS  Google Scholar 

  • Brink U, Korabiowska M, Bosbach R, Gabius H-J (1998) Detection of inflammation-and neoplasia-associated alterations in human large intestine by plant/invertebrate lectins, galectin-1 and neoglycoproteins. Acta Anat 161:219–233

    Article  Google Scholar 

  • Brockhausen I (1998) Glycoproteins and their relationship to disease. Acta Anat 161:371–374

    Article  Google Scholar 

  • Cebo C, Dambrouck T, Maes E, Laden C, Strecker G, Michalski J-C, Zanetta J-P (2001) Recombinant human interleukins, namely IL- 1alpha, IL-lbeta, IL-4, IL-6 and IL-7, show different and specific calcium-independent carbohydrate-binding properties. J Biol Chem 276:5685–5691

    Article  PubMed  CAS  Google Scholar 

  • Cebo C, Durier V, Lagant P, Maes E, Florea D, Lefebvre T, Strecker G, Vergoten G, Zanetta J-P (2002) Function and molecular modeling of the interaction between human interleukin 6 with its HNK-1 oligosaccharide ligands. J Biol Chem 277:12246–12252

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Hillman E (1982) Plasticity of the parallel fiber-Purkinje cell synapse by spine takover and new synapse formation in the adult rat. Brain Res 240:205–220

    Article  PubMed  CAS  Google Scholar 

  • Danguy A, Decaestecker C, Genten F, Salmon I, Kiss R (1998) Applications of lectins and neoglycoconjugates in histology and pathology. Acta Anat 161:206–218

    Article  PubMed  CAS  Google Scholar 

  • Debbage P, Marguth F, Gabius HJ (1990) Glycohistochemical visualisation of mannosebinding lectins in the microvasculatures of brain and brain tumours. Act Histochem 40:113–116

    CAS  Google Scholar 

  • Dontenwill M, Devilliers G, Langley OK, Roussel G, Hubert P, Reeber A, Vincendon G, Zanetta J-P (1983) Arguments in favour of endocytosis of glycoprotein components of the membrane of parallel fibers by Purkinje cells during the development of the rat cerebellum. Dev Brain Res 10:287–299

    Article  Google Scholar 

  • Dontenwill M, Roussel G, Zanetta J-P (1985) Immunohistochemical localization of a lectin like molecule “Rl” during the postnatal development of the rat cerebellum. Dev Brain Res 17:245–252

    Article  Google Scholar 

  • Drickamer K (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263:9557–9560

    PubMed  CAS  Google Scholar 

  • Drickamer K (1997) Making a fitting choice: common aspects of sugar-binding sites in plant and animal lectins. Structure 5:465–468

    Article  PubMed  CAS  Google Scholar 

  • Eckenhoff MF, Pysh JJ (1979) Double-walled coated vesicle formation: evidence for massive and transient conjugate internalization of plasma membranes during cerebellar development. J Neurocytol 8:623–638

    Article  PubMed  CAS  Google Scholar 

  • Fahrig T, Schmitz B, Weber D, Kuchererehret A, Faissner A, Schachner M (1990) Two monoclonal antibodies recognizing carbohydrate epitopes on neural adhesion molecules interfere with cell interactions. Eur J Neurosci 2:153–161

    Article  PubMed  Google Scholar 

  • Fruttiger M, Montag D, Schachner M, Martini R (1995) Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity. Eur J Neurosci 7:511–515

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Hara-Kuge S, Ideo H, Yamashita K (2001) Carbohydrate recognition site of interleukin-2 in relation to cell proliferation. J Biol Chem 276:7351–7351

    Article  PubMed  CAS  Google Scholar 

  • Gabius H-J (1997) Animal lectins. Eur J Biochem 243:543–576

    Article  PubMed  CAS  Google Scholar 

  • Fahrig T, Schmitz B, Weber D, Kuchererehret A, Faissner A, Schachner M (1990) Two monoclonal antibodies recognizing carbohydrate epitopes on neural adhesion molecules interfere with cell interactions. Eur J Neurosci 2: 153–161

    Article  PubMed  Google Scholar 

  • Fruttiger M, Montag D, Schachner M, Martini R (1995) Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity. Eur J Neurosci 7: 511–515

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Hara-Kuge S, Ideo H, Yamashita K (2001) Carbohydrate recognition site of interleukin-2 in relation to cell proliferation. J Biol Chem 276:7351–7351

    Article  PubMed  CAS  Google Scholar 

  • Gabius H-J (1997) Animal lectins. Eur J Biochem 243: 543–576

    Article  PubMed  CAS  Google Scholar 

  • Gabius H-J, Bardosi A (1990) Regional differences in the distribution of endogenous receptors for carbohydrate constituents of cellular glycoconjugates especially lectins in cortex hippocampus basal ganglia and thalamus of adult human brain. Histochemistry 93: 581–592

    Article  PubMed  CAS  Google Scholar 

  • Gabius H-J, Kohnke B, Hellmann T, Dimitri T, Bardosi A (1988) Comparative histochemical and biochemical analysis of endogenous receptors for glycoproteins in human and pig peripheral nerve. J Neurochem 51: 756–763

    Article  PubMed  CAS  Google Scholar 

  • Gabius H-J, Wosgien B, Hendrys M, Bardosi A (1991) Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins neoglycoprotein and lectin-specific antibody. Histochemistry 95: 269–277

    Article  PubMed  CAS  Google Scholar 

  • Gabius H-J, Gabius S, Zemlyanukhina TV, Bovin NV, Brinck J, Danguy A, Joshi SS, Kayser K, Schottelius J, Tietze LF, Vidal-Vanaclocha F, Zanetta J-P (1993) Reverse lectin histochemistry: Design and application of glycoligands for detection of cell and tissue lectins. Histol Histopathol 8: 369–383

    PubMed  CAS  Google Scholar 

  • Gabius S, Hellmann KP, Hellmann T, Brinck J, Gabius H-J (1989) Neoglycoenzymes. A versatile tool for lectin detection in solid-phase assays and glycohistochemistry. Anal Biochem 182: 447–451

    Article  PubMed  CAS  Google Scholar 

  • Geyer H, Geyer R (1998) Strategies for glycoconjugate analysis. Acta Anat 161:18–35 Hakomori S (1998) Cancer-associated glycosphingolipid antigens: their structure, organization and function. Acta Anat 161: 79–90

    Article  Google Scholar 

  • Ishiguro H, Sato S, Fujita N, Inuzuka T, Nakano R, Miyatake T (1991) Immunohistochemical localization of myelin-associated glycoprotein isoforms during the development in the mouse brain. Brain Res 563: 288–292

    Article  PubMed  CAS  Google Scholar 

  • Jiang CL, Lu CL (1998) Interleukin-2 and its effects in the central nervous system. Biol Signals Recept 7: 148–156

    Article  PubMed  CAS  Google Scholar 

  • Jung E, Fucini P, Stewart M, Noegel AA, Schleicher M (1996) Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity. EMBO J 15: 1238–1246

    PubMed  CAS  Google Scholar 

  • Kay R, Rosten PM, Humphries RK (1991) CD24 a signal transducer modulating B-cell activation responses is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol 147: 1412–1416

    PubMed  CAS  Google Scholar 

  • Kuchler S, Fressinaud C, Sarliève LL, Vincendon G, Zanetta J-P (1988) Cerebellar soluble lectin is responsible for cell adhesion and participates in myelin compaction in cultured rat oligodendrocytes. Dev Neurosci 10: 199–212

    Article  PubMed  CAS  Google Scholar 

  • Kuchler S, Rougon G, Marschal P, Lehmann S, Reeber A, Vincendon G, Zanetta J-P (1989a) Localization of a transiently expressed glycoprotein in developing cerebellum delineating its possible ontogenetic roles. Neuroscience 33: 111–124

    Article  PubMed  CAS  Google Scholar 

  • Kuchler S, Herbein G, Sarliève LL, Vincendon G, Zanetta J-P (1989b) An endogenous lectin CSL interacts with major glycoprotein components in peripheral nervous system myelin. Cell Mol Biol 35: 581–596

    PubMed  CAS  Google Scholar 

  • Kuchler S, Zanetta J-P, Vincendon G, Gabius H-J (1990) Detection of binding sites for biotinylated neoglycoproteins and heparin (endogenous lectins) during cerebellar ontogenesis in the rat. Eur J Cell Biol 52: 87–97

    PubMed  CAS  Google Scholar 

  • Kuchler S, Zanetta J-P, Vincendon G, Gabius H-J (1992a) Detection of binding sites for biotinylated neoglycoproteins and heparin (endogenous lectins) during cerebellar ontogenesis in the rat: an ultrastructural study. Eur J Cell Biol 59: 373–381

    PubMed  CAS  Google Scholar 

  • Kuchler S, Lehmann S, Vincendon G, Zanetta J-P (1992b) Endogenous lectin CSL involved in myelination is absent from non-myelinating Schwann cells. J Neurochem 58: 1768–1772

    Article  PubMed  CAS  Google Scholar 

  • Lai C, Brow MA, Nave K-A, Noronha AB, Quarles RH, Bloom FE, Milner RJ, Sutcliffe JG (1987) Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal development, are produced by alternative splicing. Proc Natl Acad Sci USA 84: 4337–4341

    Article  PubMed  CAS  Google Scholar 

  • Langley OK, Reeber A, Vincendon G, Zanetta J-P (1982) Fine structural localization of a new Purkinje cell specific glycoprotein subunit: an immunoelectron microscopical study. J Comp Neurol 208: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Lehmann S, Kuchler S, Theveniau M, Vincendon G, Zanetta J-P (1990) An endogenous lectin and one of its neuronal glycoprotein ligands are involved in contact guidance of neuron migration. Proc Natl Acad Sci USA 87:6455–6459

    Article  PubMed  CAS  Google Scholar 

  • Lehmann S, Kuchler S, Gobaille S, Marschal P, Badache A, Reeber A, Vincendon G, Zanetta J-P (1993) Lesion-induced reexpression of neonatal recognition molecules in adult rat cerebellum. Brain Res Bull 30: 515–521

    Article  PubMed  CAS  Google Scholar 

  • Lindner J, Rathjen FG, Schachner M (1983) L1 mono-and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature 305: 427–430

    Article  PubMed  CAS  Google Scholar 

  • Lindner J, Guenther J, Nick H, Zinser G, Antonicek H, Schachner M, Monard D (1986) Modulation of cell migration by a glia-derived protein. Proc Natl Acad Sci USA 83: 4568–4571

    Article  PubMed  CAS  Google Scholar 

  • Mahanthappa NK, Cooper DNW, Barondes SH, Schwarting GA (1994) Rat olfactory neurons can utilize the endogenous lectin, L-14, in a novel adhesion mechanism. Development 120:1373–1384

    PubMed  CAS  Google Scholar 

  • Marschal P, Reeber A, Neeser J-R, Vincendon G, Zanetta J-P (1989) Carbohydrate and glycoprotein specificity of two endogenous cerebellar lectins. Biochimie 71: 645–653

    Article  PubMed  CAS  Google Scholar 

  • Martini R, Schachner M (1986) Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. J Cell Biol 103: 2439–2448

    Article  PubMed  CAS  Google Scholar 

  • Monsigny M, Kieda C, Roche A-C (1983) Membrane glycoproteins glycolipids and membrane lectins as recognition signals in normal and malignant cells. Biol Cell 47: 95–110

    CAS  Google Scholar 

  • Palay SL, Chan-Palay VC (1974) Cerebellar cortex. Cytology and organization. Springer, Berlin Heidelberg New York, pp 1–336

    Book  Google Scholar 

  • Perraud F, Kuchler S, Gobaille S, Labourdette G, Vincendon G, Zanetta J-P (1988) Endogenous lectin CSL is present on the membrane of cilia of rat brain ependymal cells. J Neurocytol 17: 745–751

    Article  PubMed  CAS  Google Scholar 

  • Puche AC, Poirier F, Hair M, Bartlett PF, Key B (1996) Role of galectin-1 in the developing mouse olfactory system. Dev Biol 179: 274–287

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1971) Neuron glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electron microscopy study in Macacus rhesus. J Comp Neurol 141: 283–312

    Article  PubMed  CAS  Google Scholar 

  • Ratner N, Hong D, Lieberman MA, Bunge RP, Glaser L (1988) The neuronal cell-surface molecule mitogenic for Schwann cells is a heparin-binding protein. Proc Natl Acad Sci USA 85: 6992–6996

    Article  PubMed  CAS  Google Scholar 

  • Reeber A, Vincendon G, Zanetta J-P (1980) Transient Concanavalin A-binding glycoproteins of the parallel fibers of the developing rat cerebellum: evidence for the destruction of their glycans. J Neurochem 35: 1273–1277

    Article  PubMed  CAS  Google Scholar 

  • Reeber A, Vincendon G, Zanetta J-P (1981) Isolation and immunohistochemical localization of a Purkinje cell-specific glycoprotein subunit from rat cerebellum. Brain Res 229: 53–65

    Article  PubMed  CAS  Google Scholar 

  • Rüdiger H (1998) Plant lectins - more than just tools for glycoscientists. Occurrence, structure and possible functions of plant lectins. Acta Anat 161: 130–152

    Article  PubMed  Google Scholar 

  • Sève A-P, Hubert J, Bouvier D, Bourgeois C, Midoux P, Roche A-C, Monsigny M (1986) Analysis of sugar binding sites in mammalian cell nuclei by quantitative flow microfluorimetry. Proc Natl Acad Sci USA 83: 5997–6001

    Article  PubMed  Google Scholar 

  • Sherblom AP, Sathyamoorthy N, Decker JM, Muchmore A (1989) IL-2 a lectin with specificity for high mannose glycopeptides. J Immunol 143: 939–944

    PubMed  CAS  Google Scholar 

  • Sidman RL, Rakic P (1973) Neuron migration with special reference to developing human brain: a review. Brain Res 62: 1–35

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C, Changeux J-P (1974) Trans-synaptic degeneration “en cascade” in the cerebellar cortex of staggerer mutant mouse. Brain Res 67: 519–526

    Article  PubMed  CAS  Google Scholar 

  • Teichberg VI, Silman I, Beitsch D, Resheff D (1975) A 13-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci USA 72: 1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Lehmann S, Kuchler-Bopp S, Marschal P, Zanetta J-P (1994) Differential expression of an endogenous mannose-binding protein R1 during muscle development and regeneration delineating its role in myoblast fusion. Glycobiology 4: 23–38

    Article  PubMed  CAS  Google Scholar 

  • Villalobo A, Gabius H-J (1998) Signalling pathways for transduction of the initial message of the glycocode into cellular response. Acta Anat 161: 110–129

    Article  PubMed  CAS  Google Scholar 

  • Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ, Arulanandam ARN, Smolyar A, Reinherz EL, Wagner G (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269: 1273–1278

    Article  PubMed  CAS  Google Scholar 

  • Zanetta J-P (1996) Glycoproteins and lectins in immune demyelinating human diseases. In: Montreuil J, Schachter H, Vliegenthart JFG (eds) Glycoproteins and disease, vol 2. Elsevier, Amsterdam, pp 395–404

    Chapter  Google Scholar 

  • Zanetta J-P, Roussel G, Ghandour MS, Vincendon G, Gombos G (1978) Postnatal development of rat cerebellum: massive and transient accumulation of Concanavalin A binding glycoproteins in parallel fiber axolemma. Brain Res 142: 301–319

    Article  PubMed  CAS  Google Scholar 

  • Zanetta J-P, Meyer A, Dontenwill M, Basset P, Vincendon G (1982) Purification and properties of a-D-mannosidase from adult rat brain and interaction with its antibodies. J Neurochem 39: 1601–1606

    Article  PubMed  CAS  Google Scholar 

  • Zanetta J-P, Roussel G, Dontenwill M, Vincendon G (1983) Immunohistochemical localization of a-D-mannosidase during the cerebellar development of the rat. J Neurochem 40: 202–208

    Article  PubMed  CAS  Google Scholar 

  • Zanetta J-P, Dontenwill M, Meyer A, Roussel G (1985) Isolation and immunohistochemical localization of a lectin-like molecule from the rat cerebellum. Dev Brain Res 17: 233–243

    Article  CAS  Google Scholar 

  • Zanetta J-P, Meyer A, Kuchler S, Vincendon G (1987a) Isolation and immunochemical study of a soluble cerebellar lectin delineating its structure and function. J Neurochem 49: 1250–1257

    Article  PubMed  CAS  Google Scholar 

  • Zanetta J-P, Dontenwill M, Reeber A, Vincendon G (1987b) Expression of recognition molecules in the cerebellum of young and adult rats. NATO ASI Ser H 2: 92–104

    Google Scholar 

  • Zanetta J-P, Warter J-M, Kuchler S, Marschal P, Rumbach L, Lehmann S, Tranchant C, Reeber A, Vincendon G (1990) Antibodies to cerebellar soluble lectin CSL in multiple sclerosis. Lancet 335: 1482–1484

    Article  PubMed  CAS  Google Scholar 

  • Zanetta J-P, Kuchler S, Lehmann S, Badache A, Maschke S, Marschal P, Dufourcq P, Vincendon G (1991) Cerebellar lectins. Int Rev Cytol 135: 129–154

    Google Scholar 

  • Zanetta J-P, Kuchler S, Lehmann S, Badache A, Maschke S, Thomas D, Dufourcq P, Vincendon G (1992) Glycoproteins and lectins in cell adhesion processes. Histochem J 24: 791–804

    Article  PubMed  CAS  Google Scholar 

  • Zanetta J-P, Tranchant C, Kuchler-Bopp S, Lehmann S, Warter J-M (1994) Presence of anti-CSL antibodies in the cerebrospinal fluid of patients. A sensitive and specific test in the diagnosis of multiple sclerosis. J Neuroimmunol 52: 175–182

    Article  PubMed  CAS  Google Scholar 

  • Zanetta J-P, Alonso C, Michalski J-C (1996) Interleukin 2 is a lectin that associates its receptor with the T cell receptor complex. Biochem J 318: 49–53

    PubMed  CAS  Google Scholar 

  • Zanetta J-P, Bonaly R, Maschke S, Strecker G, Michalski J-C (1998) Hypothesis: immunodeficiencies in a-mannosidosis, mycosis, aids and cancer: a common mechanism of inhibition of the function of interleukin 2 by oligomannosides. Glycobiology 8(3): V-IX

    Article  Google Scholar 

  • Zanetta J-P, Bonaly R, Maschke S, Strecker G, Michalski J-C (1998) Differential binding of lectins IL-2 and CSL to Candida albicans and cancer cells. Glycobiology 8: 221–225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zanetta, JP. (2003). Mannose-Binding Lectins in Cerebrum Development. In: Kostović, I. (eds) Guidance Cues in the Developing Brain. Progress in Molecular and Subcellular Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55557-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55557-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62426-1

  • Online ISBN: 978-3-642-55557-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics